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The problem of coexisting deformed and spherical states in Odd-Mass Nuclei 
is discussed within the framework of the Unified Model. The emphasis is made on 
the coupling between such states. Numerical calculations were performed for alSln. 
The basic spherical states are either 116Sn plus a (proton) hole or ll4Cd plus a (proton) 
particle. The agreement between calculated and experimental quantities is rather good. 

I. Introduction 

A compar ison of the spectra for  the odd-mass indium isotopes (see 
Fig. 1) shows a very similar pattern for  all of them. Therefore one is 
justified to treat them f rom the same theoretical point  of view. Up  to 
now different interpretations have been reported. For  the sake of com- 
pleteness and for  future reference, a resum6 of them is presented below. 

a) Ground State and the First Two Excited States with Negative Parity 

The ground state and the isomeric state are well described by the 
spherical shell model.  A hole in the lg9/2 and 2pl/2 states explain the 
spin and pari ty assignments for  these two levels, respectively. 

Silverberg [1] has studied 1 g9/2 and 2p~/2 energy difference occuring 
in the odd-mass  indium isotopes (A = 109 - 119). He found that  after the 
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filling of the 1 g7/2 s t a t e -  which occur in In 113 _ the 1 h, 2 d and 3 s states 
are filling simultaneously. In this way, the energy difference between 
the lg9/2 and 2p~/2 states is practically constant in all odd indium 
isotopes. 

A 3/2-state appears above the P~/2 isomeric state. Pandharipande 
et aL [2] have calculated the excitation of a proton hole in the P3/2 orbital 
which can give rise to a 3/2-state. They found that this level would lie at 
1.2 MeV above the isomeric state. On the other hand, this level can also 
be due to the coupling of a proton hole in the P~/2 state with a phonon 
of the neighbouring tin isotopes. In this case, the 3/2-level can be 
expected in the energy region of 1.2 MeV too (which is the first phonon 
energy of the even-even tin isotopes). Since both 3/2-levels lie practically 
at the same energy, they may interact strongly. So that, one of these 
levels is pushed down in energy. Silverberg [3] following the calculation 
of Kisslinger and Sorensen [4] has suggested that the lowest 3/2-state is 
of a single-particle nature whereas the other one is too far off in energy. 
Recently, Weiffenbach and Tickle [5] studied the Sn(d, 3He) pick up 
reaction on a series of even tin targets. These experiments indicate that 
the second excited states are composed largely of the configuration 
2p3/~2, confirming the suggestion by Silverberg [3]. 

b) Levels as Members of  a Proposed K= 1/2 + Rotational Band 

The Nilsson model [6] can well account for energies and transition 
rates of some states in In-isotopes if these states are members of a 
K = 1 / 2 +  rotational band, which is based on the state 1/2+ [431] [7]. 
Following this suggestion, Pandharipande et al. [8] were able to repro- 
duce the energies of those states using as values for the inertial and 
decoupling parameters, h2/2J= 28 keV and a =  -2 .2 ,  respectively, which 
in turn are in close agreement with those originally deduced by B~icklin 
et al. [7]. 

e) Hole-Vibration Coupling 

The coupling of the g9/2 hole with the one phonon state (2 +) of the 
neighbouring even-even tin isotopes form a multiplet of five positive 
parity levels with spins ranging from 5/2 + up to 13/2 + .  Calculations of 
this kind were originally performed by Silverberg [3] but the agreement 
with experiment was fairly poor. Later on, Pandharipande [9] recal- 
culated the energies of these states using a rather simple residual inter- 
action within the shell model. The coupling of the g912 proton hole with 
various states of the neutron core was considered. The agreement with 
experiment as far as energies and spins are concerned is a little bit more 
satisfactory than in the previous case, at least for 117In [10], but is still 
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rather poor for the other indium isotopes [10, 11]. Moreover, this model 
cannot account for the position of the center of mass of the multiplet. It 
also fails in explaining the observed B(E2) values [11, 12]. 

Recently, Dietrich et aL [11] applied the intermediate coupling ap- 
proach within the unified model [13] to explain their experimental data 
of 115in" In this model, the 1 g9/2 proton hole is considered to be coupled 
to the oscillatory motion of 116Sn. Vibrational states of the core up to 
two phonons were taken into account. When three phonons were also 
included the agreement with the experimental level positions and B(E2) 
values was worse than in the simpler calculation. The calculated values 
for the level positions, B(E2) and B(M1) transition rates, ground-state 
quadrupole moment and spectroscopic factors are however in reasonably 
good agreement with their experimental data for alSIn. Since they did 
not observe the states at 828 and 864 keV found by B/icklin et aL [7], the 
existence of the proposed rotational band in a~5In was out of the scope 
of their analysis. 

With the same approach, Atalay and Chiao-Yap [14] have analyzed 
the structure of the odd-mass indium isotopes considering the coupling 
of quadrupole vibrations of the tin core to a proton hole which has 
available the 1 g9/2, 2Pl/2 and 2p3/z orbits. Their results show an overall 
fair agreement with experiment except for some levels and properties 
which in turn could be explained by the simple rotational model. 

Based on the same type of approach [11, 14], Covello e taL  [15] 
have recently analyzed the nuclear properties of ~5In by coupling four 
proton-hole states to quadrupole and octupole core vibrations. Most of 
the experimental levels were well predicted but others cannot be described 
by the model. 

The aim of the present work is to discuss the structure of the In-iso- 
topes under the assumption that deformed and spherical states coexist 
in these nuclei, an approach which has proven its usefulness in the 
treatment of oxygen [16] and calcium [17, 18] isotopes. 

During the course of this work an additional investigation on this 
subject was performed by Sen [19] with his extended hole-coupling model. 
In this model, the mixing of the core-plus-hole states with the deformed 
states was considered and the interaction matrix elements were treated 
as adjustable parameters. 

In our work, the mixing of the hole-core and particle-core states as 
well as deformed states is considered on the same footing and the matrix 
elements of the various interactions are treated in an exact way except 
in the case of two-phonon vibrations in which they are neglected. More- 
over, we have taken E2 transitions between different parts of the wave 
functions into account. 
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II. The Model Hamiltonian 

For the odd-mass nuclei we assume a system of nuclear quadrupole 
surface oscillation with coordinates ~. coupled to the single-particle 
motion with coordinates x. The model Hamiltonian can be written in 
the usual form [20] 

H = Heoll(~.) q- lip(X) "F flint (x, ~ ) ,  (II.1) 
where 

H=on(C~,)=�89 (II.2) 

with T and V being the kinetic and potential energy of the surface 
vibration, and Hp(x) is a single-particle Hamiltonian with a spherical 
potential. The coordinates e, are the expansion parameters of the nuclear 
surface defined-for the quadrupole case-by 

R(O, (~) = R o [1 + 2 a. Y~(O, q~)], 

where Ro is the equilibrium radius and Y~, the normalized second-order 
spherical harmonic. 

The coupling term Hint represents the interaction between a particle 
(or a hole) and the quadrupole vibration of the core. In first approxima- 
tion it is given by [20] 

Hint(X, a,) = lc(r) ~ eu r~ (II.3) 

where k(r) is the radial part of Hint. The dependence of the matrix 
element on the particle quantum numbers n and l is sufficiently weak so 
that it can be treated as a constant, as it is customarily done. For 
example, the matrix element of the interaction between a one-phonon 
state and the ground state can be written as 

(jOOJ=jM[ Hin t I j ' lZJM>=k \ 2c ] (Jl] Y2 I[J'> (II.4) 

where <j [1YaIIJ'> is the reduced matrix element of a second order 
spherical harmonic between states with angular momenta j and j'. We 
use in this paper the convention adopted by de-Shalit and Talmi [21]. 

In order to find approximate solutions of the Schr6dinger equation 
corresponding to the Hamiltonian (II.1) 

HI@> =EIO>, (II.5) 

two different possibilities can be considered. They are described in the 
following paragraphs. 
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a) Spherical Solution 

It is well known from the weak coupling scheme in the unified 
model [22] that the Hamiltonian H can be diagonalized within a Hilbert 
space spanned by the solutions of 

(Heon+H/') l~N,v) ~ coil- v. =~,eN +e~) [q~N,~), (II.6a) 
with 

I ~s,  ~) = ] 9N(c*~) 0~(x)).  (II.6b) 

The states 0~(x) are the spherical single-particle states whereas the 
collective states ~o N (e.) are classified according to the number of phonons 
N present in a particular state. 

These solutions are characterized by small average values of the 
collective expansion parameters %. This fact suggests to search for a 
second type of solutions for which the average values of these coefficients 
need not be small. 

b) Deformed Solution 

In this case one assumes a permanent and sufficiently large nuclear 
deformation. Then it is convenient to introduce an intrinsic coordinate 
system in such a way that the kinetic energy of the surface vibration 
separates into a vibrational and rotational part. The new system of 
coordinates is related to the original coordinate system by the rela- 
tions [23] 

2 1 
am = ~ D, mo~,, a2=a-2= fisiny, 

u =  - 2  

a 1 = a _  1 =0,  ao =fl cosy. 

(II.7) 

The Hamiltonian (II.1) in the new coordinate system reads [24] 

where 
H =  Trot+ Tvlb + HN + H'  , 

H N = H p + p r  2 }1o 

(II.8) 

(II.9) 

is a single-particle Hamiltonian with a deformed potential as was 
originally discussed by Nilsson [6]. The last term in Eq. (II.8) stands for 
all the remaining interactions. It is discussed below. 

The constant g which appears in Eq. (II.9) is the coupling strength 
of the particle-vibrator interaction. 

The solutions of the single-particle Schr6dinger equation corre- 
sponding to the Hamiltonian (II.9) can be defined by 

HN ] ZK) = ~ ] ZK) (II. 10) 
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which of course depend on the coordinates a0 and a 2 in the following way 

IZK) = Z C~m(ao, a2) 107). (ILll) 
j~ m 

The wavefunctions 10~') are solutions of the spherical single-particle 
Hamiltonian He 

Hp [ ~p)") = ej i ~">. (lI.12) 

Therefore the wavefunction (cf. Eq. (II.5)) takes the form 

[•) = ~ [D~,K+~p~:,~(ao, a2)XK ) (II.1.3) 

where ~0~, ~ describes the vibration of the nucleus around its equilibrium 
shape. The solution of the Schr6dinger equation (II.5) yields a set of 
coupled equations for the vibrational wavefunctions OK,, [24, 25]. We 
shall not write down this set of equations but only discuss the nature of 
the various coupling terms which form the Hamiltonian H'(Eq.  (II.8)). 
The kinetic energy of the rotation and vibration gives rise to different 
interactions: rotation-vibration-coupling, rotation-particle-coupling, vi- 
bration-rotation-partMe-coupling. They are customarily labelled by 
RVC, RPC (or Coriolis coupling) and VRPC [25]. As a first approxima- 
tion, these terms will be omitted in the present treatment unless otherwise 
stated. 

We are interested in the fact that the potential energy W(ao, a2) can 
now be expressed as a sum of two terms V(ao, a2) and eK (a0, az) which 
represent the collective potential and single-particle energies respectively, 

W(ao, a2)= V(ao, a2)+~K(ao, a2). (II.14a) 

For the sake of simplicity, only ao (/?-vibration) is taken into account. 
Thus, Eq. (II.14a) can be written as 

W(ao)=V(ao)+eK(ao)=�89 (II.14b) 

This potential function when plotted for the Nilsson state corre- 
sponding to the low-lying deformed state in the even-cadmium iso- 
topes [26], as a function of the deformation a o allows one to conclude 
that although the collective potential energy V has its minimum at ao = 0, 
the total potential energy of the coupled system may have its minimum 
at ao = ao ~ �9 0. Moreover, the equilibrium position ao ~ may correspond to 
a sizable deformation. 

c) Coexistence of Spherical and Deformed Solutions 
At this point one arrives to the conclusion that in a odd-mass nuclei, 

low-lying deformed states can exist even though the neighbouring even- 
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mass nuclei do not posses such states at low energy. Provided that the 
equilibrium deformation a ~ is reasonably large to reach the strong 
coupling approximation [20] one can now write down the solutions of 
the Schr6dinger equation under the usual assumptions that the above 
mentioned couplings (cf. Eq. (II.8)) can be neglected [20, 24]. The 
solutions are denoted by [JM, Rot) (Rot=rotational), 

_ . / 2 J + l ~  ~ 

IJM, Rot) = ~ )  (II.15) 
J J - K  J 

�9 {DMK)~K+(--) DM-KZ-K} ~O(ao, a2). 

Let us emphasize that Z~ describes the motion of the particle with 
respect to the deformed nucleus; q~ represents the collective vibrational 
motion in ao and a2 coordinates while D~K are the eigenfunctions of the 
symmetric top which describe the nuclear rotation. The vibrational wave 
functions are explicitly given in Ref. [24]. Here we consider only the 
case of zero phonons: 

2 J + l  ~ s - 
1~)= ( ~ )  Dno V 2 VI a21 exp ( - ~ - - a  2) q~o(ao), 

(II.16) 

~0o(ao)= (~)exp [-T(ao 
.l 

With the help of Eqs. (II.15) and (II.16) one is able to calculate the 
matrix elements of any operator between deformed and spherical states. 

The following quantities enter into a numerical solution of the 
Schr6dinger equation. 

(i) The wavefunction of a particle or hole coupled to vibration around 
a spherical equilibrium shape 

V D J  ( ) R - j + K  ]JM, Vib)=V2"2-~I ~ MK - 
K (II.17) 

J / K )  ltp:(ao, a2)z~.-m(x)>. 
m 

Here the coordinates ct, have been transformed to intrinsic coordinates 
ao, a2 and Euler angles 0~, i= 1, 2, 3. 

The functions ~om (ao, az) are given by: 

1 [ ,c '~  [ rc 2+2aZ2)] 
r176 (II.18) ~-~-] exp I_ -T(ao .! 

for the ground state and 

1 1 [ - - 2 ( o 2 + 2 a ~ ) ]  (I1.19) 

for the one-phonon state. 
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The functions f t . - "  are the single-particle wavefunctions. 
J 

(ii) Overlap between spherical and deformed collective vibrational 
functions 

N _ _  Ira= (q3~ l ~(ao, a2)) (I1.20) 

where q~(a 0, az) is defined by Eq. (II.16). 
We assume that 

Iz~ = ( q ~  I ~(ao, a2))-=O. (II.21) 

(iii) Overlap between spherical and deformed nuclear states 

.A/sN=(jM; Vib I JM;  Rot )  

=47Z(--)R-j+K g (~O,.Zj J ~(ao, a2)z~) (11.22) 

or equivalently 

JcjN=4n(--)n-J+~ K I,,C~ (II.23) 

where C~ are Nilsson coefficients for a given deformation and a given 
set of single-particle energies defined by 

[ZK) = Z C~ ]Z~)- (II.24) 
J 

(iv) Interaction between spherical and deformed collective vibrational 
functions 

~o)N-= QPmN (a~ l~~ a2 (11.25) 

and 
1 

V~176 (q~~ I a~ ]~(a~ a2 ) )=  1/2--~ I~ (I1.26) 

where Io 1 is given by Eq. (11.20) for the case N =  1 and m = 0. 
(v) Interaction between spherical and deformed nuclear states 

Hsn~(JM; Vibr k Z a,, Y~ ]JM; Rot)  
m =  - 2  

, ,=-z ~ - m  - �89  (_ )R- j+~  (II.27) 

�9 l / 2 j , (n )+  1 [1+(_),+,'(,)-1 K Cj'(n). 
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d) Diagonalization of  the Model Hamiltonian 

In order to account for the mixing of spherical and deformed states, 
as a first step the energy matrix is calculated in the basis of the non- 
orthogonal deformed and spherical states. 

The diagonal matrix element of the total Hamiltonian in the strong 
coupling limit for the special case K =  1/2 is given by [26] 

( JM;  Rot [ H I JM; Rot) = E~ot 
- e~ + [J (J + 1) - �88 + a s + ~ (J + �89 (II.28) 

where e~. is the Nilsson eigenvalue. In Eq. (II.28) the rotation-particle 
coupling or Coriolis term was included. The matrix elements of the 
Coriolis interaction Hc for symmetric nuclei and K= 1/2 are given by [26] 

h 2 
( JM;  Rot[ Hc [JM" s+, 1 , R o t ) = ( - )  - f-~-(J+~)a (II.29) 

where the decoupling parameter a is defined by 

a - Z ( - )J-* (J + �89 [Cf =*]2. (II. 30) 
J 

For the spherical case, the diagonal and off-diagonal matrix elements 
are given in an obvious notation by [22] 

(JM;  Vib[ H I JM;  Vib) 

= ((n' l'j', N' R')J '  M'I H [(n lj, N R ) J M )  

= [5 (n l j) + N h 09] 6 n n' f tr f j  j" fiNN" fRR" 

+ ( k ) ( - )  J+g'+j+l j (J'l] Y2 ]l J) 

1 
V2- ~ [(N'R'I] b2 I[NR)f~N,+I+(N'R'II  b2 [INR)fN,;~.+I]. 

Finally, the other off-diagonal elements of the total model Hamil- 
tonian come from the interaction of spherical and deformed states. They 
are given by 

( JM;  Vib [ H I JM; Rot) 

= [~(n l j) + N h eJ] JVj N + HSD. (II.32) 

As a second step in our calculation, the orthonormalization of the 
deformed and spherical basic states was performed according to the 
following procedure. Let us denote 21 and 2, with n=2, the deformed 
and spherical states respectively, obtained up to now. The following 
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relations hold 
(~,, ~m) =6 ..... for n , m > 2  (11.33) 

for the spherical states and 

(X,, X.) =~ffS(n) (11.34) 

for the nonorthogonal deformed and spherical states according to 
Eq. (II.22). 

The new deformed state [x~) can be expanded in terms of these state 
vectors, 

Ixl)=al [ x l ) +  ~ a, 1~~ (II.35) 
n = 2  

Taking into account the orthogonalization relations for the new vectors, 

(xl ,  x l ) = l  and (xl ,  x , , )=0 (II.36) 
it follows that 

with 

1 ~N(n) 
a l - - -  and a,,= (II.37a) 

I/1-s 1/1-s 

S= Z d~N(n) �9 (II.37b) 
n = 2  

Therefore, the matrix elements for the new deformed state become 

(xl lH]Xl)= ~ a, am(XmlH[~,), (II.38) 
n , m = l  

and for the new spherical states, they read 

(x~[H]x,)= ~ a,,(Yc,,[H[~,) for n=>2 (11.39) 
rll = 1 

As a third and last step, the diagonalization of the energy matrix was 
performed. 

e) Energy Levels and Electric Properties 
The diagonalization of the total Hamiltonian described above yields 

the wave functions that describe the nuclear energy levels of our model. 
From the choice of our basis, it is evident that the wave functions satisfy 
the relation 

I~ [xa )+  ~ b, Ix,) (II.40) 
n_>2 

where the symbol p acts as an ordering number for states of same 
angular momentum and b i (i= 1, ..., n) are the expansion coefficients. 

In order to have an explicit expression for the electric quadrupole 
operator acting between initial and final s tates-which can be of different 

4 Z.  P h y s i k ,  B d .  2 6 2  
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nature- the  wave functions (II.40) should be expanded in terms of the 
original non-orthogonalized rotational states [~1) and the vibrational 
states [~,), n__>2. According to Eq. (II.35) the wave functions take the 
form 

IPJ)=cl Ix1)+ ~ c. I~.) (II.41) 
n__>2 

where the new expansion coefficients ei are expressed as 

c~ = al bl (II.42a) 
and 

c,,=a,,bl+b,,, for n>2.  (II.42b) 

Then, the reduced matrix elements for the electric quadrupole transi- 
tion operator between the eigenstates (II.41) reads 

(P'J'II ~/(E2)II~ 

= cl (P J) ci (P'J') (o'J'll J//(E2) ]lPJ)r., 

+ ~ ~ c.(~ ') (~ .g(E2)ll~ 01.43) 
n>=2 n'>__2 

+ c~ (P'J') ~ c,(PJ) (P'J'[I JK(E2) llPJ),ot.vib 
n=>2 

+ cz (P J) Z c.,(P'J') (o'J, ii -g(E2)[IPJ)rot_vlb, 
n'=>2 

where the subscripts rot, vib and rot-fib labell the pure rotational, the 
pure vibrational and the mixing of the rotational-vibrational wave 
functions. 

I lL Calculations and Results 

Among the odd-mass indium isotopes 1~ we have tried to fit 
the theoretical energy spectra to the experimental spectra of a typical 
nuclei, namely 115In. Even in this most favourable case, the available 
experimental information does not allow the use of a least-squares 
procedure to search for the best values of the parameters which enter 
into the calculation. Therefore, estimates of some of them had to be 
made from the knowledge of nuclear properties. For the others, the 
results obtained from a variation between reasonable limits show at 
which value they have to be fixed. 

First of all we calculated the matrix elements corresponding to the 
single-particle Hamiltonian (II.9) [6] 

(jln�89 H N Ij'l' n'�89 
+p( j ln �89189 (III.1) 
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where 

with 

and 

4 V ~ -  (III.2) p=-6hoJo T ~- 

o ( 4 2 16 .3 "~-~ 
ho9o=hogo 1--~6 - - f f6  ) (III.3) 

o - +  
h oJ 0 = 41 A . (Ill.4) 

The matrix elements for the operator Y~'-m" are given in ithe general 
case [21] by 

(jlnm[ y~,,-m" ij, l,n,m,>=(_),.-r 2 
(111.5) 

.V5(2j+l)(2j'+l) ( j 2 j ' ) (  j 2 j) 
47z -m  m-re' m' -�89 0 �89 

The matrix elements of the radial part r z are taken from Nilsson [6], 

and 

<nil r 2 [nl>=2n+l+ 3, 
(111.6) 

( n +  1 1-21 r 2 [nl)=2]/(n+l)(n+l+�89 

( n - 1  l+21 r 2 Inl>=2Vn(n-l+~- ). 

These calculations were performed for different sets of shell-model 
single-particle energies and different deformations. Then the level struc- 
ture of the rotational band K =  1/2 was computed using Eqs. (II.29, 30) 
adopting the value for the inertial parameter hE/2ar already found by 
B/icklin et al. [7] .We choose such a set of single particle energies for 
which the decoupling parameter a is sufficiently large and negative to 
yield an anomalous behaviour of the rotational band, i.e., its J =  3/2 
level will appear below the J =  1/2 level. For this to be the case, the g7/2 
stste should be below the ds/2 state. This fact conflicts with the single- 
particle positions used by Lopac [27] in her calculations of l l a S b .  

As far as the vibrational case is concerned estimates had to be made 
of the values of the different parameters which enter into the wavefunc- 
tions. The values for the parameters Xsn and ~CCd were deduced from the 
measured reduced electromagnetic transition probability from the 
ground to the first excited 2+state.  Actually they can be expressed-in 
the usual n o t a t i o n - b y  

B(E2; O+gr st'---~12 + )= 5 (-'~ ZR2 2chC~ (III.7) 

d.* 
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with 

ha) 1 h 1 
- - . (111.8) 

2C 2 1/k-U 2to 
V ~  

Therefore, the parameters x are given by 

45 Z 2 Ro 4 
x =  3---2- B(E2;  0 " - ~ g r .  s t  ' ~ 22+-)" (III.9) 

The experimental values for B(E2) were taken from Ref. [28]. For 
the nuclear radius we have used R o = 1.2A + ~/3 fro. 

The y vibrational parameter 2 for deformed states was estimated as 
lying in between the vibrational parameters for the spherical case. With 
respect to the fl vibrational parameter 7 for deformed states it was 
considered to be the half of 2. When performing the calculations it was 
found that these parameters do not affect seriously the final results, 
within a wide range of variation. 

As usual, the core deformation parameter ao ~ was considered to be 
related to the oscillator deformation parameter 6 by 

o 2 l / 4 - n  

ao = T V - - T -  a(1 +}a ) .  (III.lO) 

The values for the overlap and interaction between spherical and 
deformed collective vibrational functions were calculated by integrals of 
the type 

q~,,qg(ao, aa)~/3a2-2a~ daoda 2. (III.11) - o o -  la2 exp - ~ - a 2  N- 

In order to do it Femenia [29] has extended the Romberg method to 
two variables. The values obtained for Io ~ Io, V ~ V o and V 2 for tin and 
cadmium as well as the quantities aforementioned are presented in 
Table 1. 

For  the states built upon the two-phonon states of the vibrating core 
the overlap and the interactions mentioned above were considered to 
be nulle. This is justified by their small values for one-phonon states 
(cf. Table 1). 

The one-phonon energy h co was taken from the neighbouring tin or 
cadmium isotopes depending upon whether a hole or a particle re- 
spectively was being considered. Following the suggestion by Dietrich 
et aL [11] we took different energies for the two-phonon states of 116Sn 
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Table 1. Values for the parameters used in the present calculation for level sequence 
and quadrupole electric transitions in 115In. Calculated overlap and interactions 

between spherical and deformed stated are also listed 

I. Set of single-particle energies (in MeV) 

(g9/2)-- (g7/2)= -- 3.070 
(ds/z)--(gT/2)= 0.750 
(d3/z)--(g7/2) -~- 2.850 
(S1/2)-- (8"7/2)= 3.150. 

2. Oscillator deformation ~= 0.20 
The core deformation becomes a~=0.2396. 

3. Inertial parameter h2/2J= 25 keV. 
From the adopted values indicated in steps 1-3, the decoupling parameter is 

a---- -- 2.595. 

4. fl vibrational parameter for spherical states for 116Sn vibrating core rs ,=266.  

5. y vibrational parameter for spherical states for 114Cd vibrating core tcCd----90. 

6. 7 vibrational parameter for deformed states 2 =  134. 

7. y vibrational parameter for deformed states ~= 67. 

8. Io~ 0.03349 lo~ 0.07327 
I 0 (Sn) = 0.05471 I o (Cd) ---= 0.1427 
Vo~ 0.002372 V0~ = 0.01063 
Vo(Sn)= 0.006973 Vo(Cd)= 0.02737 
V 2 (Sn) = 0.002378 V 2 (Cd) = 0.006445. 

9. 12+ phonon energy of 114Cd, hCOcd=0.5581 MeV. 

10. 12+ phonon energy of ll6Sn, hcosn---~ 1.293 MeV 
104- phonon energy of H~Sn, 2h~Sn(10)= 1.716 MeV 
224 phonon energy of 116Sn, 2hcos,(22)=2.146 MeV 
14q- phonon energy of 116Sn, 2hOgsn(14)---~2.586 MeV. 

!1. Strength of the particle (hole)-vibrator interaction: k =  50 MeV. 

depending  upon  which of the levels 10+ ,  224- or  14+ is involved in the  
coupl ing  with a par t ic le  to  bui l t  states in 115In. 

The coupl ing  s t rength of the  part ic le-(hole)  v ib ra to r  in terac t ion  k was 
var ied  between reasonable  limits.  Then the value of 50 M e V  was a dop t e d  
which is in agreement  with tha t  quoted  by  Diet r ich  et aL [11]. 

The calcula ted pos i t ive-par i ty  levels of l~SIn are c o m p a r e d  in Fig.  2 
wi th  the  exper imenta l  data .  In  Table  2 the componen t s  of the wavefunc- 
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Fig. 2. Positive-parity level scheme of 11Sin observed via: A The decay of 115m'llSgCd 
(Refs. [7, 33] and [34]); B the reactions 115In(160, 160'7) Ref. [11]; C the reaction 

115In (n, n' 7) Ref. [35]; compared with the present prediction 

tions of the low-lying states are presented. Only those components are 
listed which contribute more than 57o. The states with " I=  11/2, 13/2, 
25/2, 17/2 and 211/2 can be in some extent identified as the members of 
the K =  1/2+ rotational band. The states with " I=  15/2, 27/2, o9/2, 19/2, 

11/2 and 113/2 are mainly originated from the coupling of the g9/2 proton 
hole to quadrupole excitations in ~ 16Sn core. The remaining states 21/2 
and 23/2 are mixed with those yielded by the coupling of a proton 
particle coupled to quadrupole vibrations of the ~4Cd core. 

A general acceptable agreement is obtained between the energies and 
spins found experimentally and those calculated by us. However, some 
discrepancies still occur such as the displacement to higher energies of 
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Table 2, Components of the calculated wave-functions for the low-lying states 

1(i/2)1; 1038) =0.97 I rot). 

I (1/2)2; 1655) = - 0.27 ]Sl/2, 00) + 0.61 [ds/z, 12) + 0.271 d3/2, 12) 
+ 0.25 ] d5/2, 12) + 0.5719/1,8 24). 

1(3/2)1; 784)=0.94]rot)+O.27 Ida/2,00). 

] (3/2)z; 1766)= --0.32 ] d3/2, 00)40.62 187/2, 12)40.30 [ d5/2, 12) 
--0.23 I d a/2, 12)40.32 ]gT/Z, 22)40.33 ]g9/2' 24). 

I (512)1; 

(5/2)2; 
(7/2)1; 

(7/2)2; 

[ (9/2)o; 

[ (9/2)1; 

[ (9/2)2 ; 

I ( 1112)1 ; 

1(11/2)2; 

[ (13/2) 1; 

947)=0.311 ]ds/2, 00)40.85 I89/2, 12)--0.32189/2, 22). 

1435) =0.99 [rot). 
1141)=0.99 [rot). 

1420)=0.84 [89/2, 12)--0.26 ]89/2, 24). 

O) =0.88 1g9/2, 00)--0.42 1g9/2, 12). 

1337)=0.38 [g9/z, 00)40.72 189/2, 12) 
--0.25 189/2, 20)+0.35 I89/2, 22)--0.23 189/2, 24). 

1974)=0.89 I r~ 189/2, 20). 

1256)=0.88 ]89/2, 12)+0.29 I89/2, 22)--0.34189/2, 24). 

1524) = 0.9971 rot). 

1198)=0.90 ]89/2, 12)--0.24 ]89/2, 22)--0.29 ]89/2, 24). 

Each state is indicated by its spin, ordinal number and energy in keV, 

Table 3. Calculated transition probabilities B(E2~) in units of e z �9 10 -5o cm 4 for 11Sin 

Final state n i t  B(E2~') in e z .  10 -2~ cm 4 

29/2 4.62 
39/2 0.06 
15/2 5.41 
25/2 0.005 
17/2 0.016 
27/2 3.63 
111/2 8.00 
211/2 0.02 
113/2 9.84 
213/2 0.03 
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pure rotational states when they are mixed with hole-core and particle- 
core coupled states. 

In Table 3 are presented the calculated electric quadrupole transitions. 
One immediately observes that the transitions from the quasi-rotational 
states to the spherical ground state are very small as we expect for shape- 
forbidden transitions. Some of the remaining transitions agree with those 
experimentally determined by Dietrich e t a L  [11] while others differ 
noticeably from them. 

The Quadrupole moment of the ground state and the 13/2 state are 
calculated to be 0.60 b and -0 .60  b which are in good agreement with 
their respective experimental value of 0.861_+0.045 b Ref. [30] and 
0.60_+ 0.08 b Ref. [31]. From this value the intrinsic quadrupole moment 
Qo for K =  1/2+ rotational band is calculated to be 3.0 b which in turn 
agrees with 2.67 b obtained from B(E2) values [7] as well as with a 
deformation ~ = 0.20. 

IV. Concluding Remarks 

The present work permits an overall description o fthe positive-parity 
low-lying states of odd-mass indium isotopes with a reasonable success. 
The model consists of the coupling of a proton hole and a proton particle 
to the quadrupole vibrations of the tin and cadmium cores together with 
the mixing of deformed sttaes. The interaction matrix elements are 
treated exactly and consequently the B(E2) transition rates between 
initial and final states of similar or different nature could be calculated. 

As mentioned before some discrepancies still occur that perhaps 
would be overcome wi th  a more sophisticated treatment. In spite of 
them, we feel inclined to conclude that our model is a good starting point 
to analyze the coexistence of deformed and spherical states in odd-mass 
nuclei. 

It is hoped that some experiments Will be encouraged to establish 
definitely the nature of the different states predicted by us. 

Sincere thanks are due to Ing. F. R. Fernenia for his invaluable help in performing 
the computational procedure. We also with to thank to Prof. H. E. Bosch for careful 
reading of the manuscript. 
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