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Abstract
This study introduces a quadratic programming‐based optimisation method to coordinate
electric vehicle (EV) charging and photovoltaic (PV) curtailment in unbalanced low
voltage (LV) networks. The proposed model is defined as a convex model that guarantees
the optimal global solution of the problem avoiding the complexity of non‐linear models
and surpassing the limitations of local solutions derived from meta‐heuristics algorithms
reported in the literature. The coordination is carried out through a centralised controller
installed at the header of the LV feeder. The objective of the proposed strategy is to
minimise the power curtailment of all PV systems and maximise the power delivered to
all EVs by optimising at every time step a suitable setpoint for the PV units and the
charging rate of each EV connected without surpassing network constraints. A new
energy‐boundary model is also proposed to meet the energy requirements of all EVs,
which is based on a recurrent function that depends on the arrival‐and‐desired energy
states of the vehicle to compute its charging trajectory optimally. The effectiveness of the
proposed coordination strategy was successfully proven through three scenarios in a
laboratory environment, making use of two commercial EVs and a PV inverter in a
Power Hardware‐in‐the‐Loop setup.

1 | INTRODUCTION

Nowadays, low voltage (LV) distribution networks face a fast
growth of electric vehicles (EVs) and renewable energy sources
such as solar photovoltaic (PV) due to cost reductions and
subsequent demand. The evolution of this scenario has also
been supported by a favourable policy context in terms of
fiscal incentives, more strict emission standards, and support
for charging infrastructure [1]. However, as shares of these
technologies grow, the conventional distribution network re-
quires adaptive measures to maintain or improve the energy
service provision, for example, introducing control and
monitoring systems to optimise the network capacity instead of
network reinforcement.

In this context, different theoretical approaches to optimise
EV charging and maximise PV power generation without
exceeding the network capacity have been proposed in the

literature. Fachrizal et al. [2] proposed a combined distributed
charging scheme and PV curtailment for assessing the hosting
capacity of LV networks. This strategy sought to minimise the
net‐load variability of a single household, that is, reducing both
peak load and surplus generation. The study used a smart
charging algorithm presented in Ref. [3]. The drawback of the
algorithm is that it relies on a perfect forecast of the power
consumption and PV production of a single home as well as on
the knowledge of the state‐of‐charge (SOC) of the EV. Thus,
any error in these estimations leads to non‐optimal results.

In ref. [4], a charging coordination algorithm to utilise the
grid‐to‐vehicle and vehicle‐to‐grid capabilities of EVs is pro-
posed to minimise power losses, voltage profile deviation, and
network unbalance. The algorithm intends to determine the
proper phase for the EVs by operating the so‐called “phase‐
switcher”, a device in series with the charging station, which in
turn both are linked to a central management centre. A
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negative side of this algorithm is that it works only with single‐
phase EVs. It means that in real life, the system would not
work with current three‐phase EVs. Also, installing the phase‐
switcher increases the costs and adds a new point of failure to
the system.

A smart charging strategy based on reactive power dis-
charging and phase switching in unbalanced LV networks was
proposed in ref. [5] to minimise the network losses and the
charging cost of the users. The optimisation model was defined
as a mixed‐integer non‐linear programming problem. Due to
the non‐convexity and non‐linearity of the problem, a discrete
particle swarm optimisation model was used to generate and
update the control variables in combination with the direct
load flow approach to evaluate the explored solutions. None-
theless, using the meta‐heuristic approach increases the
complexity of the problem as it is treated like a non‐linear non‐
convex optimisation problem that highly leads to getting stuck
in a local solution. In a previous work [6], a coordination EV
charging strategy based on a linear programmming model was
defined. It aimed to maximise the EV's charging in an unbal-
anced grid by taking advantage of the PV power without
exceeding the operational limits of the LV network, making use
of its sensitivity coefficient matrices. However, this work did
not consider managing the limitation of PV power injection
into the network because the total installed PV capacity was
lower than the nominal power value of the feeder. This means
that the PV power was considered only as a parameter in
network constraints instead of a variable.

Concerning PV power management to mitigate voltage
limits violation problems in distribution networks, in ref. [7], a
distributed control method to dispatch active and reactive
power from the PV inverters is presented in order to minimise
their operational costs, lead system voltage into an acceptable
range and meet the network capacity constraints. This method
was tested in a real‐time simulator to validate its performance.
Besides, the work in ref. [8] proposed a control approach to
minimise the voltage unbalance, voltage deviation, active po-
wer losses and PV curtailment in the LV network as a multi‐
objective optimisation problem in combination with the
Backward/Forward Sweep unbalanced three‐phase power flow
algorithm to drive a real‐time energy management system in a
network with batteries and a high share of PV. However,
similar to ref. [5], the optimality of the problem highly depends
on the parametrisation of the meta‐heuristic algorithm and the
complexity of the non‐linear terms of the model, which implies
that each solution, in this case, in the Pareto front may not be
the optimal global value of the problem. Kontis et al. [9]
presented a two‐layer‐based centralised approach to manage
voltage regulation and voltage unbalances problems due to a
high PV share in unbalanced low‐voltage networks. The first
control layer is embedded at the hardware level of the inverter
to prevent overvoltages and voltage unbalances using local
measurements. The second layer is located at the distribution
system operator (DSO) level as a central controller to reallo-
cate the PV curtailment. It is a fair‐power‐sharing algorithm in
an on‐load‐tap‐changer (OLTC) MV/LV transformer. Addi-
tionally, both authors in refs. [7, 9] employ a droop control to

manage the PV curtailment based on local measurements. The
former without considering the topology of the LV network
using the Dual Gradient Descent algorithm to optimise the
system power cost, and the latter, employing a deterministic
approach based on multiple simulations using the polar form
of the power flow equations to adjust the OLTC of the dis-
tribution transformer to meet the operational voltage of the
LV network. In ref. [10], a coordinated reactive power
compensation algorithm is proposed to mitigate overvoltages
in the LV network with minimal PV power curtailment by
using a battery energy storage system (BESS). It is based on the
selection of a regulation node with the maximum voltage rise
and the PV‐BESS group with the highest voltage sensitivity to
compute the required power curtailment. Battery systems are
used to curtail surplus generation to prevent overvoltages and
supply the lack of generation to prevent under‐voltages. Both
[9, 10] used the voltage sensitivity coefficients of the network
to reallocate the PV curtailment among the PV units and find
the PV compensation due to an overvoltage problem respec-
tively. However, the voltage sensitivities were obtained
assuming three‐phase balanced LV networks. The former used
the inverse Jacobian matrix and the latter from the partial
derivatives of the cartesian form of the power flow equations.

On the other hand, there are other works that focus on the
conceptual design of integrating PV systems with EV charging,
such as [11–15]. All five studies, except [12], use additional
energy storage to buffer the energy between the EVs and the
PV units. In addition, the algorithms were tested through
simulations, disregarding relevant real‐world conditions, such
as non‐idealistic charging characteristics, so their performance
is only approximate and may differ in real applications.

Experimental‐based approaches are less encountered in the
literature. For example, in refs. [16–18], a novel adaptive
charging algorithm was developed. The algorithm is based on
the actual charging current measurements instead of pre-
defined load curves, which means that no modelling or data
about the EVs is necessary. The algorithm is sought to maxi-
mise the charging current within the capacity limits of the
network and reduce charging times. In general terms, the in-
dividual or combined analysis of EVs and PVs within a
simulation framework are considered either as optimisation
problems (e.g. linear [6], non‐linear [2, 3, 7, 12] and meta‐
heuristic [5, 8]) or deterministic approaches [4, 9–11, 13–15].
However, to the knowledge of the authors, no paper consid-
ering a combined testbed for smart EV charging and PV
curtailment is not found in the literature. Therefore, the aim of
this work is to test in a laboratory environment a new coor-
dination strategy to manage the EVs and PVs in unbalanced
LV networks, considering the current limitations to imple-
menting those approaches. This means convexify the power
management problem in unbalanced LV networks when
including network constraints to guarantee the optimal global
solution of the model. Particularly, this paper uses the Perturb‐
and‐Observe (P&O) approach to compute the voltage‐and‐
loading sensitivity matrices of the unbalanced three‐phase LV
networks, which are included as a linearisation of network
constraints in a quadratic programming (QP) model to
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optimise the EV charging and power curtailment of al PV
units. A new energy boundary model is defined to optimally
compute the charging trajectory during the available connec-
tion time of the EVs. A weighting formulation is proposed to
evenly distribute the power curtailment among all PV units in
the network.

The rest of this paper is organised as follows. Section 2
describes the energy boundary model to optimise the EV
charging trajectory. Section 3 presents the proposed optimi-
sation model in the coordination strategy to manage the EVs
and PVs in unbalanced LV networks. The description of the
experimental setup used for testing the proposed optimisation
model is presented in Section 4, and the experimental results
are discussed in Section 5. The limitations of the proposed
approach and future hints are discussed in Section 6. Finally,
conclusions are drawn in Section 7.

2 | ENERGY BOUNDARIES OF EVS

This section introduces a new EV model based on the lower
and upper power and energy boundaries of the battery in order
to know how the charging trajectory evolves between these
two energy states. This approach considers as main input pa-
rameters the EV arrival/departure time, the energy character-
istics of the battery and the energy requirements of the users.
The detailed battery model is described in ref. [6].

As the energy state previous to the EV connection is un-
known, the arrival energy level earrj is defined as the starting
point for the upper and lower energy boundaries, as shown in
Equation (1).

eupperj ðtÞ ¼ elowerj ðtÞ ¼ earrj ∀ j ∈ NEV ;

t ¼ 0;…; tarrj
ð1Þ

Once the EV j is connected to the charging station, the
upper energy boundary is recursively computed by Equa-
tion (2) within the interval of its arrival and the number of
discrete time steps of the evaluation period Nslots. Note that
the maximum energy state is the energy level defined by the
user eobjj . Besides, the number of discrete‐time slots Nslots is
computed by considering a time step ts and an interval length
Δt = ts/(60 min) for a test period T, that is, Nslots = T/Δt.

eupperj

�
tarrj þ t

�
¼min

n
eupperj

�
tarrj þ t − 1

�

þ pmax
ch ⋅ ηch ⋅ Δt; eobjj

o
;

∀j ∈NEV ; t ¼ 1;…;Nslots − tarrj ð2Þ

On the other hand, the lower energy boundary of the EV j
is also recursively calculated by Equation (3), setting earrj as the
minimum energy level of the battery. The way to obtain this
boundary is equal to starting from a future state and going
back to a past state.

elowerj

�
tdisj − t

�
¼max

n
elowerj

�
tdisj − t þ 1

�

− pmax
ch ⋅ ηch ⋅ Δt; earrj

o
;

∀j ∈ NEV ; t ¼ 1;…; tintj þ 1 ð3Þ

Equation (4) states that once the EV j is disconnected, its
energy level must be equal to eobjj up to Nslots.

elowerj

�
tdisj þ t

�
¼ eobjj ∀ j ∈NEV ;

t¼ tdisj ;…;Nslots − tdisj
ð4Þ

Once the energy boundaries of all EVs are obtained, these
are employed as constraints in the proposed optimisation
problem.

3 | OPTIMISATION MODEL

When the number of PVs and EVs increases in the LV
network without any control action, the voltage and loading
levels of the grid can be negatively affected. Hence, to avoid
that operational condition, the proposed optimisation problem
seeks to minimise the power curtailment of all PV units and
maximise the power delivered to all EVs by optimising at every
time t a suitable setpoint for the PVs and the charging rate of
each EV connected without surpassing network constraints. It
is assumed that all households have installed smart metres with
load and generation control capability. The optimisation pro-
cess is carried out in a central controller at the head of the
feeder in order to manage the PVs and EVs in a coordinated
manner. In this sense, the optimisation problem is computed at
each time t based on the (QP) model given by Equation (5).

maximise f1 ¼
X

i∈HPV

  

1 −
pPVi;t ⋅ ζi;t
pratedPVi

!

⋅ pPVi;t ⋅ ζi;t

!

þ
X

i∈HEV

�
pEVi;t − ΔPinci;t

�
⋅ xi;t

ð5Þ

Considering that all households with a PV unit can export
the surplus energy to the grid, these units can also provide local
voltage support through the active power curtailment set up
for maintaining the voltage profile below a normative upper
limit. In this case, at every time step, each PV inverter
continuously checks the demand and its power output to adjust
the generation setpoint through the factor ζi,t. Note that the
value of ζi,t highly depends on the voltage sensitivity co-
efficients of the network (constraint Equation (12)) to maintain
the voltage within its operational limits. Hence, the first term in
Equation (5) seeks to minimise the PV power curtailment of
the ith household when an overvoltage or overload condition
occurs. As all the PV units are likely to contribute to the
aggregated reverse power flow, the PV power curtailed
�
pPVi;t ⋅ ζi;t

�
is evenly distributed among all users by weighting.

CORTÉS BORRAY ET AL. - 3
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The second term aims at maximising the charging power
�
PEVi;t

�
of all EVs by dynamically adjusting the rate of power

�
ΔPinci;t

�
of their chargers, avoiding severe voltage drop con-

ditions across the network caused by a high load level in the
feeder. Note that H denotes the set of households supplied by
the DSO, pratedPVi is the rated power of PV unit i, and xi,t is a
binary matrix of [H � Nslots] such that xi,t = 1 if the EV j is
connected to the household i at time t, and xi,t = 0 otherwise.

3.1 | The constraints of PVs and electric
vehicles

For all PV units, constraint Equation (6) ensures that the total
PV power per phase should not surpass the nominal capacity per

phase of the main cable of the feeder
�
pratedLinel;ϕ

�
, where HPV

ϕ is

the number of households with a PV unit connected at phase ϕ.

X

i∈HPV

�
pPVi;t ⋅ ζi;t

�
<¼ pratedLinel;ϕ

; ∀l ∈ Lines; ∀ϕ; ∀t ð6Þ

On the other hand, the charging rate of each EV is
dynamically adjusted considering the energy level of its battery
in order to avoid violating the technical limits of the grid as
given in Equations (7)–(11). In this sense, Equation (7) sets
that at any t, the charging power for the EV connected to the
household i cannot surpass the charger rating power, where
pmax
ch is the maximum charging power at the AC side of the
charger, ηch is the charger efficiency, and HEV is the set of
households with EV.

0 ≤ pEVi;t ≤ pmax
ch ⋅ ηch; ∀i ∈HEV; ∀t ð7Þ

Equation (8) seeks to limit sudden variations in the charging
rate for consecutive time slots using a constant setpoint (ΔP) in
conjunction with a penalty deviation variable ΔPinci;t , which relaxes
the problem when necessary. This condition is defined for those
EVswith narrowenergy boundaries and that need a power boost
in the next time step to not exceed their lower energy boundary.

pEVi;t−1 −
�
ΔP þ ΔPinci;t

�
≤ pEVi;t ≤ pEVi;t−1 þ

�
ΔP þ ΔPinci;t

�
;

∀i ∈HEV; ∀t if xi;t ≠ 0
ð8Þ

Equation (9) guarantees that any increase in the charging
rate of the EV at household i should be no greater than the left
capacity of the charger, that is, ΔPmax ¼ p

max
ch ⋅ ηch − ΔP .

0 ≤ ΔPinci;t ≤ ΔPmax; ∀i ∈HEV; ∀t ð9Þ

Finally, Equation (10) states that at every time t, the energy
level of the jth vehicle connected to household i must be
within the energy boundaries computed in Section 2. The
computation of the current energy state is given by Equa-

tion (11), which considers the arrival time of vehicle j
�
tarrj
�
,

the charging power at time t, and the energy level from the

previous period
�
tarrj þ t − 1

�
.

eloweri

�
tarrj þ t

�
≤ eEVi

�
tarrj þ t

�
≤ eupperi

�
tarrj þ t

�
;

∀i ∈HEV; ∀j ∈NEV ; t ¼ 0;…; tintj þ 1
ð10Þ

3.2 | Network constraints

In order to evaluate the effect of the voltage and loading level
of the feeder in the coordination strategy, the linear approxi-
mations for these two parameters in ref. [6] were modified to
include the PV power curtailment factor ζi,t. As these ap-
proximations depend on the voltage‐and‐loading sensitivity
coefficients of the network, these matrices are obtained using
the P&O method described in ref. [6]. This performs several
unbalanced three‐phase load flow in steady‐state through
PowerFactory [19] in conjunction with Python [20]. In this
sense, Equation (12) ensures that voltage magnitude is within
the operating limits given by the DSO when significant voltage
variations occur due to new connections of EVs and PVs in
the LV network.

Vmin ≤ V fc
i;t þ Ai;i ⋅ pEVi;t þ Bi;i ⋅ pPVi;t ⋅ ζi;t

þ
X

h∈H
i≠h

�
Ah;i ⋅ pEVh;t þ Bh;i ⋅ pPVh;t ⋅ ζh;t

�
≤ Vmax;

∀i ∈HEV; ∀t ð12Þ

eEVi
�
tarrj þ t

�
¼

8
>><

>>:

earrj þ p
EV
i

�
tarrj þ t

�
⋅ Δt; t¼ 0; ∀i ∈HEV; ∀j ∈NEV

eEVi
�
tarrj þ t − 1

�
þ pEVi

�
tarrj þ t

�
⋅ Δt; t¼ 1;…; tintj þ 1;

∀ i ∈HEV; ∀j ∈ NEV ð11Þ
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where V f c
i;t is the forecasted voltage at load node i; A and B are

two square matrices of [H � H] that represent the voltage
sensitivity coefficients by the connection of new loads and
generation respectively. This means that voltage sensitivity in A
quantifies the voltage drop by increasing demand in a load
node, whereas, in B, this sensitivity value will be positive to
represent the voltage rise by injecting power. Besides, Vmin and
Vmax define the minimum and maximum network voltage
levels defined by the DSO. The term i ≠ h means that i re-
mains fixed while h varies.

To not exceed the operational limits of cables and
transformers in the LV network, the active power flow
derived from the PV generation, and EV demand must be
optimally controlled. This task is carried out by Equa-
tions (13) and (14).

PLinel;ϕ;t
f c þ

X

h∈H
h≠∅

�
Ch;ϕ;l ⋅ pEVh;t þDh;ϕ;l ⋅ pPVh;t

�

≤ SLinel;ϕ
rated ⋅ cosðφÞ; ∀l ∈ Lines; ∀ϕ;∀t ∈Nslots ð13Þ

PTransk;ϕ;t
f c

þ
X

h∈H
h≠∅

�
Fh;ϕ;k ⋅ pEVh;t þ Gh;ϕ;k ⋅ pPVh;t

�

≤ STransk;ϕ
rated ⋅ cosðφÞ; ∀k ∈ Trans; ∀ϕ;∀t ∈ Nslots ð14Þ

where Pf cLinel;ϕ;t and P
f c
Transk;ϕ;t are the forecasted loading levels

per phase ϕ of the main cable l and distribution transformer
k at time t. These two parameters can be obtained through
the unbalanced quasi‐dynamic power flow for the whole test
period T considering a demand forecasting scenario for the
network. C, D, and F, G are three‐dimensional matrices of
[H � ϕ � Line] and [H � ϕ � Trans] that represent the
loading sensitivity coefficients per phase of the service cable l
and distribution transformer k. A positive sensitivity value in
C and F represents an increase of the loading level on the
main cable, whereas, in D and G, those values are negative,
indicating a reduction in the loading level. Only one set of
sensitivities is calculated along the test period, as this
approach reduces the computational burden and execution
time of the algorithm. SratedLinel;ϕ ⋅ cosðφÞ and SratedTransk;ϕ ⋅ cosðφÞ
illustrate the rated active power per phase for both the service
cable l and the distribution transformer k. The term h ≠ ∅
means that those households without a PV or an EV unit are
skipped.

4 | DESCRIPTION OF THE
EXPERIMENTAL SETUP

In order to verify the real performance of the proposed co-
ordination strategy described in Section 3, an experimental test
case was carried out at the Smart Grid Technology Lab at TU
Dortmund University, Germany. As illustrated in Figure 1, the

laboratory is equipped with different assets such as LV cables
emulators, on‐load tap changer transformers, redox‐flow bat-
teries, power amplifiers, hardware for real‐time simulations,
controllable loads, a PV inverter, EVs and EV charging sta-
tions. A complete description of the laboratory can be found in
ref. [21].

The proposed coordination strategy was implemented in
Python and tested by using the infrastructure for EV charging
and PV control (see Figure 1), which is described as follows.
An RWE eSTATION charging station with a Phoenix Contact
Advanced EV charging controller [22]. This charging
controller allows limiting the current up to 32 A and receiving
the setpoints of current via Modbus TCP/IP protocol. The
charging station is equipped with two independent charging
outlets up to 11 kW (400 V AC). In order to represent the
smart metre from a real case, a KoCoS EPPE CX power
quality analyser was installed in one of the charging outlets to
measure the voltage, current, and active power from the grid.

Taking into account the technical characteristics of the
charging station, two commercial EVs with charging currents
between 6 and 16 A were tested: a Nissan Leaf with a single‐
phase connection up to 3.7 kW (16 A/230 VAC) and a BMW
i3 with a three‐phase connection up to 11 kW (16 A). The
technical characteristics of the tested EVs are presented in
Table 1.

Besides, a 60 kVA SMA inverter [23] and a 200 kVA
EGSTON [24] power amplifiers group (see Figure 1) were
used in a Power Hardware‐in‐the‐Loop (PHiL) setup, as shown
in Figure 2, in conjunction with Python to send the optimal
power curtailment signal to the PV inverter. A supervisory
control and data acquisition interface controls both power
amplifiers. In this setup, the PV power at the DC side of the
inverter is provided by one of the power amplifiers (configured
in DC bipolar current mode) by a single cell PV model
developed in RT‐Lab [25]. The PV inverter is connected along
with a variable resistive load to the busbar 2 (the cabinet in the
middle). The variable load was not used in this setup. The
other power amplifier is employed to emulate the AC three‐
phase‐four‐wire source connected to the same busbar.

On the other hand, a distribution feeder from one real LV
network in the North West of England [26] was modelled in
PowerFactory to allocate a set of EVs and PV systems. Ten
households with EVs and PV units were considered, assuming
that all vehicles arrive at 11:00 h in order to take advantage of
the available PV power. A time resolution of 1 min was
considered to be accurate for this study [27].

Figure 3 shows a simplified schema of the employed setup.
The yellow block represents the central controller at the ana-
lysed feeder. Here, the coordination strategy described in
Section 3 is computed at each time t. Before starting the
connection with the charging station and the PV inverter, that
is, at t − 1, the sensitivity coefficients of the network are
computed in PowerFactory. Then, from t = 0 to the time when
the simulated PV power is greater than zero, the optimisation
runs in simulation time, that is, in a few seconds. Afterwards,
the connection with the PV inverter is established using the

CORTÉS BORRAY ET AL. - 5
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Modbus library (ModbusTcpClient) in Python to read the
active power and send the optimal power curtailment signal
when required. This process is carried out every 1 min. Note
that the connection with the charging station and the power

analyser can be established before or after the connection with
the PV inverter. This is given by the arrival time of the
emulated vehicles. Once set the connection, every 1 min, the
optimal current setpoint is sent to the charging controller, and
the voltage, current and active power are read at the charging
point. This process is repeated until the EVs emulated are
disconnected. For the PV unit, its disconnection occurs in the
later afternoon when no solar radiation is available. Once the
device with the greatest disconnection time is not already
available, either the PV inverter or the charging station, the
optimisation runs again in simulation time up to the end of the
test period.

Due to the limitation of measuring one charging outlet,
two scenarios were tested. One scenario with one PV unit
emulated and nine PV units simulated, nine EVs simulated and
one EV emulated (the green star in Figure 3 depicts both the
Nissan Leaf and the SMA inverter), and another scenario with
all 10 PV units simulated, seven EVs simulated, and three EVs
emulated. The red stars in Figure 3 represent the BMW i3. The
three‐phase AC topology of the BMW i3 and its capability to
control each phase individually allowed emulating the perfor-
mance of three EVs. Besides, it was assumed that all PV units
have a rated power of 5 kVA operated with a unity power
factor.

Since it is not possible to get access to the SOC of both
EVs when these are connected to the charging station, it was
necessary to perform the following procedure before the
experimental test. First, the EVs were fully charged to be
driven on a round‐trip of approximately 23.4 km (see Figure 4)
from the Smart Grid Technology Lab. Then, the vehicles were
connected again to the charging station to measure the left
energy needed to be fully charged. During this test, it was
found that the energy necessary to reach the rated battery
capacity of the Nissan Leaf and the BMW i3 was 3.8 and

F I GURE 1 Smart Grid Technology Lab layout. Adapted from [21].

TABLE 1 Technical characteristics of the tested vehicles

Vehicle Nissan Leaf 2012 BMW i3 2016

Battery capacity 24.1 kWh 33.2 kWh

On‐board charger efficiency 0.89 0.93

Connector IEC 62196 Type 1 Type 2

Max. Charging current 16 A 16 A

AC topology 1‐phase 3‐phase

F I GURE 2 Experimental setup for the photovoltaic (PV) inverter
operation.

6 - CORTÉS BORRAY ET AL.
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2.9 kWh respectively. Note that these values can vary for the
same route because they highly depend on the driving mode,
state of the tyres, average velocity, and other external factors
that can modify the energy consumption rate (kWh/km) of the
vehicles.

Afterwards, the same route was driven again, trying to keep
the initial drive mode to carry out the experimental test in
Figure 3. Then, with the above‐found energy values, the arrival
energy of both EVs was estimated by subtracting them from
the nominal battery capacity of each vehicle.

5 | EXPERIMENTAL RESULTS

This section presents the results obtained by employing the
proposed coordination strategy under the experimental case
described above.

5.1 | First scenario results

In this scenario, Figures 5 and 6 compare the simulated and
measured charging power/energy for the Nissan Leaf. It can
be seen in both figures that the EV starts charging 1 min after
being connected with a ΔP = 1.38 kW, that is, 6 A, which is the
minimum current to activate the charging controller. There-
after, the charging power continues increasing up to the
maximum charging power, that is, 3.7 kW. It can also be
noticed that the measured power follows the optimal charging
set point with small deviations associated with the instant
where the measure was taken (a zoom view in Figure 6). In
Figure 6 it is observed that the Nissan Leaf reached the
nominal battery capacity value at the interval 730 (12:10 h) due
to the charging process followed the upper energy boundary,
which left an availability interval of 40 min (blue line in
Figure 5).

F I GURE 3 Simplified scheme of the laboratory setting.

F I GURE 4 Testing route for the Nissan Leaf and BMW i3.

CORTÉS BORRAY ET AL. - 7
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Considering the size of the SMA inverter and that all PV
units have a 5 kVA capacity, a scale factor of 10 was applied to
the optimal value of the PV unit emulated in order to obtain a
better response in the output power of the real inverter, that is,
if the optimal setpoint was 2.5 kW, the inverter operated at
25 kW.

As a result of this approach, Figure 7 compares three PV
power profiles: one profile obtained without any control on the
PV inverter and the simulated and measured PV power profile
considering the power curtailment factor ζ. It can be noted
that the simulated PV power curves are based on a clear day
close to ideal test conditions. However, the output power of
the real inverter presents fast variations due to its maximum
power point tracker algorithm, particularly for low power
values.

5.2 | Second scenario results

For this scenario, Figures 8 and 9 compare the simulated and
measured charging power/energy of the EVs connected at

households 11, 12, and 21, which are represented by the three‐
phase connection of the BMW i3. These users were selected
because these are connected to the phases c, b, and a respec-
tively. For the three vehicles, the charging process is delayed
2 min after being connected. Like the above scenario, the initial
charging power equals 1.38 kW and continues to increase up to
3.7 kW. In this case, the measured power tries to follow the
optimal set point, but it keeps below the reference for EVs in
households 12 and 21. According to the charging tests carried
out in the same laboratory by Caro et al. [28], this happens
because the on‐board charger injects unbalanced charging
currents, that is, the current through phase a is greater than in
phase b, and the current in phase b is higher than in phase c.
Due to the constant voltage stage from the constant current‐
constant voltage (CCCV) algorithm in the DC‐DC converter

F I GURE 7 Comparison of the simulated and measured photovoltaic
(PV) inverter output power at household 44 considering the optimal power
curtailment factor ζ.

F I GURE 8 Simulated and measured optimal charging profile for the
electric vehicles (EVs) located at households 11, 12, and 21.

F I GURE 6 Simulated and measured optimal energy trajectories for the
electric vehicle (EV) located at household 44.

F I GURE 5 Simulated and measured optimal charging profile for the
electric vehicle (EV) located at household 44.

8 - CORTÉS BORRAY ET AL.

 25152947, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12092 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [19/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of the BMW i3, the charging current starts to decrease even
when the setpoint sent to the charging station is higher. This is
because the traction battery reaches its maximum SOC.

Due to the difference between the optimal charging power
and the measured power, an energy variation (ΔE) exists at the
end of the charging period, as shown in Figure 9. It is also
noted that the nominal energy value of all three vehicles is

reached before their maximum disconnection time because the
charging process followed the upper energy boundary.

5.2.1 | Long‐distance trip case

With the aim of testing the coordination strategy considering a
lower SOC in the BMW i3, a round trip of approximately
132 km was performed (see Figure 10), starting with the
vehicle fully charged from the Smart Grid Technology Lab to
the Düsseldorf centre. At the arrival, the energy level of the
vehicle was approximately equal to 13.2 kWh (4.38 kWh per
emulated vehicle), which was estimated through
earrj ¼ e

Bmax
j − ECRj ⋅ dj, knowing the travelled distance d, the

battery capacity and an ECR = 0.153 kWh/km from the
interface of the vehicle.

The new test was configured and executed as in the
second scenario, but this time with a lower arrival energy
state. The results of the simulated and measured charging
power/energy of the EVs connected at households 11, 12,
and 21 are depicted in Figures 11 and 12. In Figure 11, the
measured charging power in the emulated EVs closely fol-
lows the optimal charging setpoint before the interval 763
(12:43 h), when the CCCV algorithm in the BMW i3 auto-
matically starts to decrease the value of the charging power in
all three vehicles, that is, in the three phases. However, when
the charging process is almost finished, a peak power value
of 2.3 kW appears in phase a at interval 772 (12:52 h), which
slowly decreases for approximately 8 min up to the

F I GURE 1 0 Testing route for a long trip with the BMW i3.

F I GURE 9 Simulated and measured optimal energy trajectories for the
electric vehicles (EVs) located at households 11, 12, and 21.

CORTÉS BORRAY ET AL. - 9
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disconnection time. Caro et al. [28] suggested that the reason
why the charging power increases in phase a at the end of
the charging period is because it is likely to be connected to a
single‐phase converter that supplies power to an auxiliary
battery of the vehicle for all the visual indicators and the
charging control of the BMW i3.

In terms of energy, Figure 12 shows that the optimal and
measured charging energy paths in all three EVs follow a
similar trajectory within their energy boundaries at the
beginning of the charging process. However, the measured
energy is kept constant for about 3 min from interval 739
(12:19 h) because the charging station was intentionally
disconnected (Figure 11) in order to test the recovery of the
charging process in all three phases. By doing so,
the measured energy path of all phases deviates from the
computed trajectory, deriving in a higher ΔE at the end of the
charging process, especially for phases b and c. This effect is
due to the lack of feedback signals in the proposed coordi-
nation strategy, that is, it is not possible to execute a
correction action under these perturbations in the optimisa-
tion. Besides, by comparing Figures 9 and 12, it can be
observed that the longer the available range of EV connec-
tion, the narrower its energy boundaries, and therefore, the
maximum time of delaying to start charging. When the bat-
tery energy level is over almost 95% (i.e., ≈10.5 kWh per
emulated vehicle), no matter the control signal sent to the
external charging controller, the internal CCCV algorithm
dictates the charging power, as shown in both scenarios.
Therefore, this is a limitation that cannot be controlled as it
depends on the manufacturer, and therefore, the energy level
that can be guaranteed is that in which the external control
signal dictates the charging power.

6 | LIMITATIONS AND FUTURE WORK

Some limitations of the proposed approach are related to
the utilisation of a unique set of sensitivity matrices for the
whole optimisation period and that only the loading level of
the main service cable of the feeder is evaluated. For the
former, it means that the sensitivity values cannot be ex-
pected to exactly match those that could be computed for
the load and generation levels at time t + 1 on the feeder,
and for the latter means that if there is an overload con-
dition in any of the branches, it cannot be evaluated;
although these can be included in the construction of the
sensitivity matrix. Another consideration for the sensitivity
coefficients is the effect of network re‐configuration, as the
changes in feeder admittance will modify the sensitivity
values of the grid. However, at the LV level, the number of
possible re‐configurations is almost null, and these opera-
tional states do not occur frequently.

On the other hand, the convexity assumption causes some
limitations in terms of applicability, that is, the proposed
approach requires a convex formulation of the optimisation
problem because, without convexity, this model is not guar-
anteed to converge. Convexity allows for theoretical guarantees
that the proposed quadratic optimisation model converges to
the optimal solution. This leads to simplifying models by not
including certain constraints or do not fully assure the control
requirements. For example, tread network constraints as an
optimal power flow problem by linearising the power flow

F I GURE 1 2 Simulated and measured optimal energy trajectories for
the electric vehicles (EVs) located at households 11, 12, and 21 after
performing a long trip.

F I GURE 1 1 Simulated and measured optimal charging profile for the
electric vehicles (EVs) located at households 11, 12 and 21 after performing
a long trip.
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equations or, as in this case, considering the sensitivity co-
efficients of the network.

Future studies on the proposed approach are focussed on
including the network restrictions either as a complex approxi-
mation or a second‐order cone model in order to extend the
coordination strategy to the utilisation of local battery energy
storage systems to manage the surplus power from the PVunits.
Another direction is to include a receding horizon closed‐loop
control to deal with uncertainties linked to the base demand
of the users, sudden departure times, and PV availability.

7 | CONCLUSION

A new coordination strategy to maximise the EV charging and
minimise the PV curtailment in real LV networks was pre-
sented and tested in a laboratory environment to demonstrate
its effectiveness in maintaining or improving the energy service
provision by the DSO. The coordination strategy was defined
as a quadratic optimisation model subject to a series of con-
straints related to the electrical characteristics of EVs and PVs,
as well as the distribution network.

Experimental studies proved the concept of the coordi-
nation schema in Figure 3 by comparing the charging process
of two commercial EVs and the power curtailment of a real PV
unit. For the EVs, slight variations in power with respect to the
optimal power value were found for the first vehicle, whereas
for the second vehicle, these variations were more significant
due to the internal charging control algorithm of the EV.
Although the output power of the PV inverter varied signifi-
cantly due to its size, the power curtailment factor was suc-
cessfully applied based on the optimisation results. To achieve
the above response by the PV inverter, it must be capable of
limiting the active power through external signals.

In order to fully extend advanced smart charging strategies
to real applications, it is necessary to account for a communi-
cation infrastructure that avoids wired installations to cover
long distances (as is required by implementing Ethernet tech-
nology), for example, using the 5G network. Besides, the EV
manufacturers should enable the option to access the vehicle
parameters such as SOC, travelled distance, and time of charging
in order to better quantify the energy requirements of the users.
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NOMENCLATURE
SETS
Lines number of main distribution lines
Trans number of distribution transformers
ϕ number of phases
H number of households of the network
HEV households with an EV
HPV households with a PV unit

PARAMETERS
ΔPmax remaining capacity of the charger in kW
cos(φ) load power factor in p.u.
ΔP fixed rate of charge in kW
ηch charging efficiency in p.u.
A voltage sensitivity matrix for load changes in V/kW
B voltage sensitivity matrix for generation changes in

V/kW
C loading sensitivity matrix for load changes in kW/

kW
D loading sensitivity matrix for generation changes in

kW/kW
F loading sensitivity matrix for load changes in kW/

kW
G loading sensitivity matrix for generation changes in

kW/kW
dj travelled distance of EV j in km
eobjj energy level defined by the user of EV j
eBmax
j maximum battery capacity of EV j in kWh
ECRj energy consumption rate of EV j in kWh/km
Pf cLinel;ϕ;t forecasted loading level per phase ϕ of feeder line l

in kW
Pf cTransk;ϕ;t forecasted loading level per phase ϕ of transformer

k in kW
pratedAC AC rated power of PV unit i in kW
pmax
ch maximum charging power from the grid side in kW
pPVi;t active power of PV unit i at time t in kW
SratedLinel;ϕ rated capacity per phase ϕ of the feeder main cable l

in kVA
SratedTransk;ϕ rated capacity per phase ϕ of the distribution

transformer k in kVA
T test period in h
ts time step in min
tarrj arrival time at home for the EV j
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tdisj disconnection time for an EV j
tintj discrete‐time intervals for an EV j parked at home
Vmax maximum operating voltage limit in V
Vmin minimum operating voltage limit in V
xi,t availability of EV in the household i at time t

VARIABLES
Δt interval length
ΔE energy variation at the of the charging period in Wh

or kWh
ΔPinci;t penalisation variable for dynamically adjusting the

rate of charge of the EV connected to household i at
time t in kW

ζi,t continuous variable for the power curtailment of PV
unit connected to household i at time t in p.u.

eEVi energy state of the EV connected at household i in
kWh

elowerj ðtÞ lower energy boundary of EV j in kWh
eupperj ðtÞ upper energy boundary of EV j in kWh
earrj arrival energy level of EV j in kWh
Nslots number of discrete time slots
pEVi;t continuous variable for the charging power of the

EV connected to household i at time t in kW
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