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ABSTRACT: Many aspects of protein function rely on conformational fluctuations. 

Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) provides a window into these 

dynamics. Despite the widespread use of HDX-MS, it remains unclear whether this technique 

provides a truly comprehensive view of protein dynamics. HDX is mediated by H-bond 

opening/closing events, implying that HDX methods provide a H-bond-centric view. This raises 

the question if there could be fluctuations that leave the H-bond network unaffected, thereby 

rendering them undetectable by HDX-MS. We explore this issue in experiments on cytochrome c 

(cyt c). Compared to the Fe(II) protein, Fe(III) cyt c shows enhanced deuteration on both the distal 

and proximal sides of the heme. Previous studies have attributed enhanced dynamics of Fe(III) cyt 

c to the facile and reversible rupture of the distal M80-Fe(III) bond. Using molecular dynamics 

(MD) simulations, we conducted a detailed analysis of various cyt c conformers. Our MD data 

confirm that rupture of the M80-Fe(III) contact triggers major reorientation of the distal  loop. 

Surprisingly, this event takes place with only miniscule H-bonding alterations. In other words, the 

distal loop dynamics are almost “HDX-silent”. Moreover, distal loop movements cannot account 

for enhanced dynamics on the opposite (proximal) side of the heme. Instead, enhanced deuteration 

of Fe(III) cyt c is attributed to sparsely populated conformers where both the distal (M80) and the 

proximal (H18) coordination bonds have been ruptured, along with opening of numerous H-bonds 

on both sides of the heme. We conclude that there can be major structural fluctuations that are only 

weakly coupled to changes in H-bonding, making them virtually impossible to track by HDX-MS. 

In such cases, HDX-MS may provide an incomplete view of protein dynamics. 
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Introduction 

Proteins in solution continuously sample their conformational space via random fluctuations.1 The 

occupancy of each conformer is determined by its free energy.2 Fluctuations between the native 

ground state and alternative conformations are believed to mediate enzyme catalysis, 3-6 allosteric 

regulation,7-10 ligand binding,11, 12 aggregation,13 degradation,14 etc. However, details of these 

dynamics-function relationships remain poorly understood. Advances in this area require 

techniques that can track protein dynamics over a wide range of time scales.15, 16 Hydrogen-

deuterium exchange (HDX) methods are a key tool in this context. These experiments monitor 

backbone NH  ND conversion in D2O labeling buffer. Early HDX investigations used NMR 

spectroscopy.17 Today, most HDX studies rely on mass spectrometry (MS) which offers higher 

sensitivity and can be applied to proteins beyond the NMR size range. HDX-MS is being used for 

numerous applications, from fundamental biophysics to the characterization of protein drugs. Most 

HDX-MS studies are conducted in a comparative fashion by examining a protein under different 

conditions, e.g., unmodified vs. chemically altered.2, 4, 6, 18-29 

According to the well-accepted Linderstrøm-Lang model,2, 30, 31 HDX is mediated by H-

bond fluctuations between a closed NHꞏꞏꞏOC state, and an open state where the H-bond is 

disrupted. OD--catalyzed deuteration of NHOPEN proceeds with the “chemical” rate constant kch.2 

 NHCLOSED 

𝑘௢௣
→
←
𝑘௖௟

 NHOPEN
௞೎೓
ሱሮND (1)  

HDX for most native proteins proceeds in the EX2 limit (kcl >> kch) where each NH visits the open 

state numerous times before it is deuterated, resulting in a HDX rate constant kHDX = Kop kch, with 

Kop = kop/kcl.2, 32 Under EX2 conditions, the opening/closing frequency does not affect kHDX, as 

long as Kop remains constant.2, 32 Opening/closing in eq. 1 involves short-lived unfolding/refolding 
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transitions that can represent local, sub-global, or global events.2, 30, 33 Protein regions that undergo 

fast deuteration (large Kop) are considered to be “dynamic”, while slow deuteration (small Kop) 

signifies “rigid” elements.2, 4, 6, 18-29 The very low equilibrium populations of NHOPEN conformers 

are undetectable by conventional methods, where signals are dominated by the native state.2 

A question that has received surprisingly little attention is the following: Does HDX-

detected H-bond opening/closing provide a comprehensive view of protein dynamics? We posit 

that there could be dynamic events that are not associated with NHCLOSED ↔ NHOPEN fluctuations. 

The detection of such dynamics by HDX methods would be impossible, according to eq.1. 

Examples of such “HDX-silent” dynamics could include rigid body domain movements, and some 

motions of motor proteins.28, 34-36 Also, proteins crystallized in different conformations (that 

represent interconverting solution structures) often show similar H-bonding.12, 36, 37 This tendency 

to avoid NHOPEN sites reflects the large thermodynamic penalty (ΔG ≈ 2-6 kJ mol-1)  associated 

with opening of each H-bond.38 We do not dispute that proteins transiently visit partially unfolded 

states, in accordance with the foldon model.2, 39 Such fluctuations involve H-bond opening/closing, 

rendering them detectable by HDX methods. Our point is that there may be additional dynamics 

that are orthogonal to these NHCLOSED ↔ NHOPEN fluctuations, e.g., transitions between different 

folded structures.1 Hence, an interpretation of protein dynamics solely in the context of H-bond 

opening/closing (as often implied in the HDX literature) may be too restrictive. 

Here we explore the possible occurrence of dynamics that are not (or only weakly) coupled 

to H-bond opening/closing. We focus on cytochrome c (cyt c), a protein that has previously been 

used for studying the connection between HDX and conformational dynamics.2, 39, 40 The globular 

structure of cyt c is folded around a covalently bound heme.41 X-ray data show the heme iron in a 

6-coordinate environment. M80 is the distal ligand, H18 is the proximal ligand, and the four 
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remaining contacts are provided by porphyrin nitrogens.41 Cyt c acts as mitochondrial electron 

carrier by switching between the Fe(II) and Fe(III) states. In addition, cyt c has attracted major 

attention because it can turn into an apoptotic peroxidase.37, 42, 43 Alternative heme ligation 

scenarios can become populated after covalent modifications or environmental changes. Many of 

these alternative structures affect the distal side of the heme, facilitated by the malleability of the 

distal M80-containing 71-85 Ω loop.2, 43-47  

Fe(III) and Fe(II) cyt c share virtually the same native structure, but Fe(III) cyt c is less 

stable and more dynamic than the Fe(II) state.40, 48-51 These differences have been attributed to the 

M80-Fe bond,52, 53 which is only half as strong for the Fe(III) state.49 The M80-Fe(III) contact can 

be ruptured by photo-excitation,54 denaturants,2 ligand binding,42, 55-57 and pH changes.42 Even 

under native conditions, the M80-Fe(III) bond undergoes transient dissociation, causing 6-

coordinate native cyt c to sporadically visit a 5-coordinate state.2, 49, 55 Additionally, 4-coordinate 

structures (lacking both the M80 and H18 bonds) can exist under certain conditions.54, 58-61 

 The current work uses HDX-MS and molecular dynamics (MD) simulations to probe 

differences between Fe(II) and Fe(III) cyt c. The Fe(III) protein shows enhanced HDX in two well-

defined regions, indicating that NHOPEN sites become more strongly populated in these segments 

upon Fe oxidation. Surprisingly, we find that enhanced fluctuations between 6- and 5-coordinate 

structures cannot account for the elevated deuteration of Fe(III) cyt c. Instead, the HDX differences 

are attributed to dynamics involving a sparsely populated 4-coordinate conformer. The more 

prevalent 6 ↔ 5-coordinate dynamics are nearly HDX-silent. These findings illustrate that proteins 

can undergo large-scale dynamic events that only minimally influence experimental HDX patterns. 
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Materials and Methods 

Equine cyt c was purchased from Sigma (St. Louis, MO). Fe(III) protein was produced by exposure 

to the oxidizing agent potassium ferricyanide, while Fe(II) cyt c was prepared using the reducing 

agent sodium ascorbate. HDX-MS followed a standard workflow on a nanoACQUITY 

HDX/UPLC (Waters, Milford, MA) that was coupled to a Synapt G2-Si Q-TOF. All-atom µs MD 

simulations were conducted using GROMACS 2020.3,62 with the CHARMM36 force field63 and 

TIP3P water. Complete experimental and computational details are provided in the SI. 

 

 

Results and Discussion 

HDX Behavior of Fe(II) and Fe(III) Cyt c. Incubation in D2O labeling buffer caused progressive 

deuteration of cyt c (Figure 1). In agreement with earlier experiments,48 HDX under the conditions 

used here took place under EX2 conditions. A number of peptides showed kinetics that were 

virtually indistinguishable for the Fe(II) and Fe(III) states; these peptides were found in the N-

terminal (1-30) and the C-terminal regions (81-104). In contrast, peptides closer to the center of 

the sequence (residues 31 to 80) underwent significantly higher deuteration in Fe(III) cyt c than in 

the Fe(II) state. Deuteration patterns very similar to those shown in Figure 1 have been reported in 

earlier HDX investigations on Fe(II) and Fe(III) cyt c.48, 64 Overall, our observations support the 

view that Fe(III) cyt c is more dynamic than the Fe(II) state.40, 48-52  

To visualize the deuteration differences between Fe(II) and Fe(III) cyt c, we superimposed 

a colored HDX difference map onto the X-ray coordinates of the native protein (Figure 2). The 10 

min time point was selected for this purpose because it exhibited the largest difference between 

the two oxidation states. Red coloring in Figure 2 denotes segments that were more highly 
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deuterated in the Fe(III) state than in Fe(II) cyt c. There were two distinct regions of strongly 

enhanced deuteration; one was on the distal side (“above” the heme in Figure 2), comprising the 

60s helix as well as most of the 71-85  loop with the M80 heme ligand. The second region of 

enhanced deuteration was on the proximal side (“below” the heme in Figure 2). This second region 

covers residues 24 to 45, stretching across parts of the 18-36 and 40-57 Ω loops that are in tertiary 

contact with the H18 heme ligand. When interpreting the data of Figure 2 in the context of eq. 1, 

one can conclude that the Fe(II)  Fe(III) transition shifts NHCLOSED ↔ NHOPEN equilibria on both 

the distal and the proximal side of the heme more toward the open state.  

 

Possible Mechanisms for the HDX Enhancements in Fe(III) Cyt c. The more dynamic nature 

and lower stability of Fe(III) cyt c relative to the Fe(II) protein40, 48-51, 64 have been attributed to 

weakening of the distal coordination bond, with transient rupture of the M80-Fe(III) contact.49, 52, 

53 This contact acts as an anchor for the tertiary packing of the distal segments.2 It is therefore easy 

to imagine how transient rupture of the M80-Fe(III) bond could destabilize H-bonds in the distal 

region.48 However, it is difficult to rationalize why the weakened M80-Fe(III) bond would also 

boost HDX on the opposite side of the heme (“red” proximal elements, below the heme in Figure 

2). Two different scenarios could explain the observed HDX pattern. 

(i) An allosteric mechanism could propagate distal protein destabilization into proximal 

regions. Similar allosteric signal transmission processes have been demonstrated for other 

proteins.7-10 (ii) Alternatively, the Fe(II)  Fe(III) transition may cause destabilization of both 

coordination bonds, allowing transient rupture of the distal M80-Fe(III) contact as well as the 

proximal Fe(III)-H18 bond. It is known that the Fe-His bond can be severed, i.e., in denaturing 

solutions58-60 and after photo-excitation,54, 61 resulting in a 4-coordinate iron center. Therefore, Fe-
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H18 bond cleavage may occur even under native conditions, albeit transiently and with a low 

Boltzmann probability. Thus, in addition to the well documented fluctuations between 6-

coordinate and 5-coordinate cyt c,2, 49, 55 there could be rare instances of 4-coordinate Fe(III) 

conformers.54, 58-61 Rupture of coordination bonds on both sides of heme could then trigger distal 

as well as proximal H-bond opening. From the subsequent data it will be seen that scenario (i) is 

not tenable. Instead, the results discussed below strongly support scenario (ii), i.e., the involvement 

of sparsely populated 4-coordinate species. 

 

MD Simulations of Cyt c. To uncover the origin of the distal/proximal HDX enhancement in 

Fe(III) cyt c, we performed atomistic µs MD simulations in explicit water. Such simulations have 

become an important complementary tool for HDX studies.23, 31, 33, 65-68 This is despite the fact that 

some HDX-relevant NHCLOSED ↔ NHOPEN fluctuations are rare events, making them difficult to 

observe on MD-accessible time scales.33, 65, 68 One way to address this problem is by extending 

MD time windows as much as possible.33, 69 Unfortunately, even the longest simulations 

(milliseconds) are orders of magnitude shorter than typical HDX labeling times (seconds to hours). 

Here we circumvented the MD time scale problem using a different strategy. As noted, the 

key difference between Fe(II) and Fe(III) cyt c is the occasional dissociation of the M80-Fe(III) 

bond and possibly also the Fe(III)-H18 contact. Instead of trying to spontaneously generate these 

rare 5- and 4-coordinate states in long simulations, we modeled them directly by severing the 

corresponding Fe(III) bonds. In this way we could test whether the H-bonding properties of these 

sparsely populated species can explain the experimentally observed HDX patterns. 

For our targeted MD approach we modeled four species. (A) “Native Fe(II) cyt c” has a 6-

coordinate M80-Fe(II)-H18 heme. It served as MD reference state, analogous to our HDX 
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experiments. (B) “6-coordinate Fe(III) cyt c” has a M80-Fe(III)-H18 geometry and represents the 

ground state of the oxidized protein. (C) “5-coordinate Fe(III) cyt c” is a Fe(III)-H18 species that 

lacks distal ligation. It is known to exist in equilibrium with 6-coordinate Fe(III) cyt c as a result 

of weakened M80-Fe bonding.49, 52, 53 (D) “4-coordinate Fe(III) cyt c” denotes a fleeting species 

that has neither M80 nor H18 coordination, as outlined above under scenario (ii).54, 58-61  

MD runs for all four species commenced from the native X-ray structure.41 Representative 

MD structures generated in this way are depicted in Figure 3 (see Figure S3 for additional details). 

In all cases, the proteins retained a compact fold. Native Fe(II) cyt c and 6-coordinate Fe(III) cyt 

c were quite similar to each other, with only minor differences in the orientations of  loops 18-

36 and 40-57 (Figures 3A, S3). 

Severing of the M80-Fe contact generated 5-coordinate Fe(III) cyt c and allowed the distal 

71-85  loop to swing upward, dramatically increasing the S/Fe distance from 0.25 nm to ~0.65 

nm (Figure 3B). In some MD runs this transition took place within a few ns, whereas in other 

instances these events required up to ~100 ns (Figure S3). Except for these  loop changes, 5-

coordinate Fe(III) cyt c had a structure similar to native Fe(II) cyt c (Figure 3B). These MD results 

are in agreement with NMR structural data for 5-coordinate M80A Fe(III) cyt c.70 

Even larger structural changes were seen for 4-coordinate Fe(III) cyt c, particularly in the 

three  loops (Figures 3C, S3). The M80-Fe distance increased to around 0.8 nm, while the Fe-

H18 distance change was more subtle (from 0.22 nm to 0.31 nm). The vacant distal site on the iron 

established contact with the Y67 hydroxyl O, reminiscent of some cyt c mutants.71 

Figure 4 compares the three Fe(III) species, with focus on the distal  loop (residues 71-

85). In 6-coordinate cyt c this loop covered the heme, rendering the Fe center inaccessible (Figure 

4A). Major repositioning of the distal loop in the 5-coordinate protein resulted in dramatic opening 



10 
 

of the heme binding pocket (Figure 4B). For 4-coordinate Fe(III) cyt c, the distal region was once 

again more collapsed (Figure 4C), making the heme less accessible than in the 5-coordinate state. 

 

H-bond Dynamics. NHCLOSED ↔ NHOPEN fluctuations were tracked by monitoring HꞏꞏꞏO 

distances throughout the MD runs. A 0.25 nm cutoff value commonly serves as criterion for an 

intact H-bond.72 However, in an HDX context such a rigid cutoff may not always be meaningful. 

For example, a HꞏꞏꞏO distance of 0.26 nm will likely still provide some protection, while this 

would not be the case for 0.5 nm33 (both are “open” according to the 0.25 nm cutoff).72  Keeping 

with tradition, we will continue to refer to H-bonds as open or closed. However, in addition to this 

binary classification we will report actual HꞏꞏꞏO distances (or distance differences) throughout this 

work, to reflect the fact that H-bond opening is not always an all-or-nothing event. 

Figure 5 exemplifies the behavior of four NH sites in 6-coordinate Fe(III) cyt c. A96 forms 

an H-bond that remained permanently closed. I75 displayed a single opening/closing event, with 

an open state that had a dramatically increased HꞏꞏꞏO distance of ~0.7 nm. E104 underwent 

multiple opening/closing cycles, although opening was somewhat less dramatic (~0.4 nm) than in 

the previous example. F46 spent most of its time in the open state (0.3 to 0.5 nm), while only 

occasionally dipping below 0.25 nm. It is gratifying that MD simulations can visualize these H-

bond dynamics, thereby providing an atomistic underpinning for the Linderstrøm-Lang model (eq. 

1).33, 65, 68 

 

Overview of H-bonding and Chain Fluctuations. Average HꞏꞏꞏO bond distances were calculated 

for NH sites in all four MD species (Figure S4). The center portions of the N-terminal and C-

terminal helices retained closed H-bonds in all cases, reflecting the known stability of these 
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segments.2 Helix fraying occurred for the first and the last ~6 residues in the sequence, consistent 

with NMR data.73 

To facilitate a comparison of the four species, H-bonding patterns from Figure S4 were 

compiled into difference plots, using native Fe(II) cyt c as reference (Figure 6). These plots mirror 

the “Fe(III) minus Fe(II)” approach taken for the experimental data. Thus, Fe(III) NH sites in 

Figure 6 can be more open (red) or more closed (blue) than in native Fe(II) cyt c. The difference 

plots can be summarized as follows: 6-coordinate Fe(III) cyt c has enhanced H-bonding in roughly 

a dozen NH sites, while a handful of NH sites exhibit slight opening (Figure 6B). The H-bond 

pattern of 5-coordinate Fe(III) cyt c is surprisingly similar to that of the native Fe(II) protein. The 

5-coordinate form underwent H-bond opening only at residues 49-51, as well as closing at 23 and 

31. In other words, 5-coordinate Fe(III) cyt c did not undergo large-scale H-bond opening in the 

distal or proximal regions (Figure 6C). Dramatic H-bond opening took place only for 4-coordinate 

Fe(III) cyt c, spanning residues 23 to 95 (Figure 6D). 

To characterize protein dynamics in more detail, we determined the root mean square 

fluctuation (RMSF) of each backbone N atom. RMSF(i) represents the standard deviation of 

atomic position i relative to its average position, i.e., it measures the extent of conformational 

fluctuations during the MD time window (Figure S5). RMSF difference plots (Fe(III) minus Fe(II)) 

are included in Figure 6. According to these ΔRMSF data, 6-coordinate Fe(III) cyt c is less 

dynamic than the native Fe(II) protein in the 41 to 55 range, while all other residues were virtually 

indistinguishable from the Fe(II) state (Figure 6B). Differences between 5-coordinate Fe(III)-H18 

cyt c and the Fe(II) reference were small, with only slightly elevated dynamics around M80 (Figure 

6C). This is despite the fact that the distal loop undergoes a major reorientation upon forming the 

5-coordinate state (green arrow in Figure 4B). The relatively small ΔRMSF of the distal loop 
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(Figure 6C) implies that this region maintains a fairly stable structure following the initial 

reorientation event, instead of continuing to undergo major fluctuations during the MD time 

window. Large positive ΔRMSF values were seen only for 4-coordinate Fe(III) cyt c, identifying 

it as the most dynamic species (Figure 6D). By and large, the ΔRMSF data in Figure 6 mirror the 

H-bond behavior, i.e., highly dynamic regions (with large RMSFs) tend to be correlated with H-

bond opening, particularly for 4-coordinate Fe(III) cyt c (Figure 6D). One  region that seemingly 

does not follow this trend is centered around G45, where Figure 6D shows large ΔRMSFs with 

only minor changes in H-bonding. This behavior reflects the fact that most NH sites around G45 

are already open in the Fe(II) reference state (Figure S4).  

 

Linking HDX and MD Data. Our experiments showed strongly enhanced distal and proximal 

deuteration for Fe(III) cyt c compared to the Fe(II) protein. According to eq. 1, this implies that 

for Fe(III) cyt c the corresponding residues spend more time in the NHOPEN state. What is the origin 

of this enhanced H-bond opening? This question can be answered by comparing experimental data 

(summarized in Figure 6A) with H-bond patterns of the various MD structures (Figure 6B-D). 

 There is no resemblance between the experimental HDX data and the MD-predicted H-

bond pattern of 6-coordinate Fe(III) cyt c. On the contrary, the 6-coordinate MD structure showed 

stronger H-bonding for numerous residues compared to its Fe(II) counterpart (Figure 6B). Thus, 

the 6-coordinate Fe(III) state of Figure 6B would cause a decrease in HDX, which is opposite to 

the experimentally observed behavior. These findings demonstrate that oxidation to Fe(III) per se 

does not promote H-bond opening.  

 It is well known that Fe(III) cyt c fluctuates between the 6-coordinate ground state and 5-

coordinate structures,49, 52, 53, 55 facilitated by the relatively weak M80-Fe(III) bond.40, 48-51 
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Surprisingly, these 6 ↔ 5-coordinate fluctuations are not coupled to large-scale NHCLOSED ↔ 

NHOPEN transitions (Figure 6C). The 5-coordinate protein showed H-bond opening only for a few 

residues (49-51). Most distal and proximal H-bonds remained largely unaffected. This NHOPEN 

pattern bears no resemblance to the experimental opening of Figure 6A. Because fluctuations 

between 6- and 5-coordinate cyt c fail to significantly boost deuteration of Fe(III) cyt c, the 

allosteric “scenario (i)” that we considered earlier must be ruled out. 

 Evidence supports the existence of 4-coordinate Fe(III) cyt c as a fleeting species with an 

equilibrium population even lower than that of the 5-coordinate protein.54, 58-61 Our data show that 

this 4-coordinate species represents the missing piece of the puzzle. The 4-coordinate protein 

possesses multiple open H-bonds, particularly for proximal and distal residues (Figure 6D). This 

opening pattern most closely matches the experimental data of Figure 6A. 

It would be unrealistic to expect that the MD simulations exactly match our experiments, 

especially when keeping in mind the different nature of the data (single residue vs. peptide-

resolved). For example, the simulations predict that proximal H-bond opening starts at residue 23 

(Figure 6D), whereas experiments indicate that this deprotection commences somewhat later, 

around residue 30 (see peptides 19-30 and 24-36, Figure 1). Similarly, Figure 6D shows increased 

opening around residues 3-4, an effect that is not mirrored in the experimental data (Figure 6A). 

We attribute this behavior to the fact that the first few residues are quite dynamic in the Fe(II) state 

(note their large error bars in Figure S4A), such that further opening of this region in 4-coordinate 

Fe(III) cyt c will not significantly enhance deuteration.  Such relatively minor issues should not 

deter from the fact that the MD data of Figure 6D match the experimental pattern of Figure 6A 

quite well. This is in contrast to Figures 6B & C, which bear no resemblance to Figure 6A. 
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In summary, our data imply that 6-coordinate Fe(III) cyt c undergoes transient fluctuations 

to a 5-coordinate structure (with rupture of the M80 contact), as well as rare transitions to a 4-

coordinate species (with additional rupture of the H18 contact). Only the 4-coordinate species 

exhibits a wide range of NHOPEN sites, thereby accounting for the experimentally observed distal 

and proximal HDX enhancement. The 5-coordinate protein contributes very little to this HDX 

enhancement because of its low number of NHOPEN sites. 

The sparsely populated 5- and 4-coordinate Fe(III) states are undetectable in traditional 

spectroscopic experiments, where signals are dominated by the 6-coordinate ground state. HDX 

methods are unique in this regard, because they report on rare excursions to NHOPEN conformers 

that have very low Boltzmann probabilities.2, 4, 6, 18-28 In summary, Fe(III) cyt c shows enhanced 

HDX compared to the Fe(II) protein, because 4-coordinate conformers are more highly populated 

in the Fe(III) state, as dictated by its weaker coordination bonds.40, 48-51 These findings are in line 

with “scenario (ii)” that we outlined above. 

 

 

Conclusions 

The Linderstrøm-Lang model asserts that H-bond opening/closing is a prerequisite for HDX.2, 30, 

31 Protein dynamics that are not associated with H-bond opening/closing are therefore undetectable 

by HDX methods. Figures 7A and 7B schematically illustrate this issue for fluctuations between a 

native ground state and an alternative conformer that has a higher free energy. The diagonal 

transition of Figure 7A is HDX-detectable because it entails H-bond opening. In contrast, the 

vertical transition of Figure 7B is HDX-silent. 

 The possible existence of HDX-silent dynamics has received very little attention in the 

literature. HDX practitioners tend to make the implicit assumption that deuteration provides a 
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rather comprehensive view of protein dynamics. Here we point out that this assumption may not 

always be warranted. Fluctuations between 6- and 5-coordinate forms are highly prevalent in 

Fe(III) cyt c.40, 49-52, 64 These fluctuations are of major functional significance because they expose 

the distal side of the heme, representing the first step of an activation cascade that turns cyt c into 

an apoptotic peroxidase.43 However, these distal fluctuations are only weakly coupled to H-bond 

opening/closing, rendering them almost HDX-silent. Instead, our MD simulations strongly suggest 

that the HDX difference data are governed by rare fluctuations to a 4-coordinate state (Figure 7C). 

This work is not an attempt to topple the foldon model, according to which the cyt c HDX 

behavior is governed by fluctuations between conformers that are unfolded to different degrees.2, 

39 Instead, our data complement the foldon model. We propose that certain fluctuations 

(highlighted in Figure 7C) are selectively enhanced in Fe(III) cyt c, and that these fluctuations 

occur on top of the previously described foldon dynamics.2, 39 Foldon energy level diagrams aim 

to account for the deuteration of all NH sites in a protein.2, 39 In contrast, Figure 7C only refers to 

a subset of NH sites that exchange faster in the Fe(III) protein, identified via comparison with 

Fe(II) cyt c. 

 Protein dynamics comprise a wide range of motions. Many of these motions are strongly 

coupled to H-bond opening/closing, while for others this coupling may be weaker. The latter will 

be difficult to detect by HDX methods. We do not dispute that HDX methods are a powerful tool 

for interrogating protein dynamics, and we do not imply that HDX data are flawed in any way. 

Rather, we point out that any analytical technique has its limitations. For example, Raman 

spectroscopy is widely used for probing molecular vibrations. However, only certain vibrations 

cause Raman scattering, whereas others are “Raman-silent”. Thus, Raman spectroscopy may 

provide an incomplete view of molecular vibrations.74 Analogously, we point out that some protein 
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motions can be HDX-silent, such that HDX-MS may provide an incomplete view of protein 

dynamics.  

While the current investigation only examined cyt c, previous data suggest that HDX-silent 

dynamics also occur in other proteins.28, 34-36 However, this work marks the first time that such a 

scenario has been examined in detail. In future studies it will be interesting to see how widespread 

HDX-silent dynamics are. In any case, it is hoped that our work will help to more clearly define 

the strengths and limitations of HDX methods as a tool for deciphering the protein 

structure/dynamics/function triad. 

 

 

Supporting Information: Complete Methods Section, Figure S1: UV-Vis and MS 

characterization of cyt c samples, Figure S2: HDX sequence coverage, Figure S3: Time 

dependence of various interatomic distances during MD runs, Figure S4: Dynamic H-bond patterns 

of different cyt c conformers, Figure S5: Summary of backbone nitrogen RMSF values. DynamX-

generated kinetic data.27 
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Figure 1. Experimental HDX uptake for selected peptides in Fe(III) (●) and Fe(II) (○) cyt c. The 
data shown are the results of triplicate measurements. Error bars are smaller than the symbol size. 
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Figure 2. HDX difference plot (%DFe(III) - %DFe(II)) superimposed onto the cyt c crystal structure41 
using data from Figure 1 for t = 10 min. Segments where the Fe(III) state shows higher deuteration 
than the Fe(II) state appear in red. Heme is depicted in green, distal/proximal ligating atoms of the 
heme Fe are highlighted as spheres. The protein forms three major  helices (N-terminal, 60s, and 
C-terminal), and three Ω loops that cover residues 18-36, 40-57 and 71-85.2 
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Figure 3. MD structures for different ligation scenarios. (A) Blue: 6-coordinate Fe(III) cyt c, (B) 
green: 5-coordinate Fe(III) cyt c, (C) red: 4-coordinate Fe(III) cyt c. Panels on the left also show 
native Fe(II) cyt c as reference (gray). Panels on the right highlight heme, M80, and H18, along 
with the corresponding S/Fe and Fe/N distances. The data shown here represent time points 
around 500 ns taken from 1 µs MD trajectories. 
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Figure 4. Comparison of Fe(III) species with focus on the distal  loop. Residues 71-81 of the 
loop are shown in spacefill representation. These are the same MD structures as in Figure 3, but in 
a different orientation. (A) 6-coordinate, (B) 5-coordinate, (C) 4-coordinate Fe(III) cyt c. Heme 
iron is magenta, M80 S is yellow, H18 N is cyan.   
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Figure 5. MD simulation data, exemplifying H-bond dynamics for different NHꞏꞏꞏOC contacts in 
6-coordinate Fe(III) cyt c. For each pair the NH donor is listed first. Panels on the left show 
hydrogen-oxygen distances vs. time. Vertical dotted lines at 0.25 nm indicate the H-bond cut-off. 
The top panel illustrates an H-bond that is permanently closed. All others undergo NHCLOSED ↔ 
NHOPEN transitions. Panels on the right illustrate MD snapshots as overlays of NHCLOSED (blue 
dashed) and NHOPEN (red dashed) conformers, for time points indicated by the blue and red arrows. 
Element coloring: N (blue), H (white), O (red), C (green). 
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Figure 6. Fe(III) – Fe(II) difference plots. (A) Experimental HDX data for t = 10 min. Positive 
(red) indicates where Fe(III) is more highly deuterated than native Fe(II) cyt c. The other panels 
show MD data. (B) Difference plot for 6-coordinate Fe(III), (C) difference plot for 5-coordinate 
Fe(III), (D) difference plot for 4-coordinate Fe(III). Vertical bars in B-D represent NHꞏꞏꞏOC 
contacts that are more open (red) or more closed (blue) than in native Fe(II) cyt c. ΔRMSF for 
backbone N atoms are shown in black; ΔRMSF > 0 indicates where Fe(III) fluctuates more, 
ΔRMSF < 0 indicates where Fe(III) fluctuates less than native Fe(II) cyt c.  
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Figure 7. Cartoon of protein fluctuations between Boltzmann-populated states. (A) HDX-
detectable scenario, where two conformers differ in the number of NHOPEN sites. (B) HDX-silent 
scenario, where two conformers share the same H-bond pattern. Blue dotted lines indicate “closed” 
H-bonds. (C) Dynamics that are enhanced in Fe(III) cyt c relative to the Fe(II) protein. Fluctuations 
between 6/5-coordinate cyt c occur with very minor changes in H-bonding. Fluctuations between 
5/4-coordinate cyt c are associated with major H-bond opening/closing (see Figure 4). 
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