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The Boltzmann fair division 
for distributive justice
Ji‑Won Park1,2*, Jaeup U. Kim3, Cheol‑Min Ghim3 & Chae Un Kim3*

Fair division is a significant, long-standing problem and is closely related to social and economic 
justice. The conventional division methods such as cut-and-choose are hardly applicable to real-world 
problems because of their complexity and unrealistic assumptions about human behaviors. Here 
we propose a fair division method from a completely different perspective, using the Boltzmann 
division. The mathematical model of the Boltzmann division was developed for both homogeneous 
and heterogeneous cake-cutting problems, and the realistic human factors (contributions, needs, and 
preferences) of the multiple participating players could be successfully integrated. The Boltzmann 
division was then optimized by maximizing the players’ total utility. We show that the Boltzmann 
fair division is a division method favorable to the socially disadvantaged or underprivileged, and it 
is drastically simple yet highly versatile and can be easily fine-tuned to directly apply to a variety of 
social, economic, and political division problems.

Achieving social and economic justice for its members is among the most cherished goals of a civilized society1. 
Fair division of society’s benefits (or burdens) is a long-standing, significant problem and is closely related to 
social and economic justice2–21. Fair-division problems seek to divide a valuable resource between multiple players 
based on a certain notion of fairness. Such problems have many practical applications, including international 
border settlements, divorce and inheritance settlements, allocation of shared computational resources22, and 
distribution of scarce medical resources (e.g., vaccines) with respect to pandemics, income and wealth redis-
tribution, and tax policy. The fair-division problem is sometimes called the cake-cutting problem23, in which a 
single divisible good (represented by a cake) should be divided between multiple players fairly and efficiently.

The cake-cutting problem has attracted the attention of mathematicians, computer scientists, economists, 
and political scientists since the 1940s6,9,13,24–30. Various notions of fairness have been proposed to solve such 
problems5,11,31; of these, the most widely used are envy-freeness and proportionality29. Under envy-free division, 
no player should envy other players for their cake allocations. Under proportional division, each player should 
receive cake at least in proportion to certain criteria, such as 1/n (n is the number of players), contributions to 
the production of cake, or needs for the cake.

Since studies of the cake-cutting problem in the 1940s due to Steinhaus and Knaster5,13,32, the best-known 
method for cake-cutting is cut-and-choose, based on envy-freeness33,34. Steinhaus observed that the cut-and-
choose protocol could be extended to three players and asked whether it could be generalized to any number 
of players35. More recently, Aziz and Mackenzie solved the cake-cutting problem by proposing a discrete and 
bounded envy-free protocol for any number of players and showing that the maximum number of queries 

required by the protocol is nnn
nn

n

36.
In general, most existing algorithms for cake-cutting become drastically complex when three or more players 

participate37. Further, in reality, it should be considered that the cake could be a heterogeneous good, and the 
participating players may have personal preferences for different parts of it. The heterogeneity of the cake and 
players’ personal preferences further complicate cake-cutting problems5.

Beyond the complexities, existing cut-and-choose procedures have a fundamental limitation. Previous algo-
rithms for these problems seek a solution in which all players believe they have received a fair share so that they 
do not envy the other players. These algorithms impose several assumptions on the participating players38 . For 
example, they implicitly assume that all players act rationally, without emotional decisions or irrational behaviors, 
and do not try to manipulate the game. They also assume that players lack prior information about the other 
players’ preferences and choices. However, these assumptions are often impractical and unrealistic, as there 
always could be greedy, selfish, impulsive, irrational, and cheating players participating in the procedures39,40. As 
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a result, cut-and-choose fair division cannot easily lead to finding peaceful negotiations in today’s major social 
or economic problems such as income/wealth redistribution.

In contrast to the protocols based on envy-freeness, fair division based on proportionality is rather simple13 
and is often used as a common criterion for distributive justice. The fairness notion of proportionality often 
assumes that all players have equal rights to the cake, and thus everyone agrees that everyone else is entitled to 
a fair share, that is, at least 1/n. Within this assumption, envy-freeness and proportionality could be equivalent 
when there are only two players, but not anymore when more than three players are involved5. On the other 
hand, Aristotle identified distributive justice with “proportionate equality”: that is, the view that goods should be 
distributed not strictly equally but in proportion to their worth or merit41. In the same vein as Aristotle, weighted 
proportionality was recently proposed in which the participating players have different rights to the cake42. Fair 
division based on proportionality is closely related to the key principles of distributive justice: justice as equal-
ity (egalitarianism), justice based on contribution (capitalist justice), and justice based on needs (socialism)43.

Fair division based on proportionality has also had its critics. According to the proportionality on equality 
(egalitarian), goods should be allocated to people in equal portions. Critics argue that egalitarianism ignores 
some characteristics that should be taken into account in distributing goods such as contributions and needs, 
therefore leading to a decline in society’s productivity and efficiency43,44. On the other hand, critics of capitalist 
proportionality claim that some people may be ill, handicapped, too old or too young, or otherwise incapable 
of contributing anything through personal efforts, and that their minimal needs for the goods cannot be met, 
therefore leading to the decline in the overall society’s welfare43. Finally, critics of socialist proportionality point 
out that there would be no relationship between the amount of contribution a person makes and the amount of 
rewards they receive. They argue that fair division based on socialist proportionality is against human nature, 
which is essentially self-interested and competitive, therefore leading to declining productivity43,45,46.

In order to overcome the complexities and limitations of the existing methods, a fair division from a com-
pletely different perspective is required. In this article, we develop a fair division method inspired by the physical 
principle, the Boltzmann distribution.

In the physical sciences, the Boltzmann distribution describes the equilibrium probability distribution of 
physical particles in a physical system’s energy substates47. The description is valid in a classical physics regime in 
which each particle of the system is identical to but distinguishable from the others, and the interactions between 
them are negligible. In the Boltzmann distribution, the probability Pj that a particle can be found in the jth substate 
is inversely proportional to the exponential function of the substate energy Ej (i.e.,Pj ∝ e−βEj ). The β value in 
the Boltzmann distribution is defined as 1/kT (k: Boltzmann constant, T: absolute temperature) and is directly 
related to the total energy of the physical system. Therefore, the β value is related to the ‘degree of spread’ of the 
overall distribution and is independent of physical substates. The Boltzmann distribution is based on entropy 
maximization and provides the most probable, natural, and unbiased distribution of a physical system at thermal 
equilibrium. When brought to the social sciences, the Boltzmann distribution would inherently incorporate the 
concept of fairness, as it provides a most probable, natural, and unbiased distribution for division problems48,49.

In this article, the mathematical model of the Boltzmann division was developed for both homogeneous and 
heterogeneous cake-cutting problems, where players’ contributions, needs, and preferences for heterogeneous 
portions could be successfully integrated. Then the Boltzmann division was optimized by maximizing the players’ 
total utility. Through the analysis of empirical data, we found that the Boltzmann fair division is a well-balanced 
division method and has superior aspects beyond the conventional division methods.

The Boltzmann fair division is simple but highly versatile and can be easily fine-tuned to apply to a variety 
of division problems. Thus, we believe that our work makes a seminal contribution to the feasible fair division 
for complex, real-world problems.

Results
Conventional approaches to the cake-cutting problem seek a solution in which all participating players believe 
they have received a fair share. In reality, however, it is almost impossible to find such a solution, especially when 
players contribute different amounts to producing the cake, and different players have different amounts of need 
for it. If finding a fair division that makes all players “feel” satisfied is practically impossible to achieve, we need to 
search for a fair solution from a different perspective. Below, we develop a fair division in which players’ human 
factors (such as contributions, needs, and preferences) are properly incorporated, but the players’ subjective 
feelings are excluded during the division process. In the division method, the divisible goods need to be divided 
spontaneously among participating players naturally and unbiasedly. This unbiased (or fair) cake division can 
be achieved by using the Boltzmann distribution48,49.

The Boltzmann distribution in the physical sciences describes the most probable distribution that nature 
follows, in which physical particles are allocated to multiple physical substates of various energy levels. In this 
paper, we consider the cake-cutting problem, in which pieces of cake are allocated to multiple participating play-
ers who have various factors (such as talent or contribution) to the cake’s production. To apply the Boltzmann 
distribution to the cake-cutting problem, the concept of the physical particle is replaced by the cake unit (an 
infinitesimal piece of the cake). The idea of the physical substates is replaced by the participating players. Then, 
the probability that a cake unit is allocated to a player j is proportional to the exponential function of the divi-
sion potential Ej, i.e. Pj ∝ eβEj , where the division potential Ej of player j could be a measure of the player’s talent 
or contribution to the cake’s production. Note that β is a division constant ( β ≥ 0 ) and is independent of the 
participating players. In addition, as opposed to the Boltzmann distribution in the physical sciences, the prob-
ability exponent has a positive sign in front of βEj. Based on this definition, when a player has a higher division 
potential, cake units would be more likely to be distributed to the player.
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The cake division {Nj; share of cake allocated to player j} obtained from the Boltzmann division is simple yet 
highly versatile with the single adjustable division constant β. If the division constant β approaches 0, all players 
receive an equal amount of cake, representing uniform cake division (egalitarian). When β increases to a large 
value, only a few players having made the highest cake contributions receive most of the cake, representing a 
highly skewed cake division. Thus, cake-cutting using the Boltzmann division can represent a wide range of 
cake divisions, from an idealistic uniform division to a highly skewed division. The optimal Boltzmann division 
with the division constant β* can be determined at the maximum point of the total utility function, in which 
the players’ need for the cake can be incorporated. Details on the Boltzmann fair division developed for both 
homogeneous and heterogeneous cake-cutting problems can be found in Methods.

To demonstrate homogeneous and heterogeneous cake-cuttings using the Boltzmann fair division, we per-
formed empirical analysis on five players. We assumed that the five players make different contributions (5%, 
10%, 20%, 25%, and 40%; total sum is 100%) to produce the cake, have different needs (4%, 10%, 24%, 34%, 
53%; total sum is 125%), and show different preferences for four heterogeneous portions (Table S1). In reality, 
it is known that participating players in cake division tend to overestimate their human factors50. Therefore, it is 
assumed that the data of the five players used in our study are collected, normalized (to be 100% for contribu-
tions), or adjusted by hypothetical referees of the cake division (such as governments, policymakers, or supervi-
sors) before the Boltzmann fair division. The total number of cake units Nj allocated to a player j was normalized 
to the allocated share of cake as a percentage.

In the case of homogeneous cake-cutting (Fig. 1), cake units were allocated to players based on the Boltzmann 
division Pj (Eq. 1 in Methods), where each player’s contribution was used as the division potential Ej. Then, the 
optimal division constant β* was determined at the maximum point of the total utility function (Eq. 9 in Meth-
ods). A hyperbolic tangent function was used as the players’ utility function (Eq. 8 in Methods), with the player’s 

Figure 1.   Boltzmann division for homogeneous and heterogeneous cake-cutting problems. (a) Homogeneous 
cake cutting, in which Ñ is the total number of cake units, Ej is the division potential of player j, and Pj is the 
Boltzmann probability that a cake unit is allocated to player j. (b) Heterogeneous cake cutting, in which Ñ i is the 
total number of cake units with flavor i, wi

j is the weight factor expressing player j’s preference for flavor i, and Pij 
is the Boltzmann probability that a cake unit of flavor i is allocated to player j.
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need for the cake as the need values Dj so that the following condition was satisfied: uj(0) = 0, uj(Dj) = tanh(1)∼= 
0.762 (Fig. S1). This means that if a player receives what they need (Dj), their utility is ~ 76.2% saturated. Detailed 
information about the numerical calculations is in Table S2.

Figure 2 shows the total utility of five players as a function of β. The total utility U(β) increases rapidly to 
reach an optimal value as β increases up to β* = 0.029, and then gradually decreases. Interestingly, the total utility 
at β = 0 is higher than when the β value is large, and this result shows that the completely uniform cake division 
(i.e., egalitarian) has a higher total utility than the significantly skewed cake division.

The optimal cake division using the Boltzmann division is summarized in Fig. 3 and Table 1. The results were 
compared with the three conventional division criteria, Egalitarian (uniform cake division), Proportionality I 
(contribution), and Proportionality II (need). As shown in Table 1, Player 3, having the middle contribution and 
need, receives similar amounts of cake (~ 20%), independent of the four criteria: Boltzmann, Egalitarian, Pro-
portionality I (contribution), and Proportionality II (need). By contrast, other players receive different amounts 
of cake according to these four criteria.

Players 1 and 2, having relatively low contributions and needs, receive the largest amount of cake under Egali-
tarian. On the other hand, Players 1 and 2 receive the smallest amount of cake under Proportionality II (need) 
because of their small needs compared with the other players, leading to the largest cake deficiency (received 
share—need) among four criteria. The preferred criteria for Players 1 and 2 are, in order, Egalitarian, Boltzmann, 
Proportionality I (contribution), and Proportionality II (need). In contrast, Players 4 and 5, having relatively 
high contributions and needs, receive the largest amount of cake under Proportionality II (need), resulting in 
the lowest deficiency. On the other hand, Players 4 and 5 receive an amount of cake equal to that of other play-
ers under Egalitarian, leading to the highest deficiency. The preferred criteria for Players 4 and 5 are, in order, 
Proportionality II (need), Proportionality I (contribution), Boltzmann, and Egalitarian.

Figure 2.   Total utility (U) for the homogeneous and heterogeneous Boltzmann divisions as a function of β. The 
homogeneous (blue) and heterogeneous (red) cases show maximum at β ≈ 0.029, and then the utilities gradually 
decrease.

Figure 3.   Allocated share of cake under homogeneous cake-cutting. The results using the Boltzmann division 
are compared with three conventional division criteria, Egalitarian (uniform cake division), Proportionality 
I (contribution), and Proportionality II (need). Note that the Boltzmann fair division shows a well-balanced 
division between Egalitarian and Proportionality I and II.
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The results show that the Boltzmann division is the criterion neither most nor least preferred by the participat-
ing players. Yet, of the four criteria, it brings the highest total utility. Note that the range of divided cake shares 
between five players is smaller in the Boltzmann than in the two Proportionality criteria, which indicates that 
the Boltzmann division is a balanced division between the Egalitarian and the Proportionality criteria (Fig. 3).

In the case of heterogeneous cake-cutting, it is assumed that the cake has equal portions of four flavors, 
vanilla, chocolate, strawberry, and broccoli (Fig. 1). The five players’ preferences for the four flavors are given 
with the weight factor values (Table S1). The cake was allocated to players based on the weighted Boltzmann 
division probability Pij(Eq. 5 in Methods). As in the homogenous cake-cutting, each player’s contribution and 
need were used as the division potential Ej and the need value Dj. Then, the optimal division constant β* in the 
Boltzmann division was determined at the maximum point of the total utility function (Eq. 9 in Methods). 
Detailed information about the numerical calculations is in Table S3. Figure 2 shows the total utility of the five 
players as a function of β. As in the homogeneous case, total utility rapidly increases to an optimal β value and 
then gradually decreases.

Heterogeneous cake division using the weighted Boltzmann division is summarized in Fig. 4 and Table 2. 
Compared with homogeneous cake-cutting, the results of heterogeneous cake-cutting are affected not only by 
the players’ contributions/needs but also by their flavor preferences. The major difference in heterogeneous 
cake-cutting is manifested in the comparison between Player 3 and Players 1 and 4. Player 3 has a strong pref-
erence for chocolate; therefore, the player’s weight value for chocolate is set at 1, and the values for the other 
flavors are 0 (Table S1). Chocolate is also preferred by three other players. Thus, although the largest share of the 
chocolate-flavored cake is allocated to Player 3, the total allocated share of the cake is significantly smaller than 

Table 1.   Homogeneous cake-cutting using the Boltzmann division and proportionality (Egalitarian, Prop I 
(Capitalist), Prop II (Socialist)). Ej = Contribution to cake production of player j Dj = Need for cake of player 
j Def (Deficiency) = Allocated share of cake 

(

Nj

)

—Need 
(

Dj

)

 *Capitalist: Players receive cake units linearly 
proportional to their contributions 

(

Ej
)

 **Socialist: Players receive cake units linearly proportional to their 
needs ( Dj).

Player Ej Dj

Boltzmann
(Nj) Def Utility

Egalitarian
(Nj) Def Utility

Prop I
(Nj)* Def Utility

Prop II
(Nj)** Def Utility

1 5 4 12.17 8.17 0.9955 20 16 0.9999 5 1 0.8483 3.20 −0.80 0.6640

2 10 10 14.06 4.06 0.8866 20 10 0.9640 10 0 0.7616 8.00 −2.00 0.6640

3 20 24 18.75 −5.25 0.6535 20 −4 0.6823 20 −4 0.6823 19.20 −4.80 0.6640

4 25 34 21.66 −12.34 0.5628 20 −14 0.5286 25 −9 0.6263 27.20 −6.80 0.6640

5 40 53 33.36 −19.64 0.5576 20 −33 0.3604 40 −13 0.6380 42.40 −10.60 0.6640

Total utility 3.66/5.00 3.54/5.00 3.56/5.00 3.32/5.00

Figure 4.   Heterogeneous cake-cutting using the weighted Boltzmann division. It is assumed that the whole 
cake (100%) has four flavors (vanilla, chocolate, strawberry, and broccoli) of equal size (25%). The vanilla and 
chocolate flavors are preferred by four players and thus shared by them. On the other hand, the least popular 
broccoli flavor is preferred by only two players; therefore, relatively large shares of the broccoli flavors are 
allocated to the two players.
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in the homogeneous cake-cutting. On the other hand, Players 1 and 4 prefer the least popular flavor, broccoli 
(Table S1); therefore, all the broccoli-flavored cake was allocated to them. Thus, Players 1 and 4 receive a larger 
share of cake than in the homogeneous cake-cutting, and Player 1 receives even a larger share of cake than Player 
2. Based on the results, it is expected that strategic allocations of each player’s preferences would be developed to 
increase the individual player’s share of cake. Overall, the empirical analysis shows that the weighted Boltzmann 
division can smoothly handle complicated cake-cutting problems by incorporating a variety of realistic human 
factors, such as contributions, needs, and preferences for heterogeneous portions.

Discussion
Distributive justice is concerned with the fair division of society’s benefits (or burdens) among people51. Ques-
tions of distributive justice arise when different people make claims on society’s benefits, and not all claims can be 
satisfied. The central cases are those where there is a scarcity of benefits compared with the numbers and desires 
of those who want these goods. The final goal of fair division is to make all players believe they have received a 
fair share. However, what each player thinks is a fair share could be subjective and might differ depending on 
whom each player shares it with. The degree of fair share that each player perceives might differ depending on 
the degree of players’ factors such as talents, contributions, needs, or personal preferences. For example, when a 
cake is given to a group of players, and none of the players have contributed to its production, it could be natural 
to assume that everyone is equally entitled to it. However, when the players have made different contributions 
to the cake’s production, an asymmetry is inherent in the problem, and it becomes drastically difficult to reach 
a harmonious solution. The most critical issues of distributive justice are concerned with how to divide social 
goods when participating players have different factors (such as contributions or needs) with respect to the goods 
and display egocentric and irrational behaviors.

In this paper, we developed a method for solving the cake-cutting problem from a different perspective, using 
the Boltzmann division. The Boltzmann division is based on the entropy maximization that nature follows at 
its thermal equilibrium. In the Boltzmann fair division, once the participating players’ human factors (such as 
contributions, needs, or preferences) are given, participating players cannot subjectively claim how much and 
which parts they should receive. Instead, the cake units are spontaneously distributed to players purely depend-
ing on the Boltzmann probability. This spontaneous division is the modus operandi of the maximum entropy 
principle that underlies the most equitable and impartial distribution of resources in nature. Therefore, in the 
Boltzmann fair division, players’ emotional, irrational decisions or cheating behaviors are fundamentally limited.

We believe that the Boltzmann fair division has several superior aspects compared with conventional methods. 
Compared with the fair division based on envy-freeness (such as cut-and-choose), the Boltzmann fair division 
can easily apply to otherwise extremely complicated cases, where heterogeneous goods should be fairly divided 
among multiple players who make different contributions to their products and different preferences for dif-
ferent parts of the goods. Compared with the fair divisions based on proportionality (Egalitarian, Capitalist, 
and Socialist), the Boltzmann fair division can simultaneously integrate various key factors of the participating 
players, such as contributions or needs.

Note that the Boltzmann fair division involves total utility maximization; therefore, it pursues the maximiza-
tion of social welfare. Our empirical analysis shows that it is a balanced solution compared with the conventional 
fair divisions. It should be emphasized that the Boltzmann probability takes the form of the exponential function 
Pj ∝ eβEj . Thus, even when a player’s contribution is 0, the Boltzmann probability becomes a non-zero value. 
As opposed to the Boltzmann fair division, in the Capitalist proportionality, no goods would be allocated to the 
player. The result shows that the Boltzmann fair division is favorable to the socially disadvantaged or under-
privileged; therefore, it could serve as a guideline to reduce inequality in various social and economic problems.

The Boltzmann fair division in this study can be further fine-tuned for application to real-world division 
problems. The hyperbolic tangent utility function in our study could be modified with other forms of functions to 
reflect a more realistic utility of the players. For example, the utility function can be further generalized by allow-
ing its maximum saturation value to vary (Fig. S2). Although it is not very sensible to differentiate an individual’s 
utility maximum, it may well find justification for a group of individuals or communities having distinct popula-
tion sizes and/or value systems. Another meaningful extension of the utility function is to introduce sigmoidal 
behavior with an inflection point at x > 0 to capture the transitional characteristics of the marginal utility. In 

Table 2.   Heterogeneous cake-cutting using the weighted Boltzmann division. Ej = Contribution to cake 
production of player j Dj = Need for cake of player j Ni

j = Cake share of flavor i allocated to player j Diff 
(Difference) = Heterogeneous 

(

Nj

)

—Homogeneous 
(

Nj

)

.

Player Ej Dj

Homogeneous
(

Nj

)

Heterogeneous

Diff

Vanilla
(

N1
j

)

Chocolate
(

N2
j

)

Strawberry
(

N3
j

)

Broccoli
(

N4
j

)

Total 
(

Nj

)

1 5 4 12.17 2.61 2.27 3.29 5.50 13.67 1.50

2 10 10 14.06 6.03 2.62 3.80 0.00 12.44 −1.62

3 20 24 18.75 0.00 13.94 0.00 0.00 13.94 −4.81

4 25 34 21.66 9.26 0.00 0.00 19.50 28.75 7.10

5 40 53 33.36 7.11 6.17 17.91 0.00 31.19 −2.17

Total 100 125 100 25 25 25 25 100 0
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fact, most of the named cumulative probability distributions, including normal, gamma, and logistic functions, 
are sigmoidal at least for certain combinations of their scale and shape parameters. Additional considerations 
of the Boltzmann probability and total utility maximization are described in the Supplementary Information.

As proof of principle, we considered only five players in our empirical analysis, but it will be straightforward to 
extend our model to a larger number of players. The division potential (Ej) and need (Dj) in the Boltzmann divi-
sion could be modified by considering not only contributions and needs but also factors such as players’ talents, 
efforts, and physical properties (age and health conditions). It would also be possible to extend our model from 
the fair division of beneficial goods to the fair division of burdens. For this purpose, the contributions (Ej) and 
needs (Dj) in our study would be replaced by players’ responsibilities and abilities. The fine-tuned Boltzmann 
fair divisions could then be applicable to a variety of social and national issues, such as negotiations on climate 
change between developed and developing nations.

In conclusion, we developed a fair division using the Boltzmann division. We showed that it could be modeled 
over the complexities and limitations of conventional fair divisions and successfully applied to realistic division 
problems. We anticipate that our model could serve as a feasible fair division for complex real-world problems, 
leading our societies one step closer to distributive justice.

Methods
Below we describe mathematical models of the Boltzmann fair division for the cake-cutting problems. First, we 
consider a simple case in which the cake is a homogeneous good. Then, we extend our model to a more general 
case of heterogeneous goods. Finally, we optimize the Boltzmann division by maximizing the players’ total utility.

Cake‑cutting using the Boltzmann division: homogeneous case.  Suppose that n players are par-
ticipating in the cake-cutting problem. Consider that the cake is homogeneous and hypothetically cut into Ñ 
cake units, where Ñ is a large number so that the cake unit is infinitesimally small. A player j has cake-division 
potential Ej, which reflects the contribution of player j to producing the cake. Based on the Boltzmann division, 
the probability Pj that a cake unit is allocated to player j is proportional to the exponential function of the divi-
sion potential Ej (i.e. Pj ∝ eβEj , β is a division constant ( β ≥ 0)). Then the total number of cake units that are 
divided into player j is Nj = Ñ × Pj.

Considering the normalization condition ( 
n
∑

j=1
Pj = 1 ), the probability Pj and the total number of cake units 

Nj allocated to player j (= 1,2,…, n) can be expressed as

Cake‑Cutting using the boltzmann division: heterogeneous case.  Now, we want to extend our 
model to a more complicated case in which the divisible good is heterogeneous. Let us assume that the cake has 
m different flavors such as vanilla, chocolate, strawberry, broccoli, and so forth. Each of n participating players 
may have different preferences for these flavors, and the preference of player j for flavor i can be expressed with 
a weight factor, wi

j
52,53. Then the probability Pij that a cake unit of flavor i is allocated to player j depends not only 

on the contribution of player j to producing the cake but also on the player’s preference for flavor i.

With the constraint on wi
j(Eq. 4), the weighted Boltzmann division reduces to the Boltzmann division for the 

homogeneous case, when wi
j = 1

/

m for any i and j.
Considering the normalization condition ( 

n
∑

j=1
Pij = 1 ), the probability ( Pij ) can be expressed as follows.

Then the total number ( Ni
j  ) of cake units with flavor i allocated to player j is

where Ñ i is the total number of cake units with flavor i, s.t. 
m
∑

i=1
Ñ i = Ñ.

(1)
Pj =

eβEj

n
∑

k=1

eβEk

(2)
Nj = Ñ × Pj =

ÑeβEj

n
∑

k=1

eβEk

(3)Pij ∝ wi
j e
βEj

(4)
m
∑

i=1

wi
j = 1, for each player j

(5)Pij =
wi
j e
βEj

n
∑

k=1

wi
ke

βEk

(6)Ni
j = Ñ i × Pij
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Hence, the total number of cake units (Nj) allocated to player j is

Optimal cake division via utility maximization.  Now we want to determine the β value for the optimal 
cake division in which the total sum of each player’s utility, U =

n
∑

j=1
uj , is maximized. The player’s utility function 

uj should reflect the realistic welfare (well-being, happiness, and satisfaction) that each player feels as the number 
of allocated cake units increases. The utility function would start at 0 and increase rapidly as the number of allo-
cated cake units increases. However, as the number of allocated cake units increases beyond the player’s need, the 
utility would be saturated, after which it would increase rather slowly. This characteristic of individual utility can 
be modeled using various mathematical functions with an asymptotic saturation point. Of the numerous choices 
commonly made in biochemistry, ecology, the natural sciences, and economics, we chose, for its analytical sim-
plicity, the hyperbolic tangent function with individual need as a scale parameter: that is,

where x is the share of allocated cake units and Dj is a constant reflecting player j’s need of the cake.
Therefore, we want to find β*, which maximizes the total utility, that is,

subject to

In practice, the numerical value of β* can be found from the extremum condition:

Then, the obtained cake division {N1, N2, …, Nn} for β* becomes the optimal fair division dictated by the 
Boltzmann division.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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