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A B S T R A C T   

Current data sources used for the prediction of student outcomes average about 55% accuracy and require a 
significant amount of input data and time for researchers and educators to produce predictive models of student 
outcomes. The aim of this study is to examine how neurocognitive data collected via functional near infrared 
spectroscopy (fNIRS) may be used to create predictive models of student outcomes with greater speed and ac
curacy when using a synthetic adaptive learning environment (SALEs). Specifically, this study examines the 
utility of using neurocognitive data to develop student response prediction on a science content test. Participants 
were recruited from schools located in the United States (n = 40). Participants in the study engaged in three 
conditions: no content, video and virtual reality. The lesson video and virtual reality lesson provides an expla
nation of deoxyribonucleic acid replication. Observed neurocognitive responses were collected during each 
condition and used to predict the success of student responses on an assessment. On average the predicative 
accuracy of this approach is 85% and occur within 300 ms. Predictive error rates are less than 15%. Results of 
this study provides evidence to support the use of neurocognitive data for adaption of digitally presented content 
and how machine learning approaches and artificial intelligence may be used to classify student data in real-time 
as students engage with content. Results also illustrate good accuracy and capture of moment-to- moment 
fluctuations of cognition in real-time. These findings may help the development of artificially intelligent tutors 
and improve student-based learning analytics.   

1. Introduction 

There has been an increased awareness of the benefits of synthetic 
adaptive learning environments (SALEs) in a variety of sectors from the 
military to K-12 education (Alexander et al., 2019, pp. 3–41). SALEs are 
digital learning environments which respond and change due to user 
preferences and inputs over time. To accomplish this the SALEs must be 
able to predict student outcomes and responses quickly and accurately 
which is currently a barrier to more successful implementation in edu
cation. To underscore this point, the Department of Defense (DOD) and 
other agencies such as the National Science Foundation (NSF) and 
Department of Education (DOE) have increased investments 
year-over-year to identify and develop technologies and methods to 
increase the accuracy and speed of prediction within adaptive synthetic 
learning environments under the Synthetic Learning Environments 
Group. DOD, DOE, and NSF are federal divisions within the United 

States government responsible for supervising military forces, national 
educational policy, and supporting the progress of science, respectively. 
The large-scale spending by DOD, DOE, and NSF is driven by the un
derstanding that computerized adaptive learning environments, if given 
appropriate inputs can be used to create a more ideal learning envi
ronment, individualize learning, and increase the efficacy and efficiency 
of learning for all students. SALEs can be used at scale, increasing access 
to learning opportunities for students who may not be able to attend 
class or are a part of an online learning program, particularly in a post 
COVID-19 educational environment (Simamora, 2020). A keystone of 
SALEs is the use of student response data to build an individualized 
experience and adapt content presentations. Using student data, the 
individualization of content and experiences can create levels of 
engagement and help to strengthen connections between concepts 
increasing learning outcomes. However, individualization comes at a 
cost, the cost is the requirement for substantial amounts of data in short 
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periods (McMahon, Wright, Cihak, Moore, & Lamb, 2016; Umlauft & 
Hirche, 2019). This data collection often takes the form of questionaries, 
surveys, and other assessments which do not generate particularly high 
levels (~55%) of model accuracy related to model prediction (Gardner 
& Brooks, 2018). Other concerns about these forms of data collection 
can lead to student fatigue, reduced motivation, and other maladaptive 
behaviors within SALEs (Mädamürk, Tuominen, Hietajärvi, & 
Salmela-Aro, 2021). 

SALEs are environments that encompass virtual reality (VR), 
augmented reality, flat screen video, and other digital reality mixes 
which are specifically designed with pedagogy in mind. VR is a 
computer-generated simulation using fully immersive three- 
dimensional environments that are interactive in a realistic way. 
SALEs, learning management systems, and associated technologies have 
been shown to develop student learning related to the content and 
practice of science (Sablić, Mirosavljević, & Škugor, 2020; Lamb, 
Annetta, Hoston, Shapiro, & Matthews, 2018; Lamb et al., 2018). As a 
part of the learning individualization process, SALEs and other systems 
work by collecting assessment response data, individual preference data, 
and student learning system interaction data to create a student driven 
on-demand learning system (Lamb & Annetta, 2009, 2012; Lamb et al., 
2014). Meaning as a student progresses through the content, the system 
collects information about their selections related to videos, lecture 
notes, and other content. This data is used to help design content and 
increase student engagement and attention. To accomplish this, large 
amounts of data must be collected in a short time and processed quickly 
to allow the digital system to adaptively respond (Khan & Khojah, 
2022). The underlying assumption within these systems is that the stu
dent is not only capable, but well versed enough in their understanding 
of content and practices associated with learning to effectively select the 
correct “next step” as they learn. In this case, student “mistakes” in se
lection reduce the accuracy and speed of SALEs adaption. Even in cases 
where selection and adaption of content occurs because of student as
sessments, the underlying assumption is that the assessment data 
accurately reflects student learning and understanding. Misalignment of 
the assessment to the content will result in reduced accuracy and speed 
of adaption. A means to address these shortcomings -the need for sub
stantial amounts of data, rapid processing, and an accurate under
standing of student cognitive state-when developing predictive models 
in SALEs is through the integration of neurocognitive data. 

Within SALEs and other digital learning environments, adaption 
refers to several automatic modifications of the digital environment 
which facilitate and support a student’s use of the environment and 
improved learning outcomes (Al-Samarraie & Saeed, 2018; Lamb, Cav
agnetto, & Akmal, 2016; Lamb, 2017). Adaption of content and the 
environment can occur at multiple points through interactions with the 
content and environment (Dumford & Miller, 2018). Each of the adap
tions is predicated on the ability of the SALEs to identify the student’s 
cognitive state from data, select the appropriate change in time for 
learning, and accurately predict outcomes related to the student. 
Adaption of content during the process of learning is difficult because of 
the complexity of assessing student cognitive states using content data 
and results from testing (Thees et al., 2020). It is even more complicated 
by the need for processing of the data in real-time. Real-time refers to a 
system in which data is processed and available for use within milli
seconds for feedback. In many cases, content data does not accurately 
reflect levels of demand, confusion related to their learning, or other 
aspects of cognitive state that influence outcomes. In many cases the 
results of current predictive models exhibit accuracy rates in the 50%– 
60% range and require minutes to days to be properly analyzed for 
decisions related to adaption of contnet (Thees et al., 2020). One means 
to address the lack of accuracy and the need for real-time data analysis, 
is through real-time examination of a student’s cognitive state using 
neurocognitive data measured through a device such as fNIRS while the 
student interacts with content. For example, functional near infrared 
spectrometer (fNIRS) data when combined with a machine learning 

classifier such as an artificial neural network (ANN) are available for use 
by the adaptive systems within 300 ms (Abdalmalak et al., 2020). fNIRS 
is a device which measures blood flow around the brain to a depth of 10 
mm due to neuronal activity related to a specific task or tasks. Under
standing cognitive states in real-time with only a 300 ms latency allows 
semi-instantaneous (e.g., within milliseconds as opposed to second or 
minutes) adaption of the learning system and appropriate content to be 
presented to the student. Using non-invasive functional neurological 
measurement such as fNIRS and machine learning classifiers can allow 
educators to use SALEs to adapt content more effectively and, in less 
time, than SALEs using other forms of data. 

While research around learning outcome prediction has been on 
going, recent technological advances within the last ten years have 
adjusted the focus to making use of intelligent systems for the prediction 
of student performance and identification of individual differences in 
student outcomes (Brooker, Corrin, De Barba, Lodge, & Kennedy, 2018; 
Musso, Hernández, & Cascallar, 2020). This is particularly true when 
combining tools such as fNIRS which, produce the needed volume of 
data, with data intensive prediction tools such as machine learning, 
artificial intelligence, data mining, and learning analytics. Table 1 il
lustrates a summary of studies from the last decade examining specific 
data sources, prediction accuracy, and other key findings related to each 
of these prediction model development tools. A recent systematic 
analysis by Namoun and Alshanqiti (2020) examined several studies (k 
= 67) to identify the primary prediction method and data sources. A key 
finding of this synthesis is that models averaged a prediction accuracy 
across all methods of 55.4% with adaption occurring slowly over hours 

Table 1 
Summary of studies.  

Prediction 
Type Method 

Number 
of 
Studies 

Prediction 
Accuracy 

Major Data Types Major 
Identified 
Weakness for 
this Class of 
Studies 

Data Mining 72 Moderate 
(~60%) 

Homework 
assignments, 
classroom 
assessments, and 
end of course 
tests. 

(1) Singler type 
of learning 
system; (2) Did 
not forecast 
student 
outcomes; (3) 
Did not 
compare 
models. 

Algorithm 88 Low 
(~40%) 

Learning system 
data, student 
responses, and 
student survey 
results 

(1) Did not 
compare 
models; (2) 
Data quality. 

Machine 
Learning 

240 High 
(~70%) 

Student 
classroom 
assignments, 
Learning 
management 
system data, 
student 
behaviors 

(1) Did not 
focus on 
academic 
outcomes; (2) 
Most papers 
were not 
focused on 
student level 
outcomes only 
factors; (3) Did 
not triangulate 
findings. 

Traditional 
Student 
Performance 
Metrics 

366 Low 
(~30%) 

Academic 
outcomes, non- 
academic 
outcomes, 
homework 
assignments, 
classroom 
assignments, and 
assessments. 

(1) Data quality 
was not 
consistent; (2) 
Did not assess 
multiple 
models; (3) 
Small sample 
sizes. 

Note: Synthesized from Namoun & Alshanqiti, 2020, Polyzou & Karypis, 2019, 
and Shahiri & Husain, 2015 
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of use. These finding were also consistent with findings by Polyzou & 
Karypis, 2019 and Tatar & Düştegör, 2020. This indicated that while the 
methods may be robust there is a significant need to increase feedback 
(Cavalcanti et al., 2021), accuracy, and speed (Elbadrawy et al., 2016). 
Research conducted by Chen, Xie, Zou, and Hwang (2020) illustrated 
several gaps within the study of artificial intelligence (AI) for educa
tional purposes. This work shows-that there is an increasing interest in 
the impact of Artificial Intelligence in Education (AIEd)- that little 
research in AIEd has been conducted, advanced AI and measurement 
technologies are rarely adopted, and AIEd technologies are rarely 
accounted for in educational theories. With these gaps clearly identified 
by the Chen et al. (2020) study, a series of recommendations to the field 
have been made. These recommendations among others include: (1) 
exploration of AI use in classroom environments; (2) the need for closer 
alignment of the relationship between student responses and responses 
within intelligent systems; and (3) the need to make use of neuro
cognitive technologies for measurement and data inputs such as fNIRS, 
EEG, or other forms of psychophysiomeasurement; and (4) identification 
of how to apply data from these measurements during the learning 
process. In considering the use of neurocognitive technologies in com
bination with AI, Carvalho, Martinez-Maldonado, Tsai, Markauskaite, 
and De Laat (2022) cautions that it is necessary to protect student 
agency and social wellbeing and ensure teachers and educational pro
fessionals should be empowered to develop pedagogical practices. When 
using AI for educational decisions and framing it is necessary to 
emphasize humanistic approaches in the development of AI based ed
ucation around learning (Carvalho et al., 2022). Further examination of 
the synthesized papers illustrates that data sources were typically 
retrospective in nature, product data, and did not capture in-process 
fluctuations as the student’s completed tasks or activities (Tatar & 
Düştegör, 2020; Magalhães, Ferreira, Cunha, & Rosário, 2020; Mor
eno-Marcos, Pong, Munoz-Merino, & Kloos, 2020; Kabudi, Pappas, & 
Olsen, 2021). The lack of process data when using prediction techniques 
associated with learning analytics and educational data mining, does not 
allow for the identification of critical changes as they happen (Hasan, 
Palaniappan, Raziff, Mahmood, & Sarker, 2018; Lemay, Baek, & Doleck, 
2021). For example, a student who is working on understanding a 
graphic presented on a digital platform may have several fluctuations in 
their cognition as they process the graphic and attempt to respond to 
questions on an assessment. Since the assessment only captures the 
student’s overall ability to process the graphic and is retrospective, it is 
difficult to identify at which points the student had trouble processing 
the graphic. In addition, many cognitive processes used in learning are 
automatic and are not available for introspection so the student may not 
be able to identify them even when asked. In this light, educators miss 
substantial amounts of data and identification of points at which 
adaption can occur. The lack of ability to capture in-process data, data 
with sufficient volume, and quality are three of the principal reasons 
that models identified in these study results showed reduced prediction 
accuracy. Despite the promise of predictive models in digital environ
ments their potential has not been fully realized. One mode of data that 
has not been explored and has potential to address some of the identified 
shortcomings of current modeling approaches is neurocognitive data. 
Neurocognitive data provides means to increase model prediction ac
curacy, capture in-process task completion, and reduce the time be
tween data capture and adaption. 

The aim of this study is to examine how neurocognitive data 
collected via functional near infrared spectroscopy (fNIRS) may be used 
to create predictive models of student outcomes with greater speed and 
accuracy when using a synthetic adaptive learning environment 
(SALEs). Specifically, this study examines the utility of using neuro
cognitive data to develop student response prediction on a science 
content test. Research Question 1 for this study is, does neurocognitive 
data taken via fNIRS while a student engages with science content lend 
itself to machine learning classifications? Research Question 2 for this 
study is, does analysis of hemodynamic response data predict student 

outcomes on a multiple-choice embedded content test in a SALE? 
Consideration of the research questions suggests the following hypoth
eses. Hypothesis 1 the quantified and continuous nature of the neuro
cognitive data collection during content presentation will be of 
sufficient quantity and quality to allow classification via machine 
learning algorithms. Hypothesis 2, hemodynamic data collected from 
the fNIRS will be predictive of correct and incorrect student responses 
using an automated machine learning algorithm. Substantiation of these 
hypotheses will illustrate the potential of using neurocognitive data to 
drive SALE adaptability. 

Hemodynamic data in this study is a specific form of neurocognitive 
data collected during the activation of neurocognitive process associated 
with the metabolism of oxygen by neural tissue as the tissue is recruited 
to complete specific tasks. Hemodynamic responses are the rapid de
livery of oxygenated blood to active neuronal tissues (Kisler et al., 
2018). As the tissue receives the blood the hemoglobin is deoxygenated 
to drive neuron metabolism as information related to a task is processed. 
The ratio between oxygenated and deoxygenated blood is an indicator of 
relative demand of the cognitive system associate with the process as the 
student completes the task (Curtin & Ayaz, 2018; Lamb, Hand, & Yoon, 
2019; Lamb et al., 2018). Neurocognitive data is data which is derived 
from the measurement of neural processes such as oxygenation and 
deoxygenation of blood. The neurons and processes are a part of the 
structures involved with cognition. These processes and structures are 
important because they offer a means to examine regions of interest 
related to specific structural and functional activities during task 
completion. The processes and related measurements produce high 
quality data of sufficient volume for analysis and prediction. Neuro
cognitive data when collected during clearly defined tasks is related to 
specific brain structures and neurocognitive functions. This 
task-structure-function relationship arises from the interaction between 
the learning tasks, the cognitive characteristics of the learner, and the 
specific structures of the brain. This relationship and the ability of 
functional brain measures to sample neural processes multiple times a 
second allows neurocognitive measures to capture moment-to-moment 
fluctuations in human cognition. More traditional forms of data collec
tion such as test questions, student responses, mouse clicks, etc. do not 
account for individual moment-to-moment individual variation, are 
retrospective, and as a result miss key data. Using neurocognitive data 
allows examination of differences which would only be visible in the 
moment-to-moment cognitive demand fluctuations. One way to detect 
these fluctuations is by measuring changes in neurocognitive data found 
in student cognition as the student completes the task i.e., real-time 
monitoring. Real-time monitoring is a system of data collection in 
which the input data is processed and available for immediate use as 
feedback and adaption within milliseconds, increasing the speed at 
which a learning system can adapt. 

2. Literature review 

2.1. Theoretical framework 

The underlying framework describing hemodynamic responses to 
understand student cognitive processes is the Brain Microstate Frame
work (Lehmann, Pascual-Marqui, & Michel, 2009). Specifically, 
neuronal tissue responses examined in the brain microstate as measured 
by fNIRS consist of time blocked measures (within 0.165 seconds) of 
oxygenation and deoxygenation of hemoglobin in neural tissue associ
ated with the cognitive systems being used by the brain to complete the 
task. The microstate brain activations are the time-limited information 
moments related to specific cognitive processes stimulated by specific 
tasks such as reading, watching a video, or answering a question (Papo, 
2013). Despite the promise of this framework for the prediction of stu
dent outcomes, it has not been applied directly to predictions of student 
learning. When tied to a functional task such as a science task, the 
temporal sequence of the task and subsequent hemodynamic response 
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form the core of the measurements. Within this framework, the initial 
response-stimulus activation complex occurs with a consistent latency 
due to the movement of blood to the neuronal tissue of interest (Zohdi, 
Scholkmann, & Wolf, 2021). Once the neuronal tissue is activated the 
fluctuations in oxygenation and deoxygenation can sustain a signal for 
0.5–6 seconds as tissue demands change during cognitive processing 
(Verriotis et al., 2016). fNIRS is able to measure changes in oxygenation 
and deoxygenation within 0.10 seconds–0.25 seconds. Considering the 
signal decay rate for the hemodynamic response is 0.5–6 seconds it is 
possible to capture changes in the hemodynamics particularly in areas of 
the prefrontal cortex. 

2.2. Prefrontal cortex 

The Prefrontal Cortex (PFC) is the major driver of conscious cogni
tive control and is tightly tied to learning in general and learning in 
science specifically. The PFC is the portion of the cerebral cortex 
covering the front of the frontal lobe brain. It is the area which partially 
responsible for processing external information and social behavior 
using the somatosensory systems and cortical and subcortical motor 
systems (Friedman & Robbins, 2022). The PFC is also the structure 
responsible for the processes associated with working memory and ex
ecutive function (Lamb et al., 2018, 2019). When these systems are used 
in conjunction with long-term memory systems associated with the 
limbic and midbrain structures, this action contributes to creation of 
affect, memory, and development of behavioral actions seen in learning. 
Directly measuring PFC hemodynamic activity allows educators to ac
cess and examine underlying markers of information processing as a 
student engages in learning tasks across all major forebrain systems. 
Using information across multiple brain systems assists the researchers 
in synthesizing information to predict how a student structurally and 
functionally processes science content. Examination of the PFC during 
task completion also allows researchers to see the moment-to-moment 
fluctuations and how students use information from within the envi
ronment (Zawacki-Richter, Marín, Bond, & Gouverneur, 2019). Work by 
McGuire and Botvinick (2010) illustrates that the PFC is responsible for 
transferring knowledge about learning in task completion. Lamb and 
Etopio’s (2019) study also shows that tasks involving substantial 
amounts of unstructured processing, such as in the conditions in this 
study, may be challenging and illustrate elevated levels of cognitive 
demand. This increased difficultly may arise from the generation of less 
dynamic responses within the PFC due to the lack of well-defined and 
specific tasks. 

The activation of the neural tissue is related to the stimulus through 
correlation and examination of repeated responses to the specific stim
ulus, in this case continued actions involving the VR or video task. 
Importantly, both the individual response and the global patterns are 
task specific, repeatable, and consistent across populations i.e., if both 
tasks are critical thinking tasks, the activation will be identical apart 
from the intensity as one task may be more demanding than another 
resulting in greater hemodynamic response. While the hemodynamic 
responses can range in intensity and onset, the fNIRS sampling rate is 
from 4Hz to 10Hz (compared to functional magnetic resonance imaging 
(fMRI) .5Hz–1Hz and electroencephalography (EEG) (256Hz–1024Hz) 
making it possible to include and capture hemodynamic fluctuations 
within neural tissue (Cui, Bray, & Reiss, 2010; Lamb, Hand, & Yoon, 
2019). An EEG is a device which is used to measure electrical activity 
across the surface of the brain. In contrast to and EEG, an fMRI measures 
the blood flow to any part of brain due to increased neuronal activity. 

Within this study the hemodynamic fluctuations were measured over 
the span of the task, rapidly providing important information about the 
moment-to-moment changes as they occur throughout the task allowing 
educators to understand how the parts of a task relate to the whole of the 
task. A critical aspect of the stimulus-response complex is that the 
response is not present when the student is not actively working on the 
task. The stimulus-response complex is the related group of stimuli 

resulting from a specific task as it is combined with a unique hemody
namic response pattern. If the response is present while the student is 
not working on the task, then the response and task are considered 
unrelated and not a part of a unique stimulus-response complex. For this 
reason, the researchers made use of a baseline measure and null con
dition to measure neural activity without the presence of the task. fNIRS 
has been shown to provide timely localized region of interest informa
tion related to activities such as language mapping (Janecek et al., 
2013), mapping of written word generation (Watanabe et al., 1998); and 
specific and general neurocognitive functioning related to several types 
of functional educational tasks (Hong & Yaqub, 2019). As hemodynamic 
responses and task completion occurs in the timeframe of seconds to 
minutes in this study, fNIRS is capable of acquiring data across the whole 
task and the subcomponents of the task. 

A technique used to mitigate concerns related to overlapping signals 
is the examination of the hemodynamic response over the length of the 
task using a moving average. The moving average is calculated for the 
optodes illustrating hemodynamic response ratios above baseline for the 
time segment in which the student is working on the task. An optode is a 
sensor which can measure the concentration of a substance using light, 
in the case of this study, oxygenated and deoxygenated blood in brain 
tissue. While this reduces some of the ability to resolve specific hemo
dynamic responses associated with task subcomponents, it provides an 
overall measurement of average cognitive demand while the student 
completed the complex task. The incorporation of a second baseline 
after the removal of the stimulus allows sufficient time for the signal to 
stabilize back to baseline levels ensuring the task is responsible for the 
observed response. Several studies have validated the use of fNIRS for 
the measurement of oxygenation, deoxygenation, and total hemoglobin 
concentrations using comparisons to functional magnetic resonance 
imaging (fMRI) of the PFC (Maggioni, Bellani, Altamura, & Brambilla, 
2016). When examined as a region of interest (as in this study) fMRI 
studies and fNIRS studies illustrate a strong significant correlation up to 
r = .83 (Maggioni et al., 2016) between fMRI data and fNIRS measures of 
deoxygenated hemoglobin (Cui et al., 2010; Maggioni et al., 2016). 

3. Methods 

This study used a mixed, blocked-event, counterbalanced design as 
illustrated by Petersen and Dubis (2012). The three conditions were 
video on a television screen, virtual reality, and no stimulus (null) all 
with embedded content questions. After students were prescreened by 
the researcher, the fNIRS sensor was placed on the student. During the 
prescreening process the student was told they may ask any questions 
about the study that they had. The first part of the design is an event 
related response. An event related response is a response in which a 
change in hemodynamic response, as a measure of student cognitive 
activity results directly from a sensory, cognitive, or motor event such as 
watching a portion of a video or answering a question. The second part 
of the design was a mixed block approach, in which a Baseline 1 
(A-condition), is followed by a Stimulus (B-condition), followed by 
Baseline 2 (A-condition). The baseline condition “A” consisted of par
ticipants sitting quietly and is a “neural rest condition.” The stimulus 
condition “B” had the participants complete a science task and was the 
“neural active condition.” The A1-B-A2 approach increased the robust
ness of the results, increased statistical power, identifies the 
stimulus-response complex, and provided a within-subject control 
through examination of changes related to each participant associated 
with each of the baselines. Mirroring an approach commonly used in 
EEG studies, this study design allows for detection of 
moment-to-moment neurocognitive responses. It is important to note 
that while there are parallels in EEG and fMRI research to fNIRS 
research, the techniques and activities associated with signal analysis 
and signal acquisition differ. Responses in which multiple cognitive 
systems correlate to the tasks can be differentiated through the Hemo
dynamic Response Function (Seghouane & Ferrari, 2019). Event related 
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responses allow analysis of individual student’s responses as they watch 
a video, answer a question, and the correlation of the subsequent be
haviors related to task completion. For example, the portion of the VR 
presentation on the opening of the deoxyribonucleic acid (DNA) helix in 
preparation for replication is treated as a stimulus-response complex 
allowing researchers to gather information as the student completes the 
task. DNA is the molecule inside cells which is responsible for storing 
genetic information for an organism and concepts related to DNA 
replication are typically taught as a part of the biology curriculum in 
tenth grade. When treated as a block, the hemodynamic response fluc
tuations allow the measurement of non-sequential completion of the 
tasks, timing of stimulus, examination across the whole task, and allows 
students to work on tasks as they would in the classroom. In addition, 
because of the use of fiber optics and light the fNIRS is more robust to 
signal interference and movement artifacts when compared to both EEG 
and fMRI making it a better measurement device for educational settings 
(Pinti et al., 2020). 

3.1. Data collection 

Data acquisition occurred via the fNIRS optodes. Data was aggre
gated and initial processing happened with COBI Studio software version 
1.3.0.19. Filtering, data preparation, and signal analysis for statistical 
examination of data happened with fNIRS Soft Professional 4.10. Neu
rocognitive data consisted of fNIRS hemodynamic responses illustrated 
in composite images identifying location and intensity via colorized 
images. The neurocognitive data also included composite images, video, 
and numeric oxygenation and deoxygenation ratios. A MP160 device 
was used to synchronize optode signals, video, and student responses. 
The operator of the fNIRS observed each of the students (n = 40) as they 
worked on the tasks over the span of the study and monitored the fNIRS 
device placing markers as events occurred (e.g., when the student 
started and ended the task). The students were not able to see the out
puts as the operator was monitoring and marking. The operator marked 
the beginning and end of baseline data collections to ensure that he
modynamic responses were stable. While the authors acknowledge that 
classroom conditions are variable, baseline is used to standardized 
starting points for the within student comparisons. A second baseline 
allows the researcher to identify if the stimulus and response are 

connected within the hemodynamic response and not an artifact asso
ciated with another classroom activity. It is expected that once the task is 
completed and the student is sitting quietly that the hemodynamic 
response would return to baseline. Video of the students completing the 
tasks was taken to allow researchers to determine if the markers asso
ciated with each task were accurately placed. Fig. 1 illustrates the po
sition of optodes and emitters for the participants. 

3.2. Participants 

Participants in this study were (n = 40) neurocognitively healthy 
right-handed randomly selected ninth grade students from four high 
schools (N = 2096), 21 males and 19 females taking part in a ninth-grade 
Earth Science class. The students were naïve to the content and ques
tions used in the null, video, and VR presentations. Students were 
randomly selected from each school, 10 students per school, from all 
ninth-grade students taking Earth Science (N = 1157). Selection 
occurred using a random number generator to select a student to recruit. 
Recruitment occurred in three waves until 40 students agreed to 
participate. Students were contacted through letters home, classroom 
visits, and teacher meetings. All 40 participants were from a mix of 
urban and rural schools. Students gave assent while parents provided 
informed consent. This project and its procedures are in keeping with 
the Declaration of Helsinki and other ethical standards. The average age 
of the participants is 14.6 (SD = 0.4). Each participant is at current grade 
level related to mathematics proficiency, English language proficiency, 
and reading proficiency. Levels of proficiency were used to ensure that 
additional cognitive responses beyond the task were not derived from 
processing difficulties associated with ability in these areas. The re
searchers pre-screened participants using the Woodcock-Johnson IV 
Achievement Test (alpha = .90) in the areas of Calculation, Applied 
Problem Solving, and Quantitative Concepts (Reynolds & Niileksela, 
2015). Reading levels were assessed using the Wide Range Achievement 
Test Third Edition (alpha = .75) (Wilkinson & Robertson, 2006). Par
ticipants were identified as neurotypical through extensive interviews 
and review of histories as suggested in the Compendium of Neuropsy
chological Tests (Strauss, Sherman, & Spreen, 2006). No participant was 
removed based upon screening. Each participant was on grade level in 
their current science class, obtaining passing grades, having passed their 

Fig. 1. locations of optodes (sensors) and emitters. Optodes are identified by numbers and emitters are the red circles. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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previous science classes with a “C” or better, and within the top 50% of 
their current class. Biology content was specifically chosen because, 
while the students did recall some aspects of the topics, the students did 
not recall details associated with the topics and the tasks were novel to 
the students. Fifty-three percent of the students had taken Life Science in 
previous years (seventh grade year) Fall semester and 47% had taken 
Life Science in the previous years (seventh grade year) Spring semester. 
None of the students had taken biology, however all the participants had 
taken eighth grade physical science. 

3.3. Conditions 

Within this study, neurocognitive data from the PFC as students 
engaged with each of the conditions was used to create a prediction of 
student responses on a science content test. At specific times during the 
video, VR, and null condition, questions about presented content were 
given to the students (Cronbach’s Alpha = .87). The recorded video 
condition is a 20-min explanation of DNA replication. During the video 
instruction, a female instructor provides an explanation of DNA repli
cation. In addition to verbal instruction, pictorial representations were 
also shown. The video contained multiple (3) color graphics displayed 
on the screen replacing the instructor. The VR condition consisted of a 
20-min 3D immersive video of DNA replication with three dimensional 
visualizations. During VR instruction, a voice over discussed DNA 
replication. In addition to verbal instruction, pictorial representations 
were also shown. The VR content also contained multiple (3) color 
graphics displayed on the screen replacing the instructor. Students 
taking part in this condition did not have the ability to interact with the 
content other than to “walk around” the representations. The lack of 
interaction was intentional to create parity between the VR and video 
conditions. The null condition consisted of no content being presented to 
the students, however, at the same intervals as the video and VR ses
sions, questions appeared related to the content. Fig. 2 illustrates the 
timing of the content and the relative amount of content that specifically 
relates to the question. The time above the content illustrates the time at 
which the content related to the question started. 

3.4. Data analysis 

Prior to full analysis of the neurocognitive data there is significant 
data preprocessing which must occur. Data preprocessing initially starts 
with removal of gross movements, movements due to respiration, and 
heart pulsations (Pinti et al., 2020). Artifacts were removed using a 
0.14HZ cutoff low pass filter as suggested by Nguyen, Yoo, Bhutta, and 
Hong (2018). Filtering data using a 0.14Hz low-band filter resulted in a 
loss of 7% of the data for the VR condition, 9% loss of data for the video 
condition, and 9% loss for the null condition. In addition to removing 
movement artifacts, extracranial and extracerebral contributions to the 
fNIRS signal were separated via regression on a per optode basis. This 
separation resulted in a total loss of 5% of the data. 

Ratios of the concentrations of oxygenated and deoxygenated blood 
were converted to standardized Z-scores with respect to Baseline 1 to 
allow for comparison across tasks and individuals. A moving mean 
(average) was calculated for each of the participants based upon data as 
they were completing the task. The moving mean statistically smoothed 
short-term hemodynamic response spikes and filtered-out signal noise 

ensuring large variations in hemodynamic response did not overweight 
the analysis. 

A mixed model analysis of variance (MX ANOVA) and post-hoc 
planned comparison by task was conducted using SAS JMP Pro 14. A 
MX ANOVA is an analysis of variance technique using a mix of a between 
subject and within subject comparisons with two or more categorical 
independent variables. The MX ANOVA in this study was used to 
determine if there are significant differences between correlated means 
across optodes and tasks (Boisgontier & Cheval, 2016). Specifically, the 
MX ANOVA was used to examine measures over each of the time points; 
Baseline 1 (A1-condition), Stimulus (B-condition), and Baseline 2 
(A2-condition) across conditions. This approach allowed the researchers 
to examine which optodes illustrated greater hemodynamic response 
when compared to Baseline 1 and 2. The MX ANOVA and partial 
eta-squared are used to examine each of the participants per task to 
determine the effects of the condition on hemodynamics for specific 
optodes. MX ANOVA is robust to unbalanced repeated measures and is 
indicated because of the hierarchical clustered nature of the data with 
time points and A1-B-A2 conditions clustered by student. Post-hoc 
(Tukey HSD) analysis was run to determine which of the treatments 
illustrated the greatest hemodynamic response. A second post-hoc 
analysis (Tukey HSD) was used to determine which optodes illustrated 
hemodynamic response greater than each of the baselines (1 and 2) for 
each task to identify optodes which correspond to task related activa
tions. A Bonferroni correction was conducted at an alpha equal to 0.05/c 
where c is the number of comparisons (c = 7). Significant p-values must 
be below 0.007 for the seventh comparison. Lastly correlational analysis 
was conducted between outcomes on the tasks to ensure task completion 
was related to the hemodynamic response. 

3.5. Predictor development 

Predictors were developed using a machine learning algorithm 
applied to the two data sources, hemodynamic response collected during 
each condition and test question responses. Analysis of the standardized 
hemoglobin absorption ratios (i = 864,000) between the oxygenated 
hemoglobin and deoxygenated hemoglobin occurred using MX ANOVA. 
The authors used a Random Forest model along with penalized logistic 
regression to generate confusion matrices. These two approaches helped 
the researchers to identify the underlying structure of existing data and 
generate rules for prediction of observations. 

Data analysis in this portion of the study was used to identify the 
specific node weightings and model with the best accuracy and gener
alized model fit. Best accuracy and general model fit arise from the 
predicted test data with the least error. Models that illustrate best data 
and conceptual fit are identified using multiple measures. The two pri
mary measures are Conforming Capability (Conforming = MMSEtr +
MMSEtst) and Generalizing Capability (Generalizability = MMSEtst −
MMSEtr). The minimum means square error (MMSE) is a measure of 
estimated quality of the dependent variable fit values. Models with 
highest standard errors are not considered viable models. The model 
with the most generalized architecture is retained after the model with 
the highest deviations is removed. Model architecture with the closest 
training and testing data is considered most generalized. Comparison of 
training and testing data occurs through the evaluation of means. As 
identified by Al-Nafjan, Hosny, & Al-Wabil (2017) and Xiao et al. 

Fig. 2. Timing of content and questions used in this study for each condition. 
Note. While the null condition did not have content, questions were still asked at the same time points. 
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(2019), ANNs have been used to model cognition related to learning 
with good reliability. In addition, ANNs have been used with good 
success in predicting student performance in educational setting when 
given sufficient data (Rodríguez-Hernández, Musso, Kyndt, & Cascallar, 
2021; Wang, Xie, Wang, Lee, & Au, 2021). The model used in this study 
is an error back propagation model with a Random Forest algorithm. A 
K-fold cross validation with random data assignment was used. The data 
was randomly divided into multiple similarly sized slices (n1 = 288,000, 
n2 = 288,000, and n3 = 288,000). The segments are used for validation 
and training. K-fold cross validation has been used with success in en
gineering and other fields to support proposed predictive models 
(Wijayasekara, Manic, Sabharwall, & Utgikar, 2011). Analysis of each 
type of question and the associated difficultly occurred by relating 
incorrect responses with student’s indications that they had lost con
centration during the task. 

4. Results 

4.1. Summary of results 

Results suggest that neurocognitive responses collected during VR 
and video conditions is predictive of correct responses on the content 
test, while signals obtained from the null condition did not predict 
correct responses. Automatic machine learning classification outcomes 
of hemodynamic patterns obtained while the students watched the 
video, VR, and null condition predicted correct and incorrect responses 
during the content test. Visualization of these outcomes are illustrated 
using a confusion matrix. The confusion matrix uses a Random Forest 
algorithm. Within the diagram each row is the predicted model, and the 
column is the actual students’ performance. The training and test models 
show good model fit for the identification of actual correct and wrong 
answers. For example, while watching Content Selection 1, the hemo
dynamic response patterns were predictive of success in answering 
Question 1 correctly 79% of the time. The model predictions illustrated 
between a 69% and an 85% success rate (shown in dark brown) in 
accurately predicting responses on the content questions by the stu
dents. illustrates an example confusion matrix from this study (See 
Fig. 3) 

4.2. Results of model development 

The Random Forest model obtained satisfactory results with an area 
under the Receiver Operating Characteristic (ROC) curve of 0.79 (shown 

in Fig. 4). A ROC curve is a graphical representation of the diagnostic 
ability of a system, which plots the true positive rate against the false 
positive rate. The authors also provided a confusion matrix of the 
Random Forest model showing the instances of the prediction of cor
rectness associated with each condition per case. Each row illustrates the 
predicted model i.e., hemodynamic response collected during the 
viewing of the content. Columns illustrate the actual students’ perfor
mance on the question. The Random Forest model shows good model fit 
in relation to the identification of actual correct answers and incorrect 
answers. The random forest has the average accuracy of 0.839 ± 0.042, 
sensitivity of 0.73 ± 0.071, specificity of 0.71 ± 0.044, and Cohen’s 
kappa coefficient of 0.41 moderate. The authors also shows that the 
Random Forest model results in outcomes not by chance through a re- 
randomization test evaluating model information (Cruz-Martinez et 
la., 2022). This procedure for a re-randomization test occurs through the 
reshuffling of the model with variance as the outcome variables and 
re-calculating the area under the curve for the ROC curve (See Fig. 4) 
using 1000 iterations. The number of cases resulting in a better rival 
model versus the selected Model outputs and identified the fNIRS 
optodes that resulted in the best prediction for student participants. 
These results replicate and support results obtained by Oku and Sato 

Fig. 3. Example confusion matrix for the video condition.  

Fig. 4. The composite ROC curve for the Random Forest, plotting sensitivity 
versus false positive rate at thresholds across conditions. 
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2021 (see Fig. 5). 
To ensure good conceptual model fit, it was necessary to identify the 

neurocognitive responses which linked to each content question. To 
accomplish this the authors examined video of the students completing 
the video, VR, and the assessment ensuring that content questions by 
themselves were insufficient to predict correct or incorrect responses. 
The authors of the study also examined the frequency of the selected 
channels in each iteration for cross-validation of the Random Forest 
model. The authors validated the covariates as Channel 12 (deoxygen
ated hemoglobin) and Channel 1 (oxygenated hemoglobin) as having 
the greatest weight in the prediction of correct answers as these optodes 
illustrated 96% use in 83% of the participants across video and VR 
conditions. Across VR and video conditions the relevant optodes ac
cording to this model are 1, 2, 3, 7, 12, and 13 corresponding to the 
middle prefrontal and frontal cortex. Once identified changes in optode 
signals were visible within 300 ms–500 ms during the task. The PFC is 
primarily responsible for activities in learning such as the cognitive 
processes of working memory, cognitive flexibility, planning, inhibition, 
and abstract reasoning (Zgaljardic et al., 2014). Each of these cognitive 
processes is extremely important when engaged in the learning of sci
ence content. Please note the null condition did not exhibit any optodes 
which stood out and appeared to be relevant in predicting correct re
sponses. This was expected given the lack of stimulus during this 
condition. 

By identifying the optodes which were most explanatory of student 
responses (by question, by student) with a minimum of error, the au
thors were also able to assess the levels of student participation in each 
of the conditions. Fig. 6 shows differentiation by the model of correct 
and incorrect responses using only hemodynamic responses across 
questions for each condition. To this end, the developed model indicates 
there is a slight association between correct answers and the student 
belief that they engaged with the content. Examination of the confusion 
matrix illustrates that for the video and VR condition hemodynamic 
response has a 0.79 and 0.87 probability of correctly predicting out
comes on the content test. The null condition the average for prediction 
of correct responses was significantly lower at 0.29. 

5. Discussion 

This study examines how neurocognitive data in the form of 

hemodynamic response measures may be used to develop machine 
learning classifiers in real-time to create student level answer pre
dictions as students engage with science content using a SALEs. Error 
rates in the prediction of student response are below 15% and illustrate a 
prediction rate of 85% accuracy. These outcomes illustrate that neuro
cognitive data can be used in real-time and is more predictive than 
current data sources. This form of data can be used as a cornerstone to 
understand the degree of student engagement with content, validate 
newly developed content, and examine the process of assimilation of 
new content in real-time during content interactions. 

The primary goal was to investigate if neurocognitive data collected 
from the participant’s PFC during content interactions could accurately 
and rapidly predict student answers on a content test. The authors 
specifically used a configuration of optodes allowing collection of neu
rocognitive data in a more naturalistic setting and in far more realistic 
situations as students used a learning system. The results provide evi
dence that neurocognitive data use for prediction is more accurate 
(average 85% accuracy) and more rapid (300 ms–500 ms) than what is 
currently available (average ~55% accuracy and several minutes to 
hours). Additional studies using high resolution neuroimaging devices 
may be warranted as they can more clearly identify cognitive systems 
and the precise locations of subsidiary areas in the brain involved during 
video and VR use. This study also provides evidence to support current 
cognitive models of how the PFC is used during learning in digital 
adaptive environments (Lamb, 2019; Lamb & Etopio, 2019; Lamb et al., 
2018). The larger contribution of this study is the successful prediction 
of content test outcomes solely from a student’s interaction with content 
using neurocognitive data. An implication of this outcome is that this 
type of data may be used to develop computational models for experi
mentation and testing of student learning interventions (Lamb 2014, 
2016; Lamb & Annetta, 2013; Lamb, Annetta, Vallett, & Sadler, 2014; 
Lamb et al., 2014, 2014). The digital nature of the data and the speed of 
data collection allows neurocognitive data to be used to drive adaption 
of the digital environment and content potentially in milliseconds as 
opposed to minutes, hours, or days. This reduces the latency of the user 
response interface, more directly connects with neural processes used in 
learning, and propels the development of SALEs to increase student 
learning outcomes. 

SALEs are at the forefront of a new generation of computerized 
learning systems delivering multimedia course content with the intent of 

Fig. 5. Resultant optodes with high predictability for the VR and video conditions.  
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Fig. 6. Confusion matrix illustrating the relationship between content and questions.  
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providing learners a personalized experience. This traditionally occurs 
by capturing the learning system’s data associated with each user’s 
personal preferences, content knowledge levels, cognitive abilities, and 
other factors. In most cases this occurs through the collection of data 
through assessment of content before and after content interaction has 
occurred. Little if any consideration is given to analysis of the learning 
during the student’s interaction with the content. More importantly 
much of the learner’s cognitive interactions with the content are a 
“black box. This study illustrates the potential value of neurocognitive 
data collected, in real-time, during content interaction as an accurate 
predictive tool for assessment supporting findings by Dahlstrom-Hakki 
et al. (2019). Combining a SALE with neurocognitive data collection and 
machine learning classification during content interaction helps in 
adaption of content to classroom objectives. 

Pelánek (2017) encountered challenges with the use of machine 
learning classifiers using more traditional data. This is because machine 
learning approaches need large training data sets to identify a student’s 
need. In many cases when using traditional data sets, this is often un
available. This data collection often takes the form of large numbers of 
content questions and other forms of data collection which is time and 
resource intensive for the learner and the digital system. Data taken 
from assessments and questionaries often involve a significant amount 
of time for analysis and meaning making e.g., minutes to hours, when 
used to identify a student’s individual needs. The second issue is that the 
adaptive learning systems are not always able to characterize the 
learner’s individual needs or the student’s individual needs do not align 
with learning objectives used by the system. 

These challenges illustrate the two significant problems; (1) large- 
scale data collection decreases the desire to use the learning system 
and produces excessive cognitive demand; and (2) there is a lack of 
technology (until recently) for identification of the learner cognitive 
states. Researchers have recommended that augmentation of SALEs 
occur through new data sources and through creation of more accurate 
classifiers for system training (Cui, Chen, Shiri, & Fan, 2019). Consid
ering the needs of SALEs in terms of data, the use of neurocognitive data 
solves both concerns. Neurocognitive data as used in this study is of 
sufficient volume and resolution that machine learning classifiers, the 
underlying engine of adaptive learning systems, can make use of the 
data to predict student outcomes. In addition, this study also shows that 
newer technologies such as fNIRS can be used to assess student cognitive 
state. 

5.1. Pedagogical implications 

Measurement of student neurological states (i.e., attentional dy
namics and cognitive dynamics) during the learning of science content 
allows a deeper understanding of student processes and provides critical 
information for how to best adapt content and questions for the student 
(Zhai, Yin, Pellegrino, Haudek, & Shi, 2020). Neurocognitive measure
ment may be used to update content in a learning environment sup
porting work by Rose and Strangman (2007). Collecting data about 
cognitive states in real-time with only a 300 ms–500 ms latency in 
system response allows semi-instantaneous (e.g., within milliseconds as 
opposed to second or minutes) adaption of the learning system. Using 
non-invasive functional neurological measurement such as fNIRS in 
conjunction with machine learning classifiers can allow educators to use 
SALEs to adapt learning content more effectively and, in less time, than 
SALEs using other forms of data. 

The use of neurocognitive data for the predication of student out
comes in science education has the potential to impact the ability of 
SALEs to meet student needs, leading to greater individualization. The 
main findings of this study which impact teacher activities in the 
classroom are: (1) increased accuracy of the prediction and (2) the speed 
of prediction i.e., real-time prediction of student learning outcomes. 
These two findings can result in the development of new models of 
adaptive learning and assessment of student at risk for failure or missed 

learning opportunities and the provision of students with content to 
enhance learning outcomes automatically. Future iterations of these 
models using this data could provide real-time understanding of stu
dent’s individual cognitive states as they teach. In addition, this type of 
system may be useful for assessment of non-verbal students by pre
dicting outcomes on assessments as they engage with the content. With 
non-verbal students, they would not have to communicate what they 
learn, it may be possible to simply assess students based upon neural 
activity. 

Content teachers can play a leading role in developing predictive 
models, using these models to adjust instruction, and provide more 
meaningful interventions for students. This will occur because the 
teachers, using these models, are able to more closely observe students 
and capture more data as they engage in the learning process. The 
predictive models could be used during instruction to identify specific 
content and modes of instruction which were effective and not effective 
based upon classification and ability to predict outcomes on assess
ments. The ability to assess effectiveness would allow the automatic 
modification of digital content to remediate students at home and in the 
classroom by potentially using decision tree learning approaches (Mat
zavela & Alepis, 2021). Curriculum developers may also make use of this 
technology to assess the quality of the content and user experiences with 
the content. By examining the moment-to-moment fluctuations in neu
rocognitive data it is possible to systematically identify the components 
of the curriculum and how these components create levels of risk for 
failure for students at varying levels. 

The weakness of this approach for use in the classroom is two-fold. 
First, to account for and mitigate extracerebral signals while using 
fNIRS to collect neurocognitive data in the classroom, the predictive 
model uses statistical methods instead of short-range detectors to reduce 
invasiveness (Tachtsidis & Scholkmann, 2016). Secondly, while the 
collection of real-time neurocognitive data via fNIRS is less invasive 
than other forms of neurocognitive data collection and can occur in the 
classroom, it still requires a headset to be worn by students. Students 
taking part in this form of data collection may not be tolerant of this 
without further development of the technology to reduce the size of the 
detectors. The primary strength of this form of data is the ability to 
capture moment-to-moment changes in student cognition throughout a 
task. This provides significantly more detail about the alignment of 
specific cognitive systems, levels of cognitive demand, accuracy of the 
prediction, and can allow collection of data in real-time. These strengths 
will allow educators in the classroom to iterate their content and their 
teaching approaches more rapidly to better meet student needs. 

5.2. Limitations 

The finding of this study is subject to some limitations. First, our 
sample size was relatively small in terms of predictive studies (n = 40), 
however the amount of data per persons is fairly large, i = 1200 reading 
per person over the 20-min task (k = 48,000). Second, although a 
complex task was used, these measures may not be enough to cover the 
total range of cognitive action which may be relevant in science edu
cation or other content areas. Future studies may consider building 
prediction models for other tasks and content areas such as mathe
matics, technology, or engineering. Third, although the mixture of stu
dents is from a general education classroom and covers a relatively 
broad range of student performance across several science tasks, there 
are potential problems in using these prediction models to predict scores 
of students which have more neurocognitive diversity then is found in a 
general education classroom. Future studies should attempt to include a 
more diverse sample of students with neurocognitive differences. 
Finally, data collection in this study only examined a single video and 
VR content presentation. Additional work is needed to inform educators 
about cognition, affect, and behavior performance during each condi
tion and their relationship to hemodynamic response. 
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6. Conclusion 

SALEs can increase student engagement and promote individualized 
learning if they are able to accurately predict student outcomes. SALEs 
are more accurately and quickly able to predict outcomes when using 
neurocognitive data versus other forms of data. These systems reinforce 
learned concepts and provide a means to deliver on-demand learning 
based solely on student need without a human in the loop e.g., instructor 
making the decision. Empirical assessments in studies by Wachtler, 
Scherz, and Ebner (2018), have shown that video and related quizzes 
lack adaptabilities which meet all student’s needs but can increase 
knowledge, intensify engagement, and promote attention. Using these 
forms of digital instruction combined with neurocognitive data may 
provide greater success for students. The use of neurocognitive data can 
act as means to drive adaptation. While there is the possibility to mea
sure student performance via classroom assessments, the involvement of 
students in the execution of learning through the examination of brain 
states during learning does not occur in current systems. Further studies 
may want to consider assessing how machine learning classifiers used in 
SALEs can not only classify neurocognitive states, but how best to 
leverage these states to present content in the most coherent way for the 
individual students. Studies into this form of SALE may allow for greater 
individualization of content and learning experiences. 
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Pelánek, R. (2017). Bayesian knowledge tracing, logistic models, and beyond: An 
overview of learner modeling techniques. User Modeling and User-Adapted Interaction, 
27(3), 313–350. 

Petersen, S. E., & Dubis, J. W. (2012). The mixed block/event-related design. NeuroImage, 
62(2), 1177–1184. 

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al. (2020). 
The present and future use of functional near-infrared spectroscopy (fNIRS) for 
cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5. 

Polyzou, A., & Karypis, G. (2019). Feature extraction for next-term prediction of poor 
student performance. IEEE Transactions on Learning Technologies, 12(2), 237–248. 

Rodríguez-Hernández, C. F., Musso, M., Kyndt, E., & Cascallar, E. (2021). Artificial 
neural networks in academic performance prediction: Systematic implementation 
and predictor evaluation. Computers and Education: Artificial Intelligence, 2, 100018. 

Rose, D. H., & Strangman, N. (2007). Universal design for learning: Meeting the 
challenge of individual learning differences through a neurocognitive perspective. 
Universal Access in the Information Society, 5(4), 381–391. 
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