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A B S T R A C T   

After more than two decades of successful provision of global burned area data the MODIS mission is near to its 
end. Therefore, using alternative images to generate moderate resolution burned area maps becomes critical to 
guarantee temporal continuity of these products. This paper presents the development of a hybrid algorithm 
based on Copernicus Sentinel-3 (S3) Synergy (SYN) data and Visible Infrared Imaging Radiometer Suite (VIIRS) 
375 m active fires for global detection of burned areas. Using the synergistic and co-located measurements of 
OLCI and SLSTR instruments on board S3A and S3B, the SYN product offers global, near-daily surface reflectance 
data at 300 m for both sensors. Our algorithm relied on SYN shortwave infrared (SWIR) bands to compute a 
multi-temporal separability index that enhanced the burn signal. Active fires from the VIIRS sensor were used to 
generate spatio-temporal clusters for determining local detection thresholds. Active fires were filtered from those 
thresholds to obtain the seeds from which a contextual growing was applied to extract burned patches. The 
algorithm was processed globally for 2019 data to generate a new burned area product, named FireCCIS310. 
Based on a stratified random sampling, error estimates showed an important reduction of omission errors versus 
other global burned area products while keeping the commission errors at a similar level (Oe = 41.2% ± 3.0%, 
Ce = 19.2% ± 1.7%). The new FireCCIS310 dataset included 4.99 million km2 for the year 2019, which implied 
around 1 million more than the precursor FireCCI51 product, based on MODIS 250 m reflectance values. 
Temporal reporting accuracy was improved as well, detecting 53% of the burned pixels within a 0–1 day dif
ference. Besides, the new product was much less affected by the border effects than FireCCI51, as a result of an 
improved active fire filtering process. The FireCCIS310 product is accessible through the CCI Open Data Portal 
(https://climate.esa.int/es/odp/#/dashboard, last accessed on July 2022).   

1. Introduction 

Monitoring of burned areas is crucial to better understand the role of 
fire in the Earth’s System. The analysis of the spatio-temporal patterns of 
biomass burning can help us to assess the relationship between fire and 
vegetation recovery (Bright et al., 2019), biodiversity (Kelly and Bro
tons, 2017), land management and deforestation (Andela et al., 2017; 
Fanin and van der Werf, 2015), and human health (Reid et al., 2016). In 
addition, fire disturbance is considered an Essential Climate Variable 
(ECV), because of its impacts on atmospheric emissions and carbon 
stocks (Abatzoglou et al., 2018; van der Werf et al., 2017). 

The range of satellite systems used for burned area mapping is quite 
diverse, including global and local scales, with different spectral, tem
poral, and spatial resolutions (Chuvieco et al., 2019). Temporal 

resolution directly affects not only how accurately the actual time of 
burn is assigned, but also the capacity for observing the burned areas 
since, as time after the fire passes, the burned signal weakens due to 
vegetation recovery and ash removal (Melchiorre and Boschetti, 2018). 
At least daily temporal coverage is critical for an accurate detection of 
the burning date and for near-real-time monitoring of burned areas 
(Urbanski et al., 2018). This also affects the delimitation of individual 
burned patches and derived parameters such as fire rate of spread or 
direction and detection of ignition points (Andela et al., 2019; Laurent 
et al., 2018). The spatial resolution defines the size of the smallest object 
that can be resolved by the sensor, which limits the detection of small 
fires (< 100 ha) (Ramo et al., 2021).While medium spatial resolutions of 
10–30 m have shown promising results in terms of spatial accuracy 
(Hawbaker et al., 2020; Long et al., 2019; Roteta et al., 2019; Roy et al., 
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2019) and the growing availability of free images from the Landsat and 
the Sentinel-2 missions has made them more attractive, there remains 
the obstacle of the huge processing effort needed to obtain global long- 
term products. Therefore, global burned area products still rely on 
moderate resolution sensors, with 250–500 m pixel sizes and 1–2 days 
revisit time. 

One of the most relevant sensors for global burned area mapping has 
been the Moderate Resolution Imaging Spectroradiometer (MODIS) 
aboard Terra and Aqua satellites, which has been the basis for both 
burned area and active fire products. The standard NASA global burned 
area product MCD64A1 c6 is obtained from a hybrid algorithm that 
combines a vegetation index based on daily shortwave infrared (SWIR) 
reflectance data at 500 m and MODIS 1-km active fire data (Giglio et al., 
2018; Giglio et al., 2009). Within the ESA Climate Change Initiative’s 
FireCCI project another global burned area product (called FireCCI51) 
based on MODIS active fires and 250 m near-infrared (NIR) band was 
released (Chuvieco et al., 2018; Lizundia-Loiola et al., 2020). 

After more than two decades of mission, Terra satellite’s exit from 
the Earth Science Constellation is predicted for October 2022 (https:// 
terra.nasa.gov/news/terra-begins-to-drift-in-time, last accessed on July 
2022), affecting the platform’s altitude and, hence, its mean local time 
of crossing, spatial coverage, and spatial resolution. This will greatly 
impact the above-mentioned global burned area products and, thus, the 
scientific community that relies on their quality. The adaptation of these 
MODIS-based algorithms and products to new satellites and sensors to 
ensure provision of burned area products into the future is, therefore, a 
relevant and challenging topic. 

The Suomi National Polar-orbiting Partnership (S-NPP) (launched in 
2011) and the NOAA-20 (launched in 2017) satellites aimed to provide 
continuity for key data series observations initiated by NASA’s Terra and 
Aqua missions. More specifically, the Visible Infrared Imaging Radi
ometer Suite (VIIRS) aboard these satellites was developed from the 
experience of previous sensors, particularly from MODIS. Depending on 
the latitude its large image swath (3000 km) and relatively short revisit 
time (12h) ensure at least two observations a day in 22 spectral bands at 
375 m and 750 m (Justice et al., 2013). Two active fire detection 
products, at 375 and 750 m, are currently produced based on VIIRS data 
(Csiszar et al., 2014; Schroeder et al., 2014). Several studies have 
explored the use of this information for detecting burned area 
(Fernández-Manso and Quintano, 2020; Oliva and Schroeder, 2015; 
Santos et al., 2020; Urbanski et al., 2018), showing that VIIRS active 
fires may be a suitable replacement for the MODIS active fires in hybrid 
burned area algorithms. 

From the European side, the Copernicus Sentinel-3 A (S3A) and B 
(S3B) satellites can also provide sound alternatives for the continuity of 
global fire products. The FireCCI51 algorithm, for instance, was recently 
adapted to the Ocean and Land Colour Instrument (OLCI) data by 
replacing MODIS NIR with the most similar OLCI NIR band at 300 m 
(Lizundia-Loiola et al., 2021). The new Copernicus Climate Change 
Service burned area product (named C3SBA11) showed consistent re
sults in terms of global correlation with FireCCI51, confirming the ca
pacity of OLCI to detect similar burned area to MODIS, although still 
relying on MODIS active fires. However, the C3SBA11 product offered 
low temporal reporting accuracy (only 17.4% of burned pixels were 
detected within 1 day) and showed some border effects that were 
derived from the tile-oriented processing used to run the algorithm 
globally (Lizundia-Loiola et al., 2021). In addition to OLCI, the S3 sat
ellites carry the Sea and Land Surface Temperature Radiometer (SLSTR) 
sensor, which includes SWIR bands, providing a better detection of post- 
fire changes. Although the original resolution of this sensor is 500 m, 
ESA has developed a synthetic product, named Sentinel-3 Synergy 
(SYN), which combines OLCI and SLSTR spectral bands at 300 m reso
lution (Henocq et al., 2018). SLSTR can also be used to detect active fires 
at 1 km resolution based on its middle and thermal infrared bands. A full 
daytime version was released in 2021, although for now only the night- 
time version is available as standard global, monthly summarised files 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-f 
ire-radiative-power?tab=overview, last accessed July 2022). The SLSTR 
sensor can complement MODIS or VIIRS active fire information (Xu 
et al., 2021). 

This paper presents the development of a global burned area algo
rithm based on SYN reflectance and VIIRS 375 m active fire products. 
This hybrid algorithm demonstrates the capability of the SYN surface 
reflectance product to detect burned area globally and overcomes some 
of the limitations found in the precursor FireCCI51 product, particularly 
the low temporal reporting accuracy and border effects between tiles. 
The new algorithm, named FireCCIS310, was spatially validated based 
on Landsat imagery that was selected following a stratified random 
sampling, while the temporal dimension was validated by comparing 
the day of detection with MODIS and VIIRS active fires. The spatial 
distribution of global burned area was compared to the FireCCI51, 
C3SBA11, and MCD64A1 c6 products. 

2. Methods 

2.1. Algorithm overview 

The FireCCIS310 algorithm is displayed schematically in Fig. 1 and 
explained in subsequent sections. It follows a hybrid approach, which 
has shown to be one of the most reliable methodologies to detect burned 
area globally (Alonso-Canas and Chuvieco, 2015; Campagnolo et al., 
2019; Chuvieco et al., 2018; Giglio et al., 2018; Giglio et al., 2009; 
Lizundia-Loiola et al., 2021; Lizundia-Loiola et al., 2020). Thermal 
anomalies provide an accurate location and timing of the active fires due 
to their high thermal contrast with the surrounding areas (Giglio et al., 
2016; Schroeder et al., 2014). Conversely, changes in surface reflectance 
are more persistent both in space and time, providing the chance to 
detect the entire burned patch. Hybrid algorithms combine the strengths 
of both thermal anomalies and changes in surface reflectance data to 
reliably detect burned area. 

Daily time-series of the vegetation index Normalized Burn Ratio 2 or 
NBR2 (derived from Trigg and Flasse (2001)) were used to derive a 
separability index that enhances the burn signal. This separability index 
was maximised to select within a given month the day with the highest 
probability of being burned. Based on the selected days, four monthly 
variables were derived: maximum separability, NBR2 change, texture, 
and day difference. The texture determined the temporal coherence of 
adjacent pixels, while the day difference accounted for the consistency 
between the day of maximum separability and the nearest active fire 
date. Additionally, active fire clusters were defined considering their 
spatio-temporal proximity (Lizundia-Loiola et al., 2020). Then, a two- 
phase methodology was applied to detect burned area (Bastarrika 
et al., 2011). First, seed pixels were selected based on active fires and 
cluster-adapted thresholds. This step aimed to reduce commission errors 
by selecting only those pixels that showed a clear burned signal. In a 
second step, a contextual growing was applied from the seeds, using the 
cluster-adapted thresholds to stop it. This last step aimed to reduce 
omission errors by detecting the entire burned patch. 

Some of the steps of the algorithm used a global parametrisation to 
guide the detection process. The definition of those global parameters 
was based on the reference perimeters that were generated for the 
calibration areas (Section 2.2) and the knowledge coming from other 
global burned area products. 

The processing units were defined as tiles of 10◦ x 10◦ (3600 × 3600 
pixels) and a total of 273 tiles were processed (Fig. 2). The algorithm was 
run for the year 2019 based on SYN images from both S3A and B. The 
outputs of the FireCCIS310 algorithm were formatted following the 
standards of the FireCCI project (Chuvieco et al., 2018) and are acces
sible through the CCI Open Data Portal (https://climate.esa.int/es/odp/ 
#/dashboard, last accessed on July 2022). 
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2.2. Calibration sites 

Global burned area mapping algorithms must be able to deal with the 
great diversity of fire regimes found around the world. To represent that 
diversity, 13 S3 tiles were selected for algorithm calibration. The 
selected sites were distributed across the main biomes. Two tiles were 
located in Canada and included boreal forests. Another two were placed 
on the western coast of the United States, in the Mediterranean area of 
California. Five tiles were located in tropical savannas, the biome with 
the highest fire activity, but in different continents: one in the Colom
bian Llanos, two in Africa (one per hemisphere), and two in northern 
Australia. In Africa another tile was included that encompassed a tran
sition zone between tropical savanna and tropical forest. Additionally, a 

tile in Kazakhstan was used as representative of deserts and xeric 
shrublands biome. The last two tiles were placed in Far East Russia and 
mainly included temperate forests and savannas. 

Reference perimeters were generated for 43 Landsat scenes distrib
uted within 12 of the 13 tiles (Fig. 2). Landsat 8 images acquired during 
2019 were used to extract reference perimeters following the method
ology described in Roteta et al. (2021) and Franquesa et al. (2022). Only 
Landsat pairs where fire activity was observed were interpreted. In the 
case of the tile located in Colombia, no cloud-free images were available, 
but it was still used to visually check if any unexpected behaviour arose. 
For clarification, it should be noted that these reference perimeters were 
produced ad hoc for the calibration areas and were independent from 
those used for validation purposes 
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Fig. 1. Main structure of the FireCCIS310 algorithm. In parenthesis the section where the step was explained. The red dotted box means that those steps were 
repeated for each active fires spatio-temporal cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

J. Lizundia-Loiola et al.                                                                                                                                                                                                                       



Remote Sensing of Environment 282 (2022) 113298

4

2.3. Input data 

The main input data sources of the algorithm presented in this paper 
were S3 SYN surface reflectance and S-NPP VIIRS active fires. Based on 
the synergistic and co-located measurements of the OLCI and SLSTR 
optical instruments, the SYN Level 2 product (SY_2_SYN) provides sur
face reflectance and aerosol parameters over land at 300 m for all OLCI 
and SLSTR bands, excluding OLCI O2 and Water Vapour absorption 
bands and SLSTR cloud detection (1374 nm) and thermal bands. This 
product provides continuity to the surface vegetation products obtained 
from the VEGETATION instrument aboard the Satellite Pour l’Obser
vation de la Terre (SPOT) and the PROBA-V mission. The SYN product is 
generated for both S3 satellites in operation: S3A (launched on 2016) 
and B (launched on 2018). These satellites have a near-polar sun-syn
chronous orbit with an equatorial crossing at 10:00 h (Mean Local Solar 
Time). The SYN swath is limited to the common area between OLCI and 
SLSTR swaths (⁓1270 km), providing a near-daily global coverage from 
November 2018 onwards. A pre-processing was applied to generate 
daily composites at 300 m that follow the tiling system shown in Fig. 2. 
When a particular pixel was observed several times during the same day, 
the most nadiral observation was retained. Among the bands provided 
by the resulting SYN daily product, two were used to detect burned area: 
SLSTR band 5 (labelled as SDR_S5N), which provides information in the 
short SWIR (SSWIR) centred at 1613.40 nm, and SLSTR band 6 (labelled 
as SDR_S6N), which belongs to the long SWIR (LSWIR) centred at 
2255.70 nm. 

VIIRS active fires at 375 m resolution were extracted from the 
VNP14IMGML product (Schroeder and Giglio, 2018), whose time series 
begins in January 2012. This product provides global monthly fire 
location data in ASCII format, along with essential fire detection infor
mation. The “Type” field, which identifies the type of thermal anomaly, 
was used to select only those locations labelled as “presumed vegetation 
fire” (value equal to zero). 

The only auxiliary data used by the algorithm was the Land Cover 
(LC) v2.1.1 distributed by the Copernicus Climate Change Service (https 
://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover? 

tab=overview, last accessed July 2022), which is a continuation of the 
product developed in the Land Cover CCI project (Defourny et al., 2017). 
This dataset provides global, annual land cover maps since 1992 at 300 
m spatial resolution, distinguishing among 22 land cover classes that 
were defined using the United Nations Food and Agriculture Organiza
tion’s (UN FAO) Land Cover Classification System (LCCS). The LC data 
was used to exclude from further processing the unburnable areas, i.e. 
regions identified as urban and bare areas, water bodies and permanent 
snow and ice, and to identify the LC class of the burned pixels in the post- 
processing. To represent the situation prior to the fire the previous year’s 
land cover map was used. 

2.4. Temporal compositing 

Temporal composites are used in burned area mapping algorithms to 
overcome problems derived from clouds, angular effects or reception 
issues found in daily images. The composition selects the cleanest 
observation, while enhancing the burned signal (Barbosa et al., 1998; 
Chuvieco et al., 2005; Sousa et al., 2003). They tend to increase the 
separability between burned and unburned classes to facilitate burned 
pixel classification (Alonso-Canas and Chuvieco, 2015; Giglio et al., 
2009). The FireCCIS310 algorithm generated monthly composites based 
on a separability index (S) that was derived from daily time series of 
NBR2: 

S(t, x, y) =
− ΔNBR2(t, x, y)

⃒
⃒σpre(t, x, y) + σpost(t, x, y)

⃒
⃒
/

2
(1)  

ΔNBR2(t, x, y) = NBR2post(t, x, y) − NBR2pre(t, x, y)

The NBR2 is a vegetation index expressed as the normalized ratio 
between the SSWIR and LSWIR: 

NBR2 =
ρSSWIR − ρLSWIR

ρSSWIR + ρLSWIR
(2)  

where the corresponding SYN bands were ρSSWIR = SDR_S5N (1613.40 
nm) and ρLSWIR = SDR_S6N (2255.70 nm). 

Fig. 2. Tiling system and calibration areas used to develop the FireCCIS310 algorithm.  
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The separability index S was first proposed by Giglio et al. (2009) for 
a vegetation index derived from MODIS NIR-SWIR bands centred at 
1240 nm and 2130 nm. In the case of FireCCIS310, this vegetation index 
was replaced by the NBR2 derived from the SYN SWIR bands. The NBR2 
is characterised by a sharp drop after a fire event, leading to low post-fire 
values (Roteta et al., 2021). It is known for providing high separability 
between burned and unburned areas, as well as homogeneity within the 
burned patches, which is an important factor to detect the entire patch 
(Liu et al., 2021; Roteta et al., 2019). 

To obtain the separability for a given day (t) and pixel at location (x, 
y), 16 days with valid observations were needed: eight from the days 
previous to t (pre-timeframe) and eight from the days after t (post- 
timeframe). In both temporal directions, the selected days had to be the 
closest in time from t and, hence, the minimum searching window was of 
eight days (i.e. from t-8 to t-1 for the pre-timeframe and from t to t + 7 
for the post-timeframe). This initial window was progressively changed 

by − 1 in the case of the pre-timeframe and + 1 in the case of the post- 
timeframe until eight days with valid observation were found for each 
of the timeframes. The maximum searching window was of 30 days to 
ensure that the statistics represented the short-term pre- and post-fire 
scenarios. If eight valid observations were not found in either of the 
two timeframes a pixel was labelled as ‘non-observed’. This value of 
eight showed a good balance between a representative estimation of the 
statistics and the number of non-observed areas (Giglio et al., 2018). 
Two summary statistics were computed for the pre- and post-timeframe, 
using in each case the corresponding eight NBR2 values: the 10% 
trimmed mean (NBR2pre(t,x,y) and NBR2post(t,x,y)) and trimmed stan
dard deviation (σpre(t,x,y) and σpost(t,x,y)). When the number of values is 
proportional to 10, the 10% trimmed summary statistics exclude the 
corresponding proportion of the lowest and highest values, e.g. with 10 
values the lowest and highest values are excluded leaving eight values to 
compute the statistic. However, when the number of values is not 

Fig. 3. NBR2 vegetation index and the derived separability S through different burned pixels distributed along the calibration tiles. In all cases, an active fire was 
detected in the same location within 0–1 days difference. The locations belong to the following biomes: Mediterranean (1), boreal forest (2, 4), deserts & xeric 
shrubland (3), and tropical savanna (5, 6, 7). 
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proportional to 10, weights have to be estimated for each value. In our 
case, the lowest and highest values were weighted by a factor of 0.2 and 
the rest by a factor of 1. Finally, the separability for the day t and pixel x, 
y was computed as shown in Eq. (1). 

Fig. 3 shows the behaviour of both the NBR2 and S for several burned 
locations distributed among the calibration areas. A sharp drop in the 
NBR2, such as those expected to be generated by fires, leads to large 
positive values of S. Therefore, monthly composites were generated by 
maximising S. To avoid to artificially split fires that took place at the end 
or beginning of a month, the monthly composites were generated 
considering S values of the last 15 days of the previous month (m-1), the 
days of the month (m) being processed, and the first 15 days of the 
following month (m + 1). Using these data, the day with the maximum 
separability was selected for each pixel (tmax(m,x,y)). The separability 
(Smax(m,x,y)) and the change in NBR2 (ΔNBR2max(m,x,y)) of tmax(m,x,y) 
were stored as well. Fig. 4b, c, and d show an example of each of these 
monthly composites of September 2019 for a region located in Angola. 

Since burned patches were expected to have a high temporal 
coherence in tmax an additional variable, denoted as σt,max(m,x,y), was 
computed (Giglio et al., 2009). This variable was characterised by the 
standard deviation of tmax within a rook’s case window (3 × 3), i.e. pixels 
at the diagonals were not considered, around each pixel. To avoid the 
loss of fine (i.e. 1-pixel) sections of burned patches an edge-restoring 
ranked order filter that selects the 33rd percentile within a 3 × 3 win
dow around the pixel was applied (Astola and Kuosmanen, 1997) 
(Fig. 4e). 

2.5. Generation of active fire clusters 

Following the FireCCI51 algorithm (Lizundia-Loiola et al., 2020), 
FireCCIS310 used spatio-temporal active fire clusters (STC) to guide the 
thresholding process. Each cluster was assumed to represent a fire and, 
hence, dynamic thresholds for each burned patch were computed by 
defining cluster-adapted burned and unburned samples (Section 2.8). 

Clusters were created considering the spatial and temporal 

distribution of the active fires. The spatial distance, also known as area 
of influence (RAI), proposed by Lizundia-Loiola et al. (2020) to consider 
two active fires part of the same cluster was of 1875 m. However, this 
distance was obtained based on MODIS active fires and was suited for its 
spatial resolution of 1 km. Therefore, considering the higher spatial 
resolution of VIIRS active fires used by the new algorithm, the RAI dis
tance was adapted based on the proportionality of the spatial resolutions 
of VIIRS and MODIS active fires: 375 m / 1000 m * 1875 m = 703.125 m. 
This adjusted distance was more adequate to address the much higher 
density of active fires per burned patch that can be found in VIIRS 375 m 
in comparison to MODIS (Oliva and Schroeder, 2015; Schroeder et al., 
2014; Waigl et al., 2017). Regarding the temporal difference to consider 
two active fires part of the same cluster, the original threshold of 4 days 
proposed by Lizundia-Loiola et al. (2020) was kept since it was related to 
the characteristics of the fire regimes and not to the sensor’s charac
teristics. Fig. 4a shows an example of these STC, where different colours 
represent different clusters. To increase the overlap between consecu
tive months, active fires of the last 5 days of the previous month and the 
first 5 days of the following month were used along with the active fires 
of the month being processed. 

2.6. Selection of potential active fires (PAF) 

As explained in the input data section, the VIIRS thermal anomalies 
product used by the new algorithm provided a “type” field that allows 
applying an initial filtering of presumed vegetation fires. It might be 
reasonable to think that due to the low commission rates of active fire 
products (Schroeder et al., 2014), further filtering was not necessary. 
However, several key points must be considered when using active fires 
for burned area mapping. The first and main limitation is set by the 
spatial resolution of the sensor that is providing the spectral information 
for burned area detection. In this case, the average SYN pixel was about 
300 m, meaning that the smallest burned area that can be detected 
comprises one that causes a discernible change in spectral reflectance at 
300 m resolution, nominally 90,000 m2. Conversely, a fire burning at 

Fig. 4. Monthly variables used by the burned area mapping algorithm: a) active fires spatio-temporal clusters (STC), b) maximum separability (Smax), c) change in 
NBR2 of the day with the maximum separability (ΔNBR2max), d) day with the maximum separability (tmax), e) temporal coherence of the day with the maximum 
separability (σt,max), and f) difference between the day with the maximum separability and the day of detection of the nearest Potential Active Fire (ΔtPAF). The 
example belongs to September 2019 for an area centred at 18.9◦E, 16.7◦S in Angola (Africa). Colours in a) just indicate different STC. 
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around 650 K with an area of 50 m2 (night-time case) or 250 m2 (day
time case) had a 50% probability of being detected by the VIIRS active 
fire algorithm (see probability curves as a function of fire area and 
temperature in Schroeder et al. (2014)). This contrast between detection 
capabilities made highly probable that fires correctly identified by VIIRS 
were not able to generate a detectable spectral change in SYN at 300 m 
resolution. Additionally, it could happen that the “type” field provided 
by the active fire product was not able to properly classify all thermal 
sources that were not related to vegetation fires (volcanos, static sour
ces, etc.). 

Before applying any further filtering process, active fires were relo
cated in the pixel with the maximum Smax(m,x,y) within a 3 × 3 window 
around the pixel that fell just below the original location of the active 
fire. The maximum separability location (x’,y’) was assumed to better 
represent the actual position of the active fire instead of the original 
location (x,y) since the high radiative energy released by the fire might 
contaminate surrounding pixels. Then, for each relocated active fire, the 
difference between tmax(m,x,y) and the date of the active fire, defined as 
tf(m,x’,y’), was computed (Δtf(m,x’,y’)). The potential active fires (PAF) 
were selected from the relocated active fires based on the following set 
of rules:  

1. Smax(m,x’,y’) ≥ 2  
2. Either one of the following conditions was met:  

a. (− 2 ≤ Δtf(m,x’,y’) ≤ 8) AND (σt,max(m,x’,y’) ≤ 1)  
b. (0 ≤ Δtf(m,x’,y’) ≤ 2) AND (σt,max(m,x’,y’) ≤ 8) 

These conditions enhanced three fundamental aspects that pixels 
with a high probability of being burned should met. First, the separa
bility Smax must be high (condition 1), pointing out a substantial spectral 
change. Second, temporal agreement between the day with the 
maximum separability and the day when the active fire was detected 
should be high (Δtf(m,x’,y’) in conditions 2a and 2b). And third, the 
spatial correlation of the day when the spectral change was detected 
should be high among adjacent pixels (σt,max(m,x’,y’) in conditions 2a 
and 2b). As a result, PAF represented not only pixels with a high prob
ability of being burned, but also pixels that were part of burned patches 
that were able to generate a spectral change at 300 m. 

The global parameter Smax ≥ 2 was set based on the distribution 
derived from 66,186 locations defined by active fires that had an asso
ciated burned patch in the reference perimeters. In the cases of texture 
(σt,max) and day difference (Δtf and ΔtPAF) two ranges were defined based 
on the same calibration set: a first range of values where the probability 
of burn was higher (>60% of the active fires fall in this range) (σt,max ≤ 1 
or 0 ≤ Δtf ≤ 2) and a second less restrictive range that was used to 
confirm the burn (σt,max ≤ 8 or − 2 ≤ Δtf ≤ 8). Fig. 5 shows the 

distributions and the selected thresholds for each of these variables. 

2.7. A priori burned patches 

At this point, the Δtf(m,x’,y’) variable, which provided valuable in
formation to quantify the temporal uncertainty, was extended to the 
whole tile. To do that, the tf(m,x’y’) of the nearest PAF was assigned to 
each pixel of the image based on Thiessen polygons (Brassel and Reif, 
1979), obtaining tPAF(m,x,y). Then, ΔtPAF(m,x,y) was calculated as the 
difference between tmax(m,x,y) and tPAF(m,x,y) (Fig. 4f). To define a 
priori burned patches a contextual growing was applied, iteratively 
adding pixels that met the following conditions:  

1. An adjacent pixel in a rook’s case window (3 × 3) must be a PAF or a 
pixel previously identified as part of an a priori burned patch  

2. Smax(m,x,y) ≥ 2  
3. Either one of the following conditions must be met:  

a. (− 2 ≤ ΔtPAF(m,x,y) ≤ 8) AND (σt,max(m,x,y) ≤ 1)  
b. (0 ≤ ΔtPAF(m,x,y) ≤ 2) AND (σt,max(m,x,y) ≤ 8) 

These conditions were the same used to select PAF, but replacing 
Δtf(m,x’,y’) by ΔtPAF(m,x,y), so they could be extended to the whole tile. 
At this step, a rook’s case window, which did not consider pixels located 
in the diagonals, was used as it is more restrictive than a queen’s case 
window (i.e. where diagonals are considered). 

2.8. Establishing cluster-adapted thresholds 

2.8.1. Definition of training samples 
Due to the availability of high-resolution active fires data from VIIRS, 

the definition of a suitable burned sample was more feasible than the 
definition of the unburned sample. As it was already mentioned, active 
fire products showed low commission errors while providing accurate 
positioning and timing of the fire events (Boschetti et al., 2010). 
Therefore, most of the hybrid algorithms used for burned area detection 
rely on those locations and their surroundings to define the burned 
samples (Alonso-Canas and Chuvieco, 2015; Chuvieco et al., 2018; 
Giglio et al., 2018; Giglio et al., 2009; Lizundia-Loiola et al., 2020). In 
the case of the unburned class, however, it is much more difficult to 
define a sample due to its spectral heterogeneity. A common approach is 
to consider as unburned those pixels located further than a given dis
tance from active fires (Alonso-Canas and Chuvieco, 2015; Chuvieco 
et al., 2018; Lizundia-Loiola et al., 2020). 

In our case, training samples were defined for each STC (Fig. 6a) to 
estimate cluster-adapted thresholds, properly expressing local condi
tions. To define what “local” meant, first, the a priori burned patch 

Fig. 5. Distribution of the maximum separability (Smax), maximum separability day vs. active fire day difference (Δtf), and texture (σt,max) variables derived from 
66,186 locations defined by active fires that had an associated burned patch in the reference perimeters. The dashed lines show the global thresholds selected to guide 
the algorithm. The dark red areas show the regions of the variable where the probability of burn was higher. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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(Fig. 6b) that was intersected by the PAF of a given STC was selected. 
Then, a buffer of 10 km was defined from the border of the intersected a 
priori burned patch, defining thus the local zone (Fig. 6 c.1). The burned 
sample, labelled as B(m,STC), was composed of pixels that fall within 
that local zone and belong to any a priori burned patch. The remaining 
pixels represented the unburned class (UB(m,STC)). Fig. 6 shows an 
example of the samples that were selected for a fire at 18.5◦E, 16.5◦S in 
September 2019, where in c.2 red areas represent B(m,STC) and green 
tones UB(m,STC). This cluster-based sampling methodology allowed 
representing local conditions and adapting to different fire regimes that 
might be present throughout the tile without the need of other auxiliary 
data (e.g. land cover data) (Lizundia-Loiola et al., 2020). 

2.8.2. Threshold calculation 
Obtaining adequate thresholds is crucial for burned area mapping 

algorithms that rely on contextual growing to detect burned patches. 
Too restrictive thresholds reduce commission errors, but at the expense 
of incomplete detections of burned patches. Conversely, too relaxed 
thresholds may reduce omission errors but at the cost of excessive 
growing and, hence, more commission errors (Alonso-Canas and Chu
vieco, 2015; Giglio et al., 2009). The FireCCIS310 algorithm used an 
automatic threshold methodology, called Otsu threshold (Otsu, 1979), 
to achieve cluster-adapted thresholds. The Otsu method is a non- 
parametric thresholding approach that does not need any control 
parameter and maximizes the separability between two classes based on 
a gray-level histogram. Basically, the optimum threshold is the one with 
the minimum intra-class variance and the maximum inter-class vari
ance. Otsu thresholding is a technique that has been widely used in 
burned area mapping studies (Amos et al., 2019; Bin et al., 2019; Otón 
et al., 2021; Roteta et al., 2021). 

Before applying the Otsu method and considering the rationale 
behind it, it was necessary to balance B(m,STC) and UB(m,STC) samples 
to generate a training sample where each of the classes had the same 
proportion (50%). In the case of the burned sample all the pixels from B 
(m,STC) were included, while for the unburned class a selection was 
carried out since the size of UB(m,STC) was, in most cases, greater than 
B(m,STC). Therefore, a subsample of UB(m,STC), denoted as ub(m,STC), 
was selected based on a stratified random sampling approach. Three 

strata were defined based on the distance to the nearest B(m,STC) pixel: 
stratum A covered from 10 to 5 km, stratum B covered from 5 km to RAI 
(i.e. the distance used to construct the STC), and stratum C encompassed 
pixels closer than RAI (Fig. 6 c.2). The subsample was, whenever 
possible, randomly selected from stratum A. If this stratum did not 
provide enough pixels, the remaining pixels were randomly selected 
from stratum B, and so on. The Otsu method was applied to the resultant 
training sample: B(m,STC) ∪ ub(m,STC). To ensure the representative
ness of the heterogeneity of UB(m,STC) and, hence, of the threshold (TH 
(m,STC)), this procedure was repeated 500 times. The high number of 
repetitions ensured a good representation of the normal distribution of 
TH(m,STC) and, for that reason, TH(m,STC) was computed as the 
average of all the thresholds: 

TH(m, STC) =
1

500
∑500

k=1
THk(m, STC)(B(m, STC) ∪ ubk(m, STC) ) (3) 

The thresholding process was only applied to the ΔNBR2max variable. 
Considering the properties of the NBR2, i.e. high separability between 
burned and unburned areas as well as homogeneity within the burned 
patches, it was considered the most suitable variable over which to apply 
the contextual growing process described in Section 2.10. 

2.9. Estimation of the threshold surface 

As a result of the previous step an adapted threshold of the ΔNBR2max 
variable was obtained for each STC of the tile and month being pro
cessed (TH(m,STC)). To avoid any anomaly that might derive from the 
thresholding process and considering the similarity that should be ex
pected among the thresholds of STC spatially close to each other, TH(m, 
STC) were combined to obtain the threshold surface (THS(m,x,y)) 
(Fig. 7). To do that, for every pixel in the tile the weighted average of all 
the different TH(m,STC) within a 20 km radius was computed. The 
weight was determined by the number of PAF of each STC, assuming 
that the higher the number of PAF, the larger the size of B(m,STC) and 
the more representative the TH(m,STC). 

Finally, all initial relocated active fires, not just PAF, were compared 
against the corresponding threshold in THS(m,x,y). Active fires whose 
ΔNBR2max(m,x’,y’) < THS(m,x’,y’), which meant a greater spectral 

Fig. 6. Definition of the burned (B) and 
unburned (UB) samples for the active fires 
cluster (STC) number 27523 located at 
18.5◦E, 16.5◦S (Angola) of September 2019. 
In c.1 the local zone is defined by a buffer of 
10 km around the border of the a priori 
burned patch intersected by the STC 27523. 
In c.2, stratum A, B, and C correspond to 
distances between 10 and 5 km, 5 km and 
RAI (i.e. the distance used to create the 
clusters), and less than RAI, respectively. 
Colours in a) just indicate different STC.   
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change, were considered as seeds for the posterior contextual growing 
step. In those occasional cases in which a given PAF did not pass that 
test, the a priori burned patch that contained the PAF was directly 
considered as burned in the final burned map, finalising the classifica
tion process for that specific PAF. 

2.10. Generation of the final burned area map 

In the final step of the algorithm a contextual growing, which added 
pixels in an iterative process, was applied to fully detect burned patches 
and, hence, reduce omission errors. Seeds were used as starting points 
for the contextual growing, using their corresponding threshold deter
mined by THS(m,x’,y’) as stopping criteria, which was fundamental for 
an efficient growing process (Zhang et al., 2005). A pixel was detected as 
burned if the following conditions were met:  

1. An adjacent pixel in a queen’s case window (3 × 3) must be a seed or 
a pixel previously identified as burned  

2. ΔNBR2max(m,x,y) < THS(m,x’,y’)  
3. Smax(m,x,y) ≥ 2  
4. σt,max(m,x,y) ≤ 8 

where (x,y) represented the location of the pixel being considered and 
(x’,y’) represented the location of the seed from which the growing 
process started. To avoid problems derived from excessive growing a 
patch-based filtering process proposed by Lizundia-Loiola et al. (2020) 
was applied: 

F1. Patches with a quotient between their total number of burned 
pixels and seeds over 1000 were removed. 

F2. Patches with a quotient between the number of burned pixels 
located closer than the area of influence (RAI) from the seeds and their 
total number of burned pixels below 0.1 (10%) were removed. 

F3. Contiguous patches to burned patches were removed if they did 
not contain active fires and were connected by a 1-pixel width connec
tion to the actual burned patch. This last filter avoided cases where 
burned areas were falsely connected to unburned areas with high NBR2 
changes. 

2.11. Uncertainty characterization 

Uncertainty characterization of Earth Observation data has been 
increasingly required by the scientific community of climate and at
mosphere modellers. However, both standard approaches proposed by 
the Joint Committee for Guides in Metrology (2008a, b) fail to provide 
an appropriate uncertainty propagation framework for FireCCIS310, 
because analytical methods are not feasible in the case of threshold- 
based categorisation algorithms (Merchant et al., 2017), and Monte 
Carlo simulations of large datasets require huge computational 
resources. 

In this study, uncertainty was simulated using a clustering approach, 

which generated a look-up table (LUT) of representative spatiotemporal 
patterns derived from four predictive variables used by the burned area 
mapping algorithm (ΔNBR2max, Smax, σt,max and ΔtPAF). First, K-means 
was used to generate clusters over the entire dataset. Then, predictive 
variables of these clusters were overlaid with the reference dataset 
(Section 2.12.1) to characterize each pixel by a set of six variables, i.e. 
the aforementioned four predictive variables, the pixel classification 
(burned: B or unburned: UB) in the reference data, and the pixel clas
sification in FireCCIS310. 

The confusion matrices of that set of representative patterns allowed 
computing the probability of burn of each pixel depending on its clas
sification (B or UB). The probability of burn of pixels that were classified 
as burned was computed using the precision index whereas the false 
omission rate was used for pixels classified as unburned. The former 
expressed the proportion of correct positive prediction (TP) within the 
pattern (the negative ones are denoted as TN), while the latter indicated 
the proportion of false negative predictions (FN, false positives FP). The 
two probabilities were estimated as: 

PB =
TP

TP + FP
*100 (4)  

PUB =
FN

TN + FN
*100 (5)  

where PB denotes the probability of burn of pixels classified as burned by 
FireCCIS310, and PUB denotes the probability of burn of pixels classified 
as unburned. 

2.12. Accuracy assessment 

2.12.1. Spatial validation 
The spatial accuracy of the FireCCIS310 burned area map was 

assessed by comparison with reference data obtained from Landsat 8 
images. For this purpose, we used the reference data collection 
‘C3S_global_2017_2019’ recently released as part of the Burned Area 
Reference Database (Franquesa et al., 2020b). This reference dataset 
comprises 316 reference files that can be used to validate global burned 
area products for the years 2017 to 2019. The 105 reference files cor
responding to the sampling year 2019 were selected to validate the 
FireCCIS310 burned area product. These reference files were produced 
for sampling units that were selected following a stratified sampling 
design, allowing us to compute unbiased estimators of accuracy and 
their associated uncertainties. To produce this reference dataset, popu
lation units were defined based on the Thiessen Scene Areas (TSAs) of 
the Landsat WRS-2 frames, which allow for a non-overlapping parti
tioning of the Earth’s surface. Sampling units were stratified across eight 
biomes according to the Ecoregion 2017 map (Dinerstein et al., 2017) 
and further stratification was applied based on the burned area extent of 
the FireCCI51 burned area product. The strata allocation of the 105 
sample units was carried out considering the contribution of each stra
tum to the total burned area (Padilla et al., 2017), hence, a greater 
number of sample units were assigned to those strata with greater fire 
activity. Then, fire perimeters were extracted from Landsat 8 time series 
for each sample unit to produce long temporal reference units, which 
include three class categories: burned, unburned and unobserved. To 
extract the reference perimeters, the centre of each Landsat scene (100 
km × 100 km) was visually interpreted to train a supervised classifica
tion algorithm (Random Forest) implemented in the Google Earth En
gine platform (Roteta et al., 2021). A detailed description of the methods 
and characteristics of the ‘C3S_global_2017_2019’ dataset can be found 
in Franquesa et al. (2022). 

The metrics used to assess the FireCCIS310 product accuracy were 
the omission error (Oe), commission error (Ce), the dice coefficient (DC) 
(Dice, 1945), which combines the metrics Oe and Ce in a single measure, 
and the relative bias (relB), which informs whether a product under- or 
overestimates the burned area. The reference files were used to obtain 

Fig. 7. Threshold surface (THS) of the ΔNBR2max variable generated for the 10◦

x 10◦ tile, which encompassed the area between 10◦-20◦ E and 10◦-20◦ S, 
corresponding to September 2019. 
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the error matrices from which to estimate these global accuracy metrics 
and their standard errors, following the methodology described in 
Franquesa et al. (2022). 

2.12.2. Temporal reporting accuracy validation 
The temporal reporting accuracy refers to how accurately the burned 

area algorithms can assign the actual day of burn to the pixels detected 
as such. To assess this accuracy global burned area products are typically 
compared with active fires (Boschetti et al., 2010; Campagnolo et al., 
2019). Since we validated global burned area products that used either 
MODIS or VIIRS active fires as input, the temporal reporting accuracy 
was validated based on almost 1.7 million MODIS active fires 
(MCD14ML product) and almost 8 million active fires from VIIRS 
(VNP14IMGML product) of the year 2019. 

2.13. Intercomparison with existing products 

One of our main objectives when developing the new burned area 
algorithm was to provide an alternative to MODIS-data-based algo
rithms. It was important, therefore, to make an intercomparison against 
the publicly available MODIS burned area products MCD64A1 c6 (Giglio 
et al., 2018), FireCCI51 (Lizundia-Loiola et al., 2020) and C3SBA11 
(Lizundia-Loiola et al., 2021). The idea was to check if burned area 
patterns followed a similar spatial distribution. To do that, burned area 
was aggregated at biome level based on the same Ecoregion 2017 map 
used in the stratification of the validation process. 

3. Results 

3.1. Accuracy assessment 

3.1.1. Spatial validation 
Global accuracy estimates and the corresponding standard errors 

(shown in parenthesis in the tables and through the text) of FireCCIS310 
for the year 2019 are shown in Table 1, along with the equivalent global 
accuracy estimates extracted from Franquesa et al. (2022) for C3SBA11, 
FireCCI51, and MCD64A1 c6. The new algorithm was the most accurate 
in terms of DC, Oe, and relB, while MCD64A1 c6 showed the lowest Ce. 
The global DC of FireCCIS310 was 68.1% (±2.5), being 6.4%, 4.2%, and 
8.3% higher than C3SBA11, FireCCI51, and MCD64A1 c6, respectively 
(comparisons were expressed in absolute terms for accuracy metrics). Oe 
was 5.3% lower for FireCCIS310 than for FireCCI51, the second product 
with the lowest Oe. Ce was the only accuracy metric where the FireC
CIS310 product did not provide the most accurate results, although the 
differences were less relevant than for Oe, with all products ranging 
between 17.5 and 20.8%. In all products relB had negative values, 
meaning an underestimation of burned area and being the closest to zero 
for FireCCIS310. 

Biome level accuracy metrics followed a similar pattern (Table 2). 
FireCCIS310 was the most accurate product in terms of DC for all bi
omes, although different patterns were observed for Ce and Oe. Boreal 
forest showed the highest accuracies for all products, where DC values 
ranged from 75.7% (±4.5%) to 82.2% (±1.2%). Conversely, tropical 
forest had the highest Ce and Oe, although it was the biome where 

Table 1 
Global error estimates [%] for the three products and year 2019, with the 
standard error in parenthesis. Data for C3SBA11, FireCCI51, and MCD64A1 c6 
was extracted from Table 5 of Franquesa et al. (2022). In bold is the product that 
shows the highest accuracy in each specific metric.   

C3SBA11 FireCCI51 MCD64A1 c6 FireCCIS310 

DC 61.7 (2.9) 63.9 (2.8) 59.8 (3.2) 68.1 (2.5) 
Ce 18.6 (1.7) 20.8 (1.7) 17.5 (1.4) 19.2 (1.7) 
Oe 50.3 (3.4) 46.5 (3.4) 53.1 (3.6) 41.2 (3.0) 
relB − 39.0 (3.5) − 32.5 (3.4) − 43.1 (3.8) ¡27.2 (2.7)  

Table 2 
Estimated error metrics [%] at biome level for each product and year 2019, with 
the standard error in parenthesis. The total BA mapped in the reference data 
(BAref) is provided per biome in km2. Data for C3SBA11, FireCCI51, and 
MCD64A1 c6 was extracted from Table 6 of Franquesa et al. (2022). In bold is 
the product that shows the highest accuracy in each specific metric.  

Biome  C3SBA11 FireCCI51 MCD64A1 
c6 

FireCCIS310 

Boreal forest DC 76.7 
(1.7) 

79.0 (1.6) 75.7 (4.5) 82.2 (1.2) 

Ce 24.2 
(6.1) 

23.2 (3.3) 20.4 (2.2) 21.4 (4.0) 

Oe 22.3 
(5.5) 

18.8 (1.9) 27.8 (6.9) 14.0 (2.5) 

relB 2.5 
(14.9) 

5.7 (5.9) − 9.3 (7.1) 9.4 (8.5) 

BAref 1840.8 
Deserts & xeric 

shrublands 
DC 52.8 

(7.7) 
52.5 (7.7) 75.5 (2.5) 76.7 (2.6) 

Ce 15.5 
(1.9) 

20.1 (0.9) 19.1 (1.5) 15.1 (0.8) 

Oe 61.6 
(8.0) 

60.9 (8.4) 29.2 (4.6) 30.1 (4.8) 

relB − 54.6 
(9.0) 

− 51.0 
(10.1) 

¡12.4 
(6.3) 

− 17.6 (6.3) 

BAref 439.0 
Mediterranean DC 57.3 

(2.7) 
69.5 (6.2) 74.5 (6.4) 83.4 (4.7) 

Ce 28.8 
(4.4) 

23.7 (6.9) 13.2 (1.7) 17.0 (1.8) 

Oe 52.1 
(1.8) 

36.2 (5.6) 34.7 (8.8) 16.2 (7.6) 

relB − 32.7 
(1.6) 

− 16.3 
(0.7) 

− 24.8 
(8.8) 

1.0 (7.2) 

BAref 283.6 
Temperate 

forest 
DC 62.6 

(10.0) 
59.6 (9.8) 51.5 (10.1) 67.5 (10.4) 

Ce 17.0 
(7.2) 

22.3 
(10.4) 

19.6 (8.8) 21.5 (12.6) 

Oe 49.7 
(10.3) 

51.7 (9.0) 62.1 (9.0) 40.9 (9.0) 

relB − 39.4 
(7.4) 

− 37.8 
(4.7) 

− 52.9 
(6.3) 

¡24.7 (2.9) 

BAref 889.1 
Temperate 

savanna 
DC 64.2 

(1.9) 
62.0 (1.9) 55.0 (1.9) 67.6 (2.0) 

Ce 19.2 
(1.0) 

19.6 (1.6) 21.9 (2.1) 17.9 (0.9) 

Oe 46.8 
(2.5) 

49.6 (2.4) 57.6 (2.3) 42.6 (2.6) 

relB − 34.2 
(3.3) 

− 37.3 
(3.0) 

− 45.7 
(3.4) 

¡30.1 (2.8) 

BAref 3403.1 
Tropical forest DC 46.3 

(8.2) 
50.7 (8.0) 42.6 (8.4) 57.8 (6.6) 

Ce 24.1 
(6.7) 

24.1 (6.1) 20.6 (4.7) 27.6 (5.4) 

Oe 66.7 
(7.4) 

61.9 (7.7) 70.9 (7.3) 51.9 (7.1) 

relB − 56.1 
(7.1) 

− 49.8 
(7.3) 

− 63.4 
(7.6) 

¡33.6 (6.3) 

BAref 19,204.3 
Tropical 

savanna 
DC 67.0 

(3.1) 
68.9 (2.9) 66.3 (3.4) 72.0 (2.5) 

Ce 16.3 
(1.5) 

19.4 (1.7) 16.0 (1.5) 15.5 (1.3) 

Oe 44.1 
(3.9) 

39.9 (3.8) 45.2 (4.2) 37.2 (3.2) 

relB − 33.2 
(4.1) 

¡25.4 
(4.0) 

− 34.8 
(4.5) 

− 25.7 (3.1) 

BAref 104,793.3 
Tundra DC 78.8 

(3.1) 
69.9 (9.3) 50.9 (10.7) 81.8 (0.9) 

Ce 18.9 
(1.9) 

26.9 
(12.7) 

26.0 (15.9) 11.8 (5.7) 

Oe 23.4 
(7.5) 

33.1 (6.4) 61.2 (9.4) 23.7 (3.1) 

(continued on next page) 
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FireCCIS310 provided the greatest improvement over FireCCI51 in 
terms of Oe (10% lower). In the case of deserts & xeric shrublands the 
two products that used SWIR region (FireCCIS310 and MCD64A1 c6) 
clearly outperformed those based only on NIR (C3SBA11 and 
FireCCI51). 

3.1.2. Temporal reporting accuracy validation 
Table 3 and Table A1 show global and per biome temporal reporting 

accuracy estimates for the four global burned area products, while Fig. 8 
shows the distribution per biome of the differences between the date of 
detection provided by the algorithms and the corresponding active fire 
detection date. In the case of the estimates of Table 3 and Table A1 the 
differences were counted in absolute terms, i.e. number of days before 
(negative) or after (positive) the date of the active fire. All the 
mentioned figure and tables provide the temporal reporting accuracy 
estimated from MODIS active fires. Additionally, Fig. A1 presents the 
same distribution as Fig. 8 but based on VIIRS active fires. 

The most accurate product in terms of temporal reporting accuracy 
was MCD64A1 c6, followed by FireCCIS310. The former product 
detected 56.5% of the cases within 0–1 days difference globally, while 
the latter was able to detect 53.0% of the cases. Conversely, C3SBA11 
and FireCCI51 labelled only 21.2% and 18.0% of the cases within the 
same difference, respectively, less than a half of the other two products. 
FireCCIS310 progressively reduced the difference with MCD64A1 c6 
from 3.5% for a 0–1 difference to 0.8% for a 0–10 day difference 
(comparisons were expressed in absolute terms). Both C3SBA11 and 
FireCCI51 showed a clear trend to detect burned area after the fire, more 
specifically within the first 10 days after the active fire. The four prod
ucts show similar accuracies within 0–10 day difference. 

A similar pattern was observed at biome level, where MCD64A1 c6 
was the most accurate product in most of the biomes. It is worth noting 
that the difference in temporal reporting accuracy between MCD64A1 
c6 and FireCCIS310 substantially reduced from 0 to 1 to 0–3 days dif
ference, e.g. in deserts and xeric shrubland it was reduced from 10.9% to 
2.6% and from 10.1% to 2.6% in the case of the Mediterranean biome. 
FireCCIS310 outperformed the temporal reporting accuracy of the 
Copernicus and FireCCI products, detecting, on average, 33.4% more 
cases within 0–1 days difference per biome. 

The analysis based on VIIRS raised practically the same figures 
confirming all the patterns among products (Fig. A1). 

3.2. Intercomparison with existing BA products 

FireCCIS310 was globally processed for the year 2019 and, hence, all 
the figures and tables refer to that year. Fig. 9 shows the spatial 

distribution of the global burned area detected by the new algorithm at 
1◦ pixels. Table 4 shows the annual burned area (km2) and the relative 
differences (%) between FireCCIS310 and the rest of the products for 
each biome and globally. Fig. 10 gives an overview of the relative 
contribution of each biome to the global discrepancy between the 
product presented in this paper and the rest, as well as between the 
number of active fires detected by VIIRS and MODIS. Complementary, 
Fig. 11, Fig. A2, and Fig. A3 represent, also at 1◦, the spatial distribution 
of the quotients resulted from the division between the burned area of 
FireCCIS310 and FireCCI51, MCD64A1 c6, and C3SBA11, respectively. 

The new FireCCIS310 algorithm detected 4.99 × 106 km2 globally 
for the year 2019 (Table 4). Most of the burned area was concentrated in 
the tropical savanna biome (3.31 × 106 km2), mainly in the northern 
and southern hemisphere Africa, but with substantial contributions from 
Los Llanos in Colombia and Venezuela, the Cerrado in Brazil, and 
northern Australia. Tropical forests of Southeast Asia showed a high fire 
activity as well, being the primary source of burned area for that biome. 
A high fire activity spot was noticeable in agricultural areas of Punjab 
and Haryana in northwest India. A second belt of burned area 
completely crossed Eurasia around the 50◦ N latitude line, encompass
ing deserts and xeric grasslands and shrublands of Kazakhstan, and 
temperate savanna and forest regions. For this latter biome another 
relevant contributor was the east coast of Australia, as the summer of 
2019 implied an extreme fire season (Bowman et al., 2020). Comple
mentary, boreal forests were affected by fire activity as well, especially 
those located in Alaska and Far East Russia. 

The new product detected 37.3%, 27.4%, and 43.7% more burned 
area than C3SBA11, FireCCI51, and MCD64A1 c6, respectively 
(Table 4). The highest difference was for tropical forest where FireC
CIS310 more than doubled the burned area detected by the other three 
products, i.e. between 0.46 and 0.50 × 106 km2 more burned area. 
Something similar happened with deserts and xeric shrublands between 
FireCCIS310 and C3SBA11 and FireCCI51, but not for MCD64A1 c6. 
Conversely, C3SBA11, FireCCI51 and FireCCIS310 detected practically 
the same amount of burned area for boreal forest and tundra, being 
slightly higher for the former. In general terms, the new algorithm 
detected much more burned area in most of the biomes, reaching up to 
1.36 × 106 km2 more burned area in comparison to C3SBA11, 1.07 ×
106 km2 compared to FireCCI51 and 1.52 × 106 km2 in comparison to 
MCD64A1 c6. 

From those more than one million km2 of difference among the 
FireCCIS310 product and the other global burned area products, around 
80% came from tropical forests and tropical savanna, which represented 
on average 85% of the global burned area for the year 2019 according to 
the four products. These same biomes contributed in a similar way 
(81.4%) to the global discrepancy found between the number of active 
fires detected by VIIRS and MODIS, where the former detected 13 
million more active fires. In general, apart from deserts & xeric shrub
lands and boreal forest, the increase in the annual burned area by the 
FireCCIS310 product in each biome was consistent with an increase in 
the active fire detections of VIIRS. 

The spatial distribution of the discrepancies within each biome fol
lowed a similar pattern when FireCCIS310 was compared to FireCCI51 
(Fig. 11), MCD64A1 (Fig. A2), and C3SBA11 (Fig. A3). In the case of 
tropical savanna, the increase was homogeneously distributed through 
the biome and pixels showed differences of less than two times (x2) the 
burned area of the other product. A similar pattern was observed in 
temperate forests and savannas of Central Asia for C3SBA11 and Fire
CCI51, but not for MCD64A1 c6 which presented high discrepancies (>
x5) in comparison to FireCCIS310. Tropical forest concentrated most of 
the global pixels where FireCCIS310 detected >5 times (> x5) the area 
of the other products. Examples of these sharp increase can be found in 
Central America, Perú, Amazon River estuary, Democratic Republic of 
the Congo, Indonesia, and Southeast Asia. In this last region, a clear 
border effect was noticeable when comparing the new product against 
C3SBA11 and FireCCI51, which is a consequence of the border effect 

Table 2 (continued ) 

Biome  C3SBA11 FireCCI51 MCD64A1 
c6 

FireCCIS310 

relB ¡5.5 
(11.5) 

− 8.6 (7.1) − 47.6 
(10.8) 

− 13.4 (9.0) 

BAref 564.9  

Table 3 
Global temporal reporting accuracy for each product and year 2019 compared to 
MODIS active fires. The differences were accounted for in absolute terms, e.g. 
either if the difference is − 1 (the product detected the fire one day before the 
active fire) or + 1 (the product detected the fire one day after the active fire) the 
difference is considered to fall in the 0–1 days frame. In bold is the product that 
shows the highest accuracy in each specific timeframe.   

C3SBA11 FireCCI51 MCD64A1 c6 FireCCIS310 

0–1 days 21.2% 18.0% 56.5% 53.0% 
0–3 days 47.4% 46.0% 78.8% 76.7% 
0–5 days 67.4% 66.9% 87.2% 85.3% 
0–10 days 93.9% 92.6% 96.2% 95.4%  
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originally present in these products (Liu and Crowley, 2021; Lizundia- 
Loiola et al., 2021). Additionally, except for the MCD64A1 c6 product, 
substantial differences (> x3) were found in deserts and xeric shrublands 
of Australia, in line with the abovementioned sharp burned area increase 
of FireCCIS310 over C3SBA11 and FireCCI51 (Table 4). 

4. Discussion 

This paper presents a new global burned area algorithm, called 
FireCCIS310, based on S3 SYN 300 m spectral information and VIIRS 
375 m active fires. As the MODIS mission approaches its end, suitable 

replacements will be needed to ensure the provision of global burned 
area maps at moderate spatial resolution in the coming years and with 
the Copernicus Programme promising 20+ years it is reasonable to 
develop a suitable product for the equivalent Copernicus S3 sensor. The 
new global burned area algorithms should achieve similar or even 
higher spatial and temporal accuracies in comparison to their pre
decessors, while overcoming as much as possible the limitations found 
by the fire community in the last years in different burned area products 
(Chuvieco et al., 2019). The new algorithm represents a step forward in 
some of these aspects. 

FireCCIS310 used a novel surface reflectance product, which had not 

Fig. 8. Temporal reporting accuracy for each product and biome compared to MODIS active fires. Each bin of the histograms represents a 1-day step.  
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previously been used for burned area mapping, which combines mea
surements of OLCI and SLSTR sensors to provide daily, global coverage 
of Vis, NIR and SWIR spectral bands at 300 m spatial resolution. Until 
now, moderate resolution global burned area mapping algorithms had to 
decide between using sensors that provided lower spatial resolution but 
wider spectral capabilities (MCD64A1 c6: Giglio et al. (2018)) or higher 
spatial resolution but lower spectral capabilities (C3SBA11: Lizundia- 

Loiola et al. (2021); FireCCI51: Lizundia-Loiola et al. (2020)). The S3 
SYN product partially avoids this issue by providing SWIR bands at 300 
m. The burned signal after the fire persists for a longer time in vegetation 
indices that include the SWIR spectral region (Melchiorre and Boschetti, 
2018), making them more sensitive for burned area mapping. This 
persistency in the spectral change is crucial for the development and 
application of multi-temporal indices that take full advantage of daily 
images. In that sense, FireCCIS310 proposed a modified version of a 
multi-temporal separability index (Giglio et al., 2009) by using the 
NBR2, a vegetation index based on short and long SWIR highly sensitive 
to burned area (Roteta et al., 2019). This allowed to generate monthly 
composites that were more stable than those used by previous FireCCI 
versions, which had been generated by selecting reflectance of a single 
day (Alonso-Canas and Chuvieco, 2015; Chuvieco et al., 2018; Lizundia- 
Loiola et al., 2020). 

Another important novelty of the algorithm in comparison to pre
vious FireCCI products was the use of global parameters when selecting 
potentially burned pixels from the locations of input active fires. In that 
sense, the use of VIIRS active fires at 375 m supposed a new challenge, 
because, although the commission errors were expected to be low 
(Schroeder et al., 2014), the active fire product was expected to detect 
cooler and smaller fires as well as achieve higher densities per burned 
patch compared to MODIS active fire detections (Schroeder et al., 2014). 
In fact, Oliva and Schroeder (2015) found that VIIRS active fires offered 

Fig. 9. Burned area (km2) of the year 2019 detected by the FireCCIS310 product at 1◦ spatial resolution.  

Table 4 
Burned area (km2) per product and the relative difference (%) between FireCCIS310 and the other burned area products for the year 2019 and each biome.   

Burned area (km2) FireCCIS310 vs.  

C3SBA11 FireCCI51 MCD64A1 c6 FireCCIS310 C3SBA11 FireCCI51 MCD64A1 c6 

Boreal forest 90,503 86,711 72,370 87,145 − 3.9% +0.5% +20.4% 
Deserts & xeric shrublands 113,707 116,907 176,164 253,192 +122.7% +116.6% +43.7% 
Mediterranean 24,975 29,162 32,364 39,765 +59.2% +36.4% +22.9% 
Temperate forest 110,884 111,999 105,320 165,621 +49.4% +47.9% +57.3% 
Temperate savanna 164,995 165,610 145,221 220,141 +33.4% +32.9% +51.6% 
Tropical forest 411,926 433,493 400,165 897,703 +117.9% +107.1% +124.3% 
Tropical savanna 2,701,210 2,958,452 2,529,860 3,311,552 +22.6% +11.9% +30.9% 
Tundra 13,044 11,531 8437 12,000 − 8.7% +4.1% +42.2% 
Global 3,631,243 3,913,865 3,469,901 4,987,119 +37.3% +27.4% +43.7%  

Fig. 10. Relative contribution of each biome to the annual burned area dif
ferences found between FireCCIS310 and C3SBA11, FireCCI51, and MCD64A1 
c6 for the year 2019. The bar in the bottom shows the same but regarding the 
difference in the number of active fires detected by VIIRS and MODIS. 
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enhanced capabilities in terms of related and independent omission er
rors. The VIIRS 375 m active fire product detected 13 million more fires 
than MODIS in 2019. However, this enhanced capacity of the VIIRS 
product to detect smaller fires increased the presence of SYN 300 m 
pixels with negligible spectral changes because the fire covered a 
reduced proportion of the pixel. For that reason, the algorithm had to be 
able in an initial step to filter those cases to avoid contamination of the 
thresholding process. It must be pointed as well that the use in that step 
of tile-level thresholds, which changed from one tile to another, was 
found to be the source of the border effects in previous FireCCI products 
and also in C3SBA11, which followed a similar approach (Liu and 
Crowley, 2021; Lizundia-Loiola et al., 2021). Instead, the new algorithm 
defined global thresholds based on the distribution shown by the VIIRS 
active fires that had an associated reference perimeter, leading to a 
consistent potentially burned pixel selection. Fig. 12 shows the area 
reported by Liu and Crowley (2021) in northwest India as an example of 
the border effects of FireCCI51, which have now been removed. 

In terms of burned area detection thresholds, the use of spatio- 
temporal active fire clusters proposed by Lizundia-Loiola et al. (2020) 

to obtain thresholds that better adjust to the internal variability within a 
tile had proved to be a good alternative to those approaches that use 
additional auxiliary data with the same objective. However, the same 
study underlined that the definition of cluster-based samples should be 
improved, especially for those burned patches with a low active fire 
density. For example, to determine the unburned samples FireCCI51 
used the distance from active fires as a criterion rather than the border of 
a priori burned patches, as it is done by FireCCIS310. This led to the 
contamination of the unburned sample in those cases where burned 
pixels were far away (> 10 km) from the nearest active fire (e.g. fires of 
fast spread in deserts & xeric shrublands). Besides, the fixed linear 
relation between the burned and unburned sample used by FireCCI51 to 
estimate the thresholds was replaced by the Otsu thresholding, which is 
designed to dynamically find the optimum threshold between two ex
pected classes within a distribution (Roteta et al., 2021). 

The combination of improved input data and detection capabilities 
made FireCCIS310 the most accurate among the compared products in 
terms of DC, Oe, and relB. In the case of Ce, the new algorithm slightly 
improved FireCCI51. However, in general terms, the four products 

Fig. 11. Spatial distribution of the differences between the annual burned areas of the FireCCI51 and FireCCIS310 products at 1◦ spatial resolution. Each grid cell 
shows the quotient resulted from dividing the burned area of the product that detected the most by the one that detected the least. Thus, xN represents how many 
times more burned area was detected, being N the quotient. The red tones represent grid cells where FireCCIS310 detected more than FireCCI51, while the blue ones 
represent the contrary. The single detections are those cases where only one of the products detected burned area. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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might already be near the maximum achievable Ce considering the 
impacts of the coarse spatial resolution (Franquesa et al., 2022). It is well 
known that global burned area products suffer from a systematic un
derestimation (Boschetti et al., 2019; Chuvieco et al., 2018; Franquesa 
et al., 2022), particularly caused by small fires (Ramo et al., 2021; 
Randerson et al., 2012). Our SYN-based product also presented omission 
problems, but to a lesser extent than for other existing burned area 
products, while maintaining similar levels of commission errors. The 
relative bias was therefore improved. Results at biome level suggested 
good detection capabilities across different fire regimes. Nevertheless, 
the per-biome accuracy analysis should be interpreted with caution due 
to the small sample size allocated in some biomes (Franquesa et al., 
2022). 

Another substantial improvement of FireCCIS310 in comparison 
with its precursors was the temporal reporting accuracy. Both C3SBA11 
and FireCCI51 are known to have low temporal reporting accuracy, as a 
result of the compositing criteria, with only high detection rates for the 
first 10 days after the fire (Lizundia-Loiola et al., 2021; Lizundia-Loiola 
et al., 2020). Instead, the multi-temporal separability index used by 
FireCCIS310, which considered eight pre- and eight post-fire NBR2 daily 
values, allowed for a more robust estimation of the day of the fire. 
FireCCIS310 showed a narrow distribution around the 0–1 differences, 
accounting for >50% of the detections, similar to MCD64A1 c6. 

Regarding global burned area, FireCCIS310 drastically increased the 
estimations for the year 2019, with around 1 million km2 more detected 
burned area than FireCCI51, the second product with the highest esti
mations (4.99 versus 3.91 × 106 km2, respectively). Most of this increase 
(around 80%) was observed in tropical forest and tropical savanna, 
which accounted for 0.46, and 0.35 × 106 km2 of the global difference, 
respectively. In that sense, the use of VIIRS 375 m active fires instead of 
MODIS 1 km played a key role. After all, every burned patch detected by 
FireCCIS310 must contain at least one active fire and, hence, any 
reduction in Oe of the original active fire product had the potential to be 
translated, although not fully, into the Oe of the burned area product. 
This context explained the general increase in global burned area 

estimates and, specifically, in those biomes with a high proportion of 
small fires (< 100 ha) (Ramo et al., 2021; Randerson et al., 2012), 
although a more in-depth analysis is required to assess the performance 
of the new algorithm in relation to fire size (Campagnolo et al., 2021). 
Conversely, boreal forest was the only biome where an increase in active 
fire detections between VIIRS and MODIS did not imply an increase in 
burned area, which could be reasonable since the large size, high energy 
and low spread-rates of the fires in this biome ensure active fire de
tections per burned patch. The deserts and xeric shrubland biome was a 
clear example in which the use of the SWIR spectral bands benefited 
FireCCIS310 and MCD64A1 c6 since NIR was expected to have weaker 
signal in burnings of dry vegetation (Campagnolo et al., 2021; Jacques 
et al., 2014; Miettinen, 2007). 

The results presented in this study suggest that the use of VIIRS 375 
m active fires had important implications for burned area mapping al
gorithms, but also for the fire community. The increased capability of 
detecting burned area, and the improved spatial and temporal accu
racies, implied benefits for applications such as greenhouse emission 
modeling (van der Werf et al., 2017) or individual fire patches detection 
(Andela et al., 2019; Laurent et al., 2018). However, these same positive 
characteristics could become an issue for those users that need long 
time-series of burned area. The generation of long-time records requires 
combining products derived from different input datasets that must be 
consistent to avoid hindering temporal trends (Lizundia-Loiola et al., 
2021). While the use of VIIRS 375 m active fires seemed to make 
FireCCIS310 less consistent with MODIS-based products, the algorithm 
was designed to ingest any active fire products, hence, coarser resolution 
active fire products might bring greater correlation with existing BA 
products. For example, VIIRS active fires at 750 m or even SLSTR active 
fires at 1 km may lead to global burned area products more similar to 
MODIS ones (Schroeder et al., 2014; Xu et al., 2021), but this decision 
would probably lead to a reduction in the spatial accuracy. Future 
studies should therefore analyse how the jump between products based 
on MODIS, SLSTR and VIIRS active fires could be properly reconciled to 
build consistent time series of burned area. 

Fig. 12. Example of the area reported by Liu and Crowley (2021) as a clear example of tiling artifacts in FireCCI51 in November 2019 in northwest India. Both 
MCD64A1 c6 and FireCCIS310 did not show such artifacts. The border at 30◦N is the same for MODIS and SYN tiles. 
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5. Conclusions 

This paper has described a new burned area algorithm adapted to 
Sentinel-3 SYN and VIIRS active fires data to generate a global burned 
area product independent of MODIS data, with similar or better accu
racies in terms of spatial and temporal detection. As MODIS is coming to 
the end of its operating life, alternative sources of Earth observation data 
are critical to extend the available time series of burned area informa
tion to the next decades. We tested our algorithm with a global pro
cessing for the year 2019 of a new synthetic product (SYN) that includes 
reflectance at 300 m resolution of the two sensors (OLCI and SLSTR) on 
board Copernicus Sentinel-3 A and B satellites plus VIIRS 375 m active 
fires. Comparison of our results with existing products in the same year 
showed consistent spatial trends, but higher detection rates in the new 
product, named FireCCIS310. In fact, this product detects 27% more 
burned area than its precursor, FireCCI51. This increase was mainly 
related to the higher sensitivity of VIIRS 375 m to detect smaller and/or 
cooler fires than MODIS, as well as the use of SWIR bands included in the 
SYN data, particularly in detecting burned areas in regions of sparse 
vegetation. The resulting burned area product is part of the ESA FireCCI 
project and is publicly available. Semi-operational production of this 
algorithm is expected in the next few years within the FireCCI project 
extension. 

Data availability 

The FireCCIS310 dataset is freely available in both grid and pixel 
format through the CCI Open Data Portal (https://climate.esa.int/es/ 
odp/#/dashboard, last accessed on July 2022). Additionally, the refer
ence perimeter files used for the global spatial validation of the FireC
CIS310 product are publicly available at https://doi.org/10.219 
50/BBQQU7 (last accessed on July 2022) (Franquesa et al., 2020a). 
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Appendix A  

Table A1 
Temporal reporting accuracy for each product and biome for the year 2019 compared to MODIS active fires. The differences were accounted in absolute terms, e.g. 
either if the difference is − 1 (the product detected the fire one day before the active fire) or + 1 (the product detected the fire one day after the active fire) the difference 
is considered to fall in the 0–1 days frame. In bold is the product that shows the highest accuracy in each specific biome and time-frame.  

Biome  C3SBA11 FireCCI51 MCD64A1 c6 FireCCIS310 

Boreal forest 0–1 days 8.2% 6.9% 44.4% 42.3% 
0–3 days 19.6% 16.7% 68.9% 63.5% 
0–5 days 33.0% 28.7% 81.5% 76.0% 
0–10 days 68.6% 60.1% 95.7% 92.9% 

Deserts & xeric shrublands 0–1 days 28.7% 30.2% 71.5% 60.6% 
0–3 days 57.6% 57.6% 87.2% 84.6% 
0–5 days 77.2% 76.2% 93.1% 91.1% 
0–10 days 98.8% 98.0% 98.4% 97.7% 

Mediterranean 0–1 days 18.6% 20.3% 70.9% 60.8% 
0–3 days 45.5% 43.1% 86.7% 84.1% 
0–5 days 67.8% 66.0% 92.1% 92.3% 
0–10 days 98.4% 98.2% 97.8% 98.3% 

Temperate forest 0–1 days 21.1% 13.2% 53.9% 54.8% 
0–3 days 44.5% 33.5% 77.0% 78.5% 
0–5 days 63.8% 54.3% 88.0% 88.1% 
0–10 days 93.4% 89.0% 97.9% 97.7% 

Temperate savanna 0–1 days 25.9% 24.2% 62.9% 59.1% 
0–3 days 54.4% 51.3% 83.1% 81.8% 
0–5 days 73.2% 70.4% 90.3% 90.8% 
0–10 days 96.9% 94.6% 97.8% 98.0% 

Tropical forest 0–1 days 20.9% 19.0% 45.0% 46.2% 
0–3 days 44.8% 43.6% 70.3% 69.5% 
0–5 days 65.4% 65.0% 82.2% 80.0% 
0–10 days 94.4% 93.4% 95.4% 93.5% 

Tropical savanna 0–1 days 23.2% 19.1% 60.1% 55.7% 
0–3 days 52.6% 51.4% 82.0% 80.0% 
0–5 days 73.9% 73.8% 88.9% 87.4% 
0–10 days 98.2% 97.7% 96.2% 95.8% 

(continued on next page) 
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Table A1 (continued ) 

Biome  C3SBA11 FireCCI51 MCD64A1 c6 FireCCIS310 

Tundra 0–1 days 10.5% 8.9% 35.1% 46.4% 
0–3 days 23.1% 20.1% 57.1% 66.4% 
0–5 days 36.0% 30.4% 71.0% 77.3% 
0–10 days 70.7% 61.7% 89.8% 94.4%  

Fig. A1. Temporal reporting accuracy for each product and biome compared to VIIRS active fires. Each bin of the histograms represents a 1-day step.   
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Fig. A2. Spatial distribution of the differences between the annual burned areas of the MCD64A1 c6 and FireCCIS310 products at 1◦ spatial resolution. Each grid cell 
shows the quotient resulted from dividing the burned area of the product that detected the most by the one that detected the least. Thus, xN represents how many 
times more burned area was detected, being N the quotient. The red tones represent grid cells where FireCCIS310 detected more than MCD64A1 c6, while the blue 
ones represent the contrary. The single detections are those cases where only one of the products detected burned area. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A3. Spatial distribution of the differences between the annual burned areas of the C3SBA11 and FireCCIS310 products at 1◦ spatial resolution. Each grid cell 
shows the quotient resulted from dividing the burned area of the product that detected the most by the one that detected the least. Thus, xN represents how many 
times more burned area was detected, being N the quotient. The red tones represent grid cells where FireCCIS310 detected more than C3SBA11, while the blue ones 
represent the contrary. The single detections are those cases where only one of the products detected burned area. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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