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A B S T R A C T   

Colored dissolved organic matter (CDOM) in inland waters is used as a proxy to estimate dissolved organic 
carbon (DOC) and may be a key indicator of water quality and nutrient enrichment. CDOM is optically active 
fraction of DOC so that remote sensing techniques can remotely monitor CDOM with wide spatial coverage. 
However, to effectively retrieve CDOM using optical algorithms, it may be critical to select the absorption co
efficient at an appropriate wavelength as an output variable and to optimize input reflectance wavelengths. In 
this study, we constructed a CDOM retrieval model using airborne hyperspectral reflectance data and a machine 
learning model such as random forest. We evaluated the best combination of input wavelength bands and the 
CDOM absorption coefficient at various wavelengths. Seven sampling events for airborne hyperspectral imagery 
and CDOM absorption coefficient data from 350 nm to 440 nm over two years (2016–2017) were used, and the 
collected data helped train and validate the random forest model in a freshwater reservoir. An absorption co
efficient of 355 nm was selected to best represent the CDOM concentration. The random forest exhibited the best 
performance for CDOM estimation with an R2 of 0.85, Nash-Sutcliffe efficiency of 0.77, and percent bias of 3.88, 
by using a combination of three reflectance bands: 475, 497, and 660 nm. The results show that our model can be 
utilized to construct a CDOM retrieving algorithm and evaluate its spatiotemporal variation across a reservoir.   

1. Introduction 

Dissolved organic matter (DOM) is a heterogeneous mixture of 
molecules containing carbon, nutrients, and sulfur. In particular, 
colored dissolved organic matter (CDOM) absorbs shortwave radiation 
from ultraviolet to visible light and has a large influence on physical, 
chemical, and biological properties in water systems (Coble, 2007). 
CDOM is widely used to understand the dynamics of dissolved organic 
carbon (DOC) in inland and marine waters (Kutser et al., 2005; Yu et al, 
2010) and may be an essential variable to assess biogeochemical process 
and nutrient enrichment (Tzortziou et al, 2015). Furthermore, there is a 
good correlation between DOC and total organic carbon (TOC) in lakes 
and rivers because carbon is mostly dissolved. In other words, TOC can 

be predicted from CDOM, which can be calculated through a proxy using 
remote sensing spectral data such as absorption coefficient and reflec
tance (Chang and Vannah, 2012; Colombo et al, 2008; Gholizadeh et al, 
2016). 

Many studies have used absorption coefficient at specific wave
lengths as a surrogate for CDOM concentration (Griffin et al, 2018; 
Massicotte et al, 2017; Stedmon et al, 2000; Zhang et al, 2021a). CDOM 
absorption coefficients (aCDOM) such as aCDOM(254), aCDOM(280), and 
aCDOM(320) were used to estimate CDOM distribution as well as to un
derstand CDOM effects on attenuation of ultraviolet radiation (Laurion 
et al, 2000; Lavonen et al, 2015; McKnight et al, 2001; Morris et al, 
1995; Zhang et al, 2021a). Furthermore, aCDOM(350), aCDOM(355), 
aCDOM(375), aCDOM(400), aCDOM(412), aCDOM(420), and aCDOM(440) have 
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been used to remotely retrieve CDOM concentration in waters (Brezonik 
et al, 2015; Griffin et al, 2018, 2011; Huang et al, 2019; Kallio et al, 
2008; Kutser, 2012; Liu et al, 2021; Mannino et al, 2014; Shang et al, 
2021; Xu et al, 2018; Zhu et al, 2014). 

Numerous remote sensing studies on CDOM have been conducted 
using multispectral and hyperspectral reflectance in marine waters 
(Brezonik et al, 2015; Cao et al, 2018; D’Sa and Miller, 2003; Griffin et 
al, 2018; Keith et al, 2016; Li et al, 2017; Morel and Gentili, 2009; 
Tehrani et al, 2013) and inland waters (Kutser et al, 2005; Zhu et al, 
2011, 2014). In addition, CDOM studies have used satellite imagery 
from Sentinel-2 and Landsat to map CDOM. However, satellite imagery 
has a low spectral resolution (5–10 and 3–4 visible light bands for 
Sentinel and Landsat, respectively), making estimating CDOM accu
rately challenging. Thus, hyperspectral imagery has been presented as 
an innovative alternative for remote sensing as it can elucidate physical, 
biological, and chemical water properties with high spectral resolution 
(Keller et al, 2018). 

The input wavelength to retrieve CDOM through remote sensing 
appears in the blue spectrum (less than550 nm) because the aCDOM is 
strong in that wavelength range. In inland water systems, this blue re
gion is greatly affected by relatively high concentrations of phyto
plankton and total suspended solids, which can cause optical 
interference in estimating CDOM (Xu et al, 2018). Hence, extended 
wavelengths in the green and red region (500–700 nm) have been 
proposed for CDOM retrieval in turbid inland water (Kutser et al, 1998; 
Matthews, 2011). However, guidelines to select reflectance bands for 
CDOM retrieval have not yet been developed. Several methods to esti
mate CDOM (e.g., semi-analytical/quasi-analytical method, matrix 
inversion method (MIM), random forest (RF), and artificial neural 
network) have been proposed (Brando and Dekker, 2003; Keller et al, 
2018; Lee et al, 2002; Ruescas et al, 2018; Sandidge and Holyer, 1998; 
Sun et al, 2011; Wang et al, 2005; Zhu et al, 2014). Among the methods, 
machine learning-based algorithms have exhibited the potential to 
handle complicated optical features of inland water with hyperspectral 
imagery (Keller et al, 2018; Ruescas et al, 2018). In particular, decision 

tree-based methods such as random forests have been preferred over 
other machine learning techniques (Zhang et al, 2021b). The random 
forest has a high level of precision, robustness, and ease of use. It is 
suitable for processing hyperspectral data because it can model complex 
relationships of data and process many input variables based on the 
application characteristics of decision rules (Carranza and Laborte, 
2015; Wang et al, 2018). 

In this study, optimal reflectance wavelengths in terms of different 
CDOM absorption coefficients were determined using a random forest 
model. The specific steps were as follows: (1) collect CDOM and char
acterize its values in the Baekje reservoir (BJR), (2) determine the 
optimal combination of input reflectance wavelengths to retrieve CDOM 
absorption coefficient at wavelengths using backward elimination and 
iterative runs of a random forest model, (3) Determine the best CDOM 
absorption coefficient using a random forest model with the optimal 
input reflectance wavelengths, (4) evaluate the overall detection per
formance of CDOM using accuracy index and map of the spatiotemporal 
distribution of CDOM by processing hyperspectral imagery in the BJR. 

2. Materials and methods 

2.1. Site description 

The Geum River is in the midwestern part of South Korea, with a total 
length of 396 km and a watershed area of 9,810 km2 (Fig. 1). The Baekje 
Reservoir (BJR; 36̊32′N, 126̊94′E) is an artificial and the southernmost 
among three reservoirs (Sejong, Gongju, and Baekje) in the Geum River. 
BJR is 311 m in length and 5.3 m in height and has a 4.20 m manage
ment water level, 7,976 km2 watershed area, and 24 million m3 total 
storage capacity. BJR was constructed starting in 2009 for agricultural 
and daily use and was completed in June 2012. The distance between 
BJR and the Geum River estuary is approximately 70 km, and the Gongju 
and Sejong reservoirs are 22.8 km and 41.3 km away, respectively. 

Since 2012, an algal bloom caused by cyanobacteria has been a 
critical issue in BJR. In particular, large-scale algal blooms have 

Fig. 1. Map of the Baekje reservoir (BJR) with sampling points in each monitoring event.  
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occurred mainly due to rainfall decreases, solar radiation increases, and 
an increase in water retention time in 2014 (Pyo et al, 2018). The large- 
scale cyanobacterial bloom in the reservoir increased the organic matter 
load inside the water body, which in turn increased the biochemical 
oxygen demand (BOD) and TOC concentrations (Kim et al, 2019). There 
are three water quality monitoring stations (i.e., Buyeo, Gongju, and 
Mokmyeon) managed by the Ministry of Environment (ME) (Fig. 1). We 
assessed the spatial CDOM distribution and water quality variations 
across the three zones of the reservoir, as indicated in Fig. 1. 

2.2. Data acquisition 

2.2.1. Hyperspectral imagery 
Seven field campaigns including hyperspectral imaging and water 

sampling were performed from 2016 to 2017 (on August 12, August 24, 
September 20, and October 14, 2016; and September 15, September 22, 
and November 11, 2017), which covered both summer and fall during 
the algal bloom season. Water samples were collected at 108 sampling 
stations, with 10–20 data points per sampling event (Fig. 2). Hyper
spectral images were taken with the AisaFENIX hyperspectral sensor 
(AISA Aero Survey Co., ltd) installed in a single-engine turboprop utility 
aircraft, and water samples were simultaneously obtained from the 
reservoir. The AisaFENIX hyperspectral sensor has a 400–970 nm 
spectral resolution at intervals of 4–5 nm, 127 bands in total, and a 
spatial resolution of 2 m. To retrieve CDOM, 66 visible bands (400–700 
nm) were referenced. In situ reflectance data were collected from the 
water surface via a FieldSpec Handheld2 spectroradiometer (ASD Inc. 
Boulder, CO, USA). 

Atmospheric correction of the hyperspectral imagery was performed 
using MODTRAN to retrieve water surface reflectance for the purpose of 
estimating CDOM concentration. MODTRAN, a program developed by 
Spectral Science Inc. and Air Force Research Laboratory, solves the 
radiative transfer equation through atmospheric correction parameter 
transmittance, solar flux, path radiance, and spherical albedo (Berk 

et al., 2014). MODTRAN 6 was used in this study because it was 
observed by Pyo et al. (2018) to yield reasonable atmospheric correction 
results, with an NSE value of 0.8 and RMSE of 0.0034 sr-1, implying that 
the water surface reflectance measurements corrected by MODTRAN 
could be utilized to estimate CDOM concentrations. Several studies have 
also performed atmospheric correction of multispectral imagery using 
MODTRAN to calculate CDOM (Bagheri and Peters, 2004; Concha and 
Gerace, 2012; Ford and Vodacek, 2020; Jeon et al., 2019; Koponen et al., 
2007;). 

2.2.2. CDOM measurements 
The CDOM sample was filtered through a Millipore polycarbonate 

membrane pre-rinsed with a 10 % HCI solution (0.22-μm pore size, Φ47 
mm). Using a Cary 5000 UV–vis-NIR spectrophotometer, the aCDOM of 
the filtered sample solution was estimated from 350 to 800 nm with a 1 
nm interval, and the aCDOM was calculated using Eq. (1). 

aCDOM(λ) = 2.303 × A(λ)/L, (1) 

where A(λ) is the absorption of filtered water at a specific wave
length measured across pathlength L. A quartz cuvette with 0.1 m 
pathlength was used in this study. 

2.3. Selection of optimal input hyperspectral bands 

Hyperspectral images contain many features (66 bands correspond
ing to the 400–700 nm visible light wavelength range), and it is neces
sary to efficiently find a band suitable for a CDOM search. In this case, 
each hyperspectral wavelength should be reviewed and reduced through 
band selection or feature extraction (Sun et al, 2019). When the number 
of variables equals or exceeds the number of observations, multi
collinearity can be reduced by combining classical methods, such as 
backward elimination (Peerbhay et al, 2014; Richter et al, 2016). Band 
selection using multiple linear regression has been successfully 
completed in previous studies (Abdel-Rahman et al, 2013; Mutanga et 

Fig. 2. Logical flow for constructing a machine learning model to estimate CDOM absorption coefficient using hyperspectral remote sensing reflectance.  
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al, 2004). In this study, the appropriate input variables for a CDOM al
gorithm were determined based on the statistical dependence of each 
aCDOM on the 66 hyperspectral remote sensing reflectance (Rrs) wave
lengths. Multiple linear regression with backward elimination was 
applied to analyze the statistical dependence between variables using R 
software (see step 1 in Fig. 2). The major Rrs wavelengths were selected 
by comparing the regression correlation coefficients (see Appendix C in 
the Supplementary Material). 

Numerous combinations of the major Rrs wavelengths for each aCDOM 
at wavelengths were considered as input sets in a random forest model 
(see step 2 in Fig. 2); the combination was calculated by 

∑n
r nCr, where r 

is the minimum number of wavelengths and n is the number of the major 
wavelengths. A random forest model to estimate each aCDOM at wave
lengths was built using the best wavelength combination in the python- 
based sklearn library. Hyperparameters such as ntree, max_depth, mtry, 
and min_sample_split were optimized GridSearchCV in sklearn. Detailed 
information about definition of the model including hyperparameters 
and optimization is presented in Appendix A in the Supplementary 
Material. The best wavelength combination in each aCDOM was evaluated 
by comparing the performance of the model. The 108 data points were 
randomly divided into 80 % and 20 % for training and test datasets, 
respectively, and a 5-fold cross-validation was performed to evaluate 
model training. The model performance was evaluated using determi
nation coefficient (R2), root mean square error (RMSE), and percent bias 
(PB). Detailed information about the indices is described in Appendix B 
in the Supplementary Material. 

2.4. Selection of effective CDOM absorption coefficient 

The absorption coefficient at wavelengths has been used to indicate 
CDOM concentration (Bricaud et al. 1981). Previous studies have used 
satellite imagery to retrieve CDOM absorption coefficients at various 
wavelengths, such as 350 nm (aCDOM(350)), 355 nm (aCDOM(355)), 375 
nm (aCDOM(375)), 400 nm (aCDOM(400)), 412 nm (aCDOM(412)), 420 nm 
(aCDOM(420)), and 440 nm (aCDOM(440)) (Brezonik et al, 2015; Griffin et 
al, 2018, 2011; Huang et al, 2019; Kallio et al, 2008; Kutser et al, 2012; 
Liu et al, 2021; Mannino et al, 2014; Shang et al, 2021; Xu et al, 2018; 
Zhu et al, 2014). In this study, seven representative wavelengths were 
selected and tested to determine which wavelength can be most accu
rately retrieved the effective CDOM absorption coefficient using a 
random forest in the BJR (see step 3 in Fig. 2). 

3. Results 

3.1. Variations in CDOM absorption coefficient and hyperspectral 
reflectance spectra 

Table S1 shows the absorption coefficient (aCDOM(λ)) values, total 
suspended solid (TSS) concentration, and chlorophyll-a (Chl-a) con
centration in samples measured at 108 points during the sampling 
period. In BJR, aCDOM(350) had a wide range of 2.2–11.6 m− 1 with a 
mean value of 4.3 m− 1, and the magnitude of the aCDOM value decreased 
exponentially from aCDOM(350) to aCDOM(440). Relatively high mean 
aCDOM(350) values were observed in August, with values of 5.2 m− 1 and 
6.4 m− 1 on August 12 and August 24, respectively. The temporal trends 
of the aCDOM(355) values were relatively consistent with those of the 
observed TOC values at the three monitoring stations (see the variations 
in TOC (closed circles) and aCDOM(355) (cross) in Fig. S3). Chl-a aver
aged 30.9 mg/m3 and ranged from 11.8 to 66.2 mg/m3 during seven 
sampling events. The observed Chl-a concentrations irregularly fluctu
ated for two years (see the variations in Chl-a in Fig. S3). In 2016, the 
maximum Chl-a concentration was 66.2 mg/m3 on August 12, and the 
maximum average Chl-a concentration was 37.2 mg/m3 on August 24. 
In 2017, maximum Chl-a concentration was 47.4 mg/m3 on September 
15, while a relatively low concentration (17.6 mg/m3) was observed on 

September 22. Moreover, TSS ranged between 6.0 and 23.3 mg/L, with 
an average value of 13.4 mg/L during the entire sensing period. The TSS 
concentration at the three monitoring stations fluctuated, and their 
variations were relatively consistent with the field survey data of this 
study (see TSS in Fig. S3). The observed TSS at the maximum Chl-a 
concentration, aCDOM(350) was also at its highest. However, in 
September 2016, although Chl-a concentration was low, the aCDOM(350)
average ranged from 3.4 to 4.4 m− 1. Similarly, when the aCDOM ab
sorption coefficient was low on September 20, 2016 and October 14, 
2016, TSS concentration was high at 15.1 mg/L and 16.9 mg/L, 
respectively. However, when aCDOM concentration was high on August 
12 and August 24, 2016, TSS concentration was 10.2 mg/L and 13.9 mg/ 
L, respectively, making it difficult to establish a concrete relationship. 

Fig. 3 presents the spatially averaged hyperspectral reflectance 
spectra for seven sampling events. Over a total of seven events in BJR, 
the peak hyperspectral reflectance occurred between 548 and 590 nm, 
while an absorption wavelength band appeared around 675 nm, fol
lowed by a peak at 700 nm. The important role of particle backscattering 
is corroborated by the fact that a maximum spectral reflectance peak of 
570 nm was observed in most of the water spectra (Lubac and Loisel, 
2007), while the peak reflectance of 700 nm was caused by low total 
absorption and chlorophyll fluorescence (Sun et al, 2011). However, at 
675 nm, the reflectance valley was caused by chlorophyll-a absorption. 
In August 2016, when the aCDOM was relatively high, the peaks around 
548 nm exhibited lower reflectance than during other periods (Brezonik 
et al, 2015). In particular, during October 2016, a high aCDOM value 
appeared as a nearly flat reflectance spectrum over the entire visible 
light wavelength. When aCDOM was low, the peak near 590 nm caused by 
backscattering exhibited higher reflectance and reflectance width 
compared to that in other periods in 2017. In contrast, when aCDOM was 
low in September 2016, it had a lower reflectance compared to that in 
other periods. However, the peaks near 590 nm and the reflectance 
widths were larger than those in August 2016, which likely had different 
effects due to high TSS concentrations (Brezonik et al, 2015). 

3.2. Construction of CDOM retrieving model using different combinations 
of hyperspectral reflectance bands in each CDOM absorption coefficient 

3.2.1. Selection of hyperspectral bands using backward elimination 
Table S2 shows the regression coefficients and p-values of the bands 

at each CDOM absorption coefficient (i.e., aCDOM(350), aCDOM(355), 
aCDOM(375), aCDOM(400), aCDOM(412), aCDOM(420), and aCDOM(440)). 
Fig. S1. shows variations in regression coefficient values based on ranks 
concerning the strength of the correlation between Rrs wavelengths and 
each CDOM absorption coefficient. Ten Rrs wavelengths were selected as 
input variables for a random forest model (Fig. S1 and Table 1). Detailed 
information on how to determine the number of Rrs wavelengths was 
described in Appendix C in the Supplementary Material. 

3.2.2. Performance of random forest model in estimating 
CDOM absorption coefficient 

Table 2 presents the best combination of Rrs wavelengths for each 
aCDOM(λ) obtained from 100 iterations of a random forest model. For 
aCDOM(350), the training R2, RMSE, and PB were 0.92, 0.62, 0.28 %, 
respectively, and 0.89, 0.65, and 0.18 %, respectively in aCDOM(355). 
Overall, the best performance occurred at 350–355 nm. However, in test 
R2, the estimation results of aCDOM(355) were 0.85, 0.70, and 4.73 %, 
respectively, resulting in a much more reasonable result than that of 
aCDOM(350). The test R2 for aCDOM(400), aCDOM(412), aCDOM(420), and 
aCDOM(440) after aCDOM(440) was 0.67, 0.66, 0.64, and 0.47, respec
tively, and the RMSE was 1.02, 0.23, 0.40, and 0.20, respectively, 
indicating low model reliability. In addition, the PB of aCDOM(400) was 
the largest (22.65%), and the PB deviation of aCDOM(440) was the largest 
(±4.16 %). The selected band combinations varied from 3 to 6 bands. To 
estimate aCDOM(355), the combination of 660 nm, 475 nm, and 497 nm 
provided good performance in both train and test. When all band 
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combinations were considered, model performance did not increase 
significantly. 

3.2.3. Determining optimal hyperspectral bands and effective CDOM 
absorption coefficient 

For the best performance out of 100 iterations, Fig. 4 compares the 
observed and simulated values for the best case and Table S3 shows the 
optimization parameters (ntree, max_depth, mtry, min_samples_split). In 

aCDOM(355), R2 values were 0.91 and 0.78 and RMSE values were 0.61 
and 0.95 for train and test, respectively. In addition, PB was low (0.97 % 
and 6.78 % for train and test, respectively) compared to other aCDOM. 
Moreover, aCDOM(375) exhibited high performance in train and test with 
R2 values of 0.86 and 0.80 and RMSE of 0.54 and 0.51, respectively. 
aCDOM(412) also produced good performance with R2 of 0.81 and 0.71 
and RMSE of 0.51 and 0.533, respectively. In both aCDOM(375) and 
aCDOM(412), PB was low (4.66 % and 4.11 %, respectively) but was weak 

Fig. 3. Spatially averaged hyperspectral reflectance spectra for seven sampling events in BJR; each colored solid line indicates a sampling event.  

Table 1 
Ten hyperspectral Rrs wavelengths for each aCDOM wavelength selected by multiple linear regression with backward elimination; Rrs wavelengths were ranked with 
respect to the strength of the correlation.  

aCDOM(λ) Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8 Rank9 Rank10 

350 608 412 552 571 660 543 665 475 497 434 
355 608 412 543 660 552 571 475 434 590 497 
375 660 608 571 543 590 539 552 412 655 580 
400 608 543 660 539 590 493 571 580 665 412 
412 539 543 608 493 660 497 534 552 571 641 
420 543 660 608 497 665 539 493 412 693 571 
440 660 539 618 608 571 543 552 641 665 497  

Table 2 
Overall performance of 100 iteration model runs using absorption coefficient at each wavelength and each selected Rrs bands. The ± sign separates the mean per
formance value and standard deviation obtained from 100 iterations.  

aCDOM(λ) Selected Rrs Train.  

R2 

Test.  

R2 

Train.  

RMSE 

Test.  

RMSE 

Train. 
PB  
(%) 

Test. 
PB  
(%) 

350 Rrs608, Rrs660, Rrs543, Rrs665, Rrs497 0.92  

(±0.03) 

0.77  

(±0.04) 

0.62  

(±0.20) 

1.54  

(±0.34) 

0.28  

(±1.07) 

10.82  

(±1.68) 
355 Rrs660, Rrs475, Rrs497 0.89  

(±0.05) 

0.85  

(±0.05) 

0.65  

(±0.26) 

0.70  

(±0.29) 

0.18  

(±1.26) 

4.73  

(±2.31) 
375 Rrs608, Rrs571, Rrs590, Rrs655, Rrs580 0.87  

(±0.05) 

0.73  

(±0.11) 

0.48  

(+0.15) 

0.43  

(±0.14) 

− 0.26  

(±1.18) 

2.64  

(±2.81) 
400 Rrs608, Rrs539, Rrs590, Rrs493, Rrs580, Rrs665 0.91  

(±0.04) 

0.67  

(±0.05) 

0.25  

(±0.09) 

1.02  

(±0.40) 

− 0.40  

(±1.63) 

22.65  

(±3.63) 
412 Rrs543, Rrs493, Rrs660, Rrs497, Rrs641 0.82  

(±0.07) 

0.66  

(±0.12) 

0.39  

(±0.13) 

0.23  

(±0.10) 

0.51  

(±2.08) 

4.29  

(±3.46) 
420 Rrs660, Rrs493, Rrs412, Rrs693 0.83  

(±0.06) 

0.64  

(±0.05) 

0.35  

(±0.09) 

0.40  

(±0.13) 

0.55  

(±2.18) 

4.45  

(±3.31) 
440 Rrs660, Rrs608, Rrs543, Rrs552, Rrs665 0.80  

(±0.07) 

0.47  

(±0.17) 

0.32  

(±0.09) 

0.20  

(±0.06) 

0.25  

(±3.11) 

6.48  

(±4.16)  
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when estimated at relatively high CDOM concentrations. However, 
aCDOM(400) and aCDOM(420) demonstrated significantly low estimation 
performance by having R2 and PB values of 23.07 % and 10.84 % lower 
in test compared to train. In test aCDOM(440), PB was 6.91 %, but R2 were 

0.59, indicating that the model explanatory power was slightly inferior. 

Fig. 4. Comparison of aCDOM between observed and simulated values by the best random forest model for each aCDOM wavelength; (a) aCDOM(350), (b) aCDOM(355), 
(c) aCDOM(375), (d) aCDOM(400), (e) aCDOM(412), (f) aCDOM(420), (g) aCDOM(440). The best random forest model was chosen from 100 iterations in Table 2. Obs. and 
Sim. indicate observed and simulated absorption coefficients. 
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3.3. Generating the spatial and temporal distribution of CDOM absorption 
coefficients using the best random forest model 

Three reflectance wavelengths, 475 nm, 497 nm, and 660 nm, were 
selected to estimate aCDOM(355) using the random forest model. Fig. 5 
presents the spatiotemporal patterns of the aCDOM with the minimum, 
maximum, and mean values. In terms of spatial distribution, the CDOM 
of Zone 1 adjacent to the reservoir on August 12, 2016, was the highest 

at 5.9 m− 1, and this area was where the actual algal blooms occurred 
(Fig. 5a-g). The highest mean CDOM absorption, 6.3 m− 1, was found on 
August 24, 2016 (range: 4.8–10 m− 1), centered on Zone 3 (Fig. 5o-u). 
The CDOM absorption decreased on September 20, 2016 but increased 
again on October 14, 2016. The overall spatial variation of CDOM was 
high in 2016 but primarily low throughout 2017. 

Fig. 5. Spatiotemporal distribution of CDOM absorption coefficients. Distribution of CDOM for each time in (a)~(g) Zone 1, (h)~(n) Zone 2, (o)~(u) Zone 3.  
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4. Discussion 

4.1. The effective wavelength for CDOM absorption coefficient 

Although CDOM estimation using remote sensing has been widely 
conducted, CDOM remote sensing extraction is challenging in inland 
turbid water because there is no accurate answer for representative 
wavelength selection (Brezonik et al, 2015). Table S4 summarizes 
studies that used remote sensing methods and wavelength combination 
to determine best performance for each aCDOM. aCDOM(375), aCDOM(412), 
and aCDOM(440) have been more commonly retrieved from the ocean 
than inland waters (Castillo et al, 2000; D’sa and Miler, 2003; Gitelsen et 
al, 1993; Koponen et al, 2007; Kowalczuk et al, 2006; Mannino et al, 
2014). Studies that used aCDOM(375) as the reference wavelength pri
marily focused on the Arctic Ocean or rivers flowing into it and used the 
remote sensing application program of the LOADEST (USGS load esti
mator) model (Griffin et al, 2018; Huang et al, 2019). aCDOM(412) has 
been mainly used by marine scientists to detect CDOM (Castillo et al, 
1999; D’sa and Miler, 2003; Mannino et al, 2014). aCDOM(440) was 
mainly used because satellite ocean color sensors detect the spectrum 
near 440 nm (Olmanson et al, 2016; Zhu et al, 2011). aCDOM(440) can 
often appear near or less than zero for clear water because of low device 
detection limits (Zhang et al, 2021a). 

aCDOM(350) is located at the center of various reference wavelength 
ranges (i.e., 254–440 nm) and is primarily implemented to estimate 
CDOM concentration and carbon cycle in rivers and lakes (Lambert et al, 
2016; Zhang et al, 2021a). Overall, recent work has suggested that 
reference wavelength between 350 nm and 355 nm should be applied to 
characterize CDOM concentration (Xu et al, 2018; Liu et al, 2021; Zhang 
et al, 2021a). In this study, the average R2 of the train and test values 
were relatively high in both aCDOM(350) and aCDOM(355). The average R2 

of the train and test of aCDOM(355) were 0.89 and 0.87 overall and 0.91 
and 0.78 in the best case, demonstrating the best performance among all 
absorption coefficients (Fig. 4). 

4.2. Optimal input reflectance bands to estimate CDOM in a random 
forest model 

In this study, hyperspectral images were collected with high spatial 
and spectral resolution through a hyperspectral sensor mounted on an 
aircraft. As shown in Table S4, various studies have estimated CDOM 
absorption coefficients using field-measured hyperspectral devices, such 
as CASI, Spectrameter, hyperSAS and hyperOCR), or data from satellites, 
such as SeaWiFS, Landsat, and Sentinel. In addition, in this study, two 
input bands, 475 nm and 497 nm, appeared to be important reflectance 
wavelengths for CDOM retrieval. The two wavelengths are not distin
guished by Landsat (Band 1 = 450–520 nm) or by Sentinel-2 (band 2 is 
centered on 492 nm with 66 nm bandwidth) (Brezonik et al, 2015; 
Griffin et al, 2011; Liu et al, 2021). Based on the previous studies, it was 
found that even if CDOM strongly absorbed light at a short wavelength, 
it may not be used to retrieve CDOM due to atmospheric scattering or 
interference of Chl-a (Brezonik et al, 2015; D’sa and Miler, 2003; Kutser 
et al, 2005;). However, Mannino et al. (2014) estimated CDOM using 
short wavelength reflectance, such as 412, 443, and 490 nm, taken by 
the SeaWiFS and MODIS-Aqua. Their multiple linear regression model 
using 443 nm and 547 nm showed satisfactory performance compared to 
other regression models using multiple wavelengths between 443 nm 
and 670 nm. Moreover, Brezonik et al. (2005) and Griffin et al. (2011) 
reported that multiple linear regression models using Landsat-based 
reflectance, such as B1, B2, B3, and B4, showed the best performance 
on estimating CDOM. Brezonik et al. (2005) found that the regression 
model using B1 and ratio of B1 to B4 outperformed other regression 
models. The previous studies inferred that reflectance below 500 nm 
may be used to retrieve CDOM with reflectance. 

Concurrently, in the literature mentioned in Table S4, the CDOM was 
estimated using the peak in the mid-500 nm region. The peak in the mid- 
500 nm region may be determined following slopes of 475 nm and 497 
nm. In Fig. S2, when the slope between the two wavelength regions was 
large, a peak mainly occurred between 570 nm and 580 nm. but the 
CDOM signal at 570 nm may vary due to the covariance of TSS (Mat
thews, 2011). A detailed description about a peak is mentioned in Ap
pendix D in the Supplementary Material. 

Fig. 5. (continued). 
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4.3. Comparing performance of machine learning approaches to retrieve 
CDOM absorption coefficient 

CDOM detection using machine learning is straightforward to 
implement because it may not need further knowledge of the water 
quantity and/or quality parameters. In this study, the random forest 
exhibits strengths in alleviating the overfitting and selecting the 
important variable among many input variables (Ruescas et al, 2018). In 
research using random forests, Keller et al (2018) obtained an R2 of 
0.914 when hyperspectral data measured by on-site multi-sensor Biofish 
monitors were combined with principal component analysis (PCA). 
Moreover, Zhang et al (2021b) observed an R2 value of 0.76 using 
hyperspectral data obtained with an on-site fieldspec spectroradiometer 
(Analytical Spectral Devices, Inc.). 

Deep learning methods such as convolutional neural network and 
long short-term memory are useful in remote sensing research because 
they can model complex nonlinear effects of different parameters on 
water reflectance (Pahlevan et al, 2020). In predicting phycocyanin and 
Chl-a, Pyo et al (2019) obtained 12–62 % better accuracy using the 
convolutional neural network model compared to a bio-optical model in 
the same region. However, there are few cases for which deep learning 
techniques have been applied for CDOM and compared to previous 
techniques for estimating water quality parameters. Thus, there is room 
for additional data to be collected and analyzed to estimate CDOM using 
deep learning models. Moreover, there are various machine learning 
models, and a comparison of the performance between models may be 
considered for future research. 

4.4. Spatial and temporal distribution of CDOM absorption coefficients 

Compared to Brezonik et al. (2015) and Olmanson et al. (2020), the 
variation in CDOM was high on seasonal and annual time scales and 
influenced by hydrological factors and precipitation. In this study, when 
the streamflow was less than 100 m3/s in summer when the water 
temperature was high like in 2016, relatively high CDOM values were 
obtained as in August 12 and August 24. On the other hand, on 
September 20, 2016, and on September 15 and 22, 2017, the water 
temperature was high, but the CDOM decreased due to the previous 
rainfall and discharge from the reservoir. Because of the short data pe
riods examined here, there were limitations to understanding the long- 
term temporal distribution of CDOM in the BJR. Especially, The Geum 
river basin (including BJR) had a large CDOM source area with forests 
and rice paddy composing 62 % and 15 % of the catchment area, 
respectively (Lee et al, 2019). Long-term hyperspectral images are 
needed to track CDOM effects from terrestrial carbon, such as land cover 
changes and human land use activities (Butman and Raymond, 2011; Li 
et al, 2018; Yallop and Clutterbuck, 2009). 

On August 12, an algal bloom hot spot was formed due to the gate 
operation of the hydroelectric power plant in the middle of Zone 1 
(Fig. 5a-5 g) (Park et al, 2017; Pyo et al, 2018). Unlike an algal bloom 
hot spot in the Zone 1, the CDOM absorption coefficient was relatively 
low in the center and high around the edge of the reservoir. CDOM can 
break down into low molecular weight organic molecules, inorganic 
carbon, rich phosphorus, and rich nitrogen compounds that promote the 
growth of aquatic microorganisms when inorganic nutrients are reduced 
(Vähätalo and Zepp, 2005; Ylöstalo et al., 2016). 

5. Conclusions 

This study investigated the spatial distribution of CDOM absorption 
coefficients that were estimated from the reflectance of hyperspectral 
imagery and a random forest model. We compared seven reference 
wavelengths between 350 and 440 nm for CDOM retrieval, using the 10 
most correlated reflectance wavelengths for each reference wavelength. 
In the overall test, the performance of aCDOM(355) was the best with R2 

of 0.87, NSE of 0.71, and PB of 2.46. The best combinations were Rrs660, 

Rrs475, and Rrs497. In addition, CDOM spatial distribution variability 
was well-captured by the trained random forest model. Thus, this study 
identified the capabilities of hyperspectral image-based random forests 
in understanding CDOM in optically complex inland water. These data 
from deep learning models could be applied in future to investigate the 
causes of temporal and spatial fluctuations in CDOM distributions, along 
with water quality factors such as phycocyanin and chlorophyll-a. 
Meanwhile, using drone- and aircraft-based hyperspectral images in 
regular monitoring may be quite challenging because of efficiency issues 
on cost, labor, time, and spatial coverage. A comprehensive study on 
application of hyperspectral imaging may be needed in a practical 
perspective. 
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