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Given a graph G with vertex set V (G) and edge set E (G), the geometric-arithmetic index 
is the value

G A (G) =
∑

uv∈E(G)

2
√

dudv

du + dv
,

where du and dv denote the degrees of the vertices u, v ∈ V (G), respectively. In this work 
we present an upper bound for the geometric-arithmetic index of trees in terms of the 
order and the domination number, and we characterize the extremal trees for this upper 
bound. Finally, using a known relation between the geometric-arithmetic and arithmetic-
geometric indices, we deduce a lower bound for the arithmetic-geometric index using the 
same parameters.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A topological index is a numerical parameter of a graph which characterizes its topology, and it is usually a graph 
invariant. Topological indices have been used for correlation of chemical structure with chemical reactivity, biological activity 
or physical properties [6,17,18]. One of the most used topological indices in applications to chemistry and pharmacology is 
the Randić index, that has been used in the development of QSPR/QSAR studies [10,11,13]. The geometric-arithmetic index 
was introduced in [20] with the aim of improving the predictive ability of the Randić index. It has been also applied in QSPR 
and related fields. Given a graph G with vertex set V (G) and edge set E (G), the geometric-arithmetic index is a topological 
index based on end-vertex degrees of edges, which is defined as

G A (G) =
∑

uv∈E(G)

2
√

dudv

du + dv
,

where uv denotes the edge connecting the vertices u, v ∈ V (G) and du and dv denote the degrees of the vertices u and v , 
respectively. There are many works devoted to this topological index and it is a topic of interest in recent years ([1–3,7,14]). 
We will focus here only on its value over trees (see [8,9]).
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G)}
Recently, many papers relating topological indices and domination number of trees have appeared in the literature 
[4,5,12,16,21]. A vertex set D ⊆ V (G) is a dominating set in G if every vertex in V (G)\D is adjacent to some vertex of 
D . The domination number of G is the minimum cardinality among all dominating sets of G , and it is denoted by γ (G). 
Following the research line in [4] and [5], in this work we give an upper bound for the geometric-arithmetic index of trees 
in terms of the order and the domination number, and we characterize the extremal trees for that bound. As a consequence, 
using a known relation between the geometric-arithmetic and arithmetic-geometric indices, we deduce a lower bound for 
the arithmetic-geometric index using the same parameters.

Let us start with some notation and terminology. Let G be a graph and u ∈ V (G), we denote by N (u) = {v ∈ V (G) : uv ∈ E (

the set of neighbors of u, and by du the degree of u, it means, the cardinality of N (u). A leaf is a vertex with degree 1 and 
a support vertex is a vertex adjacent to a leaf. We use G − {u1, . . . , uk} or G − {e1, . . . , ek} to denote the graph obtained from 
G by deleting the vertices u1, . . . , uk of G or the edges e1, . . . , ek of G , respectively. In this paper we will work only with 
trees (i.e. connected acyclic graphs). As usual, by Pn and Sn we denote the path and the star with n vertices, respectively. 
A rooted tree is a tree in which there is one vertex that is distinguished from the others and is called the root. The level of a 
vertex is the number of edges along the unique path between it and the root. The height of a rooted tree is the maximum 
level of any vertex of the tree. Given the root or any internal vertex v of a rooted tree, the children of v are all those vertices 
that are adjacent to v and are one level farther away from the root than v . If w is a child of v , then v is called the parent
of w , and two distinct vertices that are both children of the same parent are called siblings. Given two distinct vertices v
and w , if v lies on the unique path between w and the root, then v is an ancestor of w and w is a descendant of v .

2. Upper bound for the geometric-arithmetic index of trees with a given domination number

In [20] the authors showed the extremal values of the geometric-arithmetic index over trees. Among trees with n ver-
tices, the star Sn has the minimum geometric-arithmetic index and the path Pn attains the maximum geometric-arithmetic 
index.

Theorem 2.1. [20] For any tree T with n vertices and different from a star Sn and a path Pn, we have

2(n − 1)
3
2

n
= G A(Sn) < G A(T ) < G A(Pn) = n − 3 + 4

√
2

3
.

Since the upper bound shown above is attained for any path, the only way to improve that bound for trees is to give 
some conditions about the tree or to include another parameter in the bound. The domination number is one of the most 
studied parameters in graphs, in this section we show a new upper bound for the geometric-arithmetic index of trees using, 
not only the order, but the order and the domination number.

The following lemma, which can be easily proved, will be used in the proof of the main theorem. Many times throughout 
this work we say that an inequality can be checked, in our case, we have checked those inequalities using the program 
Mathematica.

Lemma 2.2. Let f (x) =
√

x
a+x −

√
x−1

a+x−1 with a > 0 and x ≥ 1. Then, f (x) is a negative function for every x ≥ a + 1.

Theorem 2.3. For any tree T with order n and domination number γ , we have

G A(T ) ≤ 3γ +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n − 3γ ) − 3 + 4

√
2

3
.

Proof. To simplify the computation, we define

f (n, γ ) = 3γ +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n − 3γ ) − 3 + 4

√
2

3
,

which is an increasing function in both variables. Let us prove the result by induction on n. When n = 2 or n = 3 we have 
G A(P2) = 1 < 3 −

(
6
√

6
5 + 2

√
2

3 − 3
)

− 3 + 4
√

2
3 = 3 − 6

√
6

5 + 2
√

2
3 and G A(P3) = 4

√
2

3 = f (3, 1). If n = 4, then T is a path or a 

star. If T is a star, then G A(T ) = 3
√

3
2 < f (4, 1) = −3 + 6

√
6

5 +2
√

2. If T is a path, then G A(T ) = 1 + 4
√

2
3 < f (4, 2) = 9 − 12

√
6

5 . 
We suppose that the upper bound is true for any tree with n − 1 vertices and we take a tree T with n vertices and 
domination number γ .

Claim 1. Let v be a support vertex of T such that N(v) = {u1, u2, . . . , u j} and dui = 1 for every 1 ≤ i ≤ j − 1. If j ≥ 4 or j = 3 and 
du3 ≤ 8, then G A(T ) < f (n, γ ).
2
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Proof of Claim 1. We consider T1 = T − {u1}. Then, we know that γ (T1) = γ and, by induction, we have

G A(T ) = G A(T1) + 2
√

j

j + 1
+ 2( j − 2)

( √
j

j + 1
−

√
j − 1

j

)

+2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

≤ 3γ +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n − 1 − 3γ ) − 3 + 4

√
2

3
+ 2

√
j

j + 1

+2( j − 2)

( √
j

j + 1
−

√
j − 1

j

)
+ 2

√
du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
,

thus,

G A(T ) ≤ f (n, γ ) − 6
√

6

5
− 2

√
2

3
+ 3 + 2

√
j

j + 1
+ 2( j − 2)

( √
j

j + 1
−

√
j − 1

j

)

+2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
.

It can be checked that

−6
√

6

5
− 2

√
2

3
+ 3 + 2

√
j

j + 1
+ 2( j − 2)

( √
j

j + 1
−

√
j − 1

j

)

+2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
< 0,

if j ≥ 4, or j = 3 and du3 ≤ 8.

Claim 2. Let v be a vertex in T such that N(v) = {u1, u2, . . . , u j}, du1 = 3 and u1 is adjacent to two leaves w1, w2 . If dui ≤ j − 1 for 
every i ∈ {2, . . . , j − 1} and γ (T − {u1, w1, w2}) = γ − 1, then G A(T ) < f (n, γ ).

Proof of Claim 2. If we denote T3 = T − {u1, w1, w2}, we have

G A(T ) = G A(T3) + 2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

+2
j−1∑
i=2

√
dui

( √
j

dui + j
−

√
j − 1

dui + j − 1

)
+ 2

√
3 j

j + 3
+ √

3.

Due to γ (T3) = γ − 1, by induction, we know that G A(T3) ≤ f (n, γ ) − 3, then

G A(T ) ≤ f (n, γ ) − 3 + 2
√

3 j

j + 3
+ √

3 + 2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

+2
j−1∑
i=2

√
dui

( √
j

dui + j
−

√
j − 1

dui + j − 1

)
.

Since j ≥ dui + 1 for any i ∈ {2, . . . , j − 1}, by Lemma 2.2 we have that 
√

j
dui + j −

√
j−1

dui + j−1 < 0, consequently,

G A(T ) ≤ f (n, γ ) − 3 + 2
√

3 j

j + 3
+ √

3 + 2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
.

But, it can be checked that −3 + 2
√

3 j
j+3 + √

3 + 2
√

du j

( √
j

du j + j −
√

j−1
du j + j−1

)
is negative for any j ≥ 2 and du j ≥ 1.

Claim 3. Let v be a vertex in T such that N(v) = {u1, u2, . . . , u j}, du1 = 2 and u1 is adjacent to a leaf w1 . If dui ≤ j − 1 for every 
i ∈ {2, . . . , j − 1} and γ (T − {u1, w1}) = γ − 1, then G A(T ) < f (n, γ ).
3
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Proof of Claim 3. If we denote T2 = T − {u1, w1}, we have

G A(T ) = G A(T2) + 2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

+2
j−1∑
i=2

√
dui

( √
j

dui + j
−

√
j − 1

du1 + j − 1

)
+ 2

√
2 j

j + 2
+ 2

√
2

3
.

By induction, we know that G A(T2) ≤ f (n, γ ) − 6 + 6
√

6
5 + 2

√
2

3 , thus,

G A(T ) ≤ f (n, γ ) − 6 + 4
√

2

3
+ 6

√
6

5
+ 2

√
du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

+2
j−1∑
i=2

√
dui

( √
j

dui + j
−

√
j − 1

dui + j − 1

)
+ 2

√
2 j

j + 2
.

Since j ≥ dui + 1 for every i ∈ {2, . . . , j − 1}, by Lemma 2.2 we know that 
√

j
dui + j −

√
j−1

dui + j−1 < 0, therefore,

G A(T ) ≤ f (n, γ ) − 6 + 4
√

2

3
+ 6

√
6

5
+ 2

√
2 j

j + 2
+ 2

√
du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
.

But, it can be checked that

−6 + 4
√

2

3
+ 6

√
6

5
+ 2

√
2 j

j + 2
+ 2

√
du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
< 0,

for any j ≥ 2 and du j ≥ 1.

Claim 4. Let v be a vertex in T such that dv = j ≥ 4, N(v) = {u1, u2, . . . , u j}, N(u1) = {v, w1}, N(w1) = {u1, w2} and dw2 = 1. If 
dui ≤ j − 1 for every i ∈ {2, . . . , j − 1}, then G A(T ) < f (n, γ ).

Proof of Claim 4. If we denote T3 = T − {u1, w1, w2}, we have

G A(T ) = G A(T3) + 2
√

du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

+2
j−1∑
i=2

√
dui

( √
j

dui + j
−

√
j − 1

du1 + j − 1

)
+ 2

√
2 j

j + 2
+ 1 + 2

√
2

3
.

By induction, we know that G A(T3) ≤ f (n, γ ) − 3, then

G A(T ) ≤ f (n, γ ) − 2 + 2
√

2

3
+ 2

√
2 j

j + 2
+ 2

√
du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)

+2
j−1∑
i=2

√
dui

( √
j

dui + j
−

√
j − 1

dui + j − 1

)
.

Since j ≥ dui + 1 for every i ∈ {2, . . . , j − 1}, by Lemma 2.2 we know that 
√

j
dui + j −

√
j−1

dui + j−1 < 0, therefore,

G A(T ) ≤ f (n, γ ) − 2 + 2
√

2

3
+ 2

√
2 j

j + 2
+ 2

√
du j

( √
j

du j + j
−

√
j − 1

du j + j − 1

)
< f (n, γ ),

for any j ≥ 4 and du j ≥ 1.

Now, since the bound is trivial for a star, we consider T as a rooted tree with root vk+1 and height k ≥ 3, and let 
v1, v2, . . . , vk+1 be a path from the root to a leaf v1 in T . By Claims 1, 2, 3 and 4, it remains to prove the result when 
dv2 = 2 = dv3 and dv4 ≤ 3.
4
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Case 1. We suppose that dv4 = 3. If we denote N(v4) = {v3, v5, w1}, again by the above claims, we can assume that dw1 ≤ 2. 
If we take T3 = T − {v1, v2, v3}, then we have

G A(T ) = G A(T3) + 2
√

dw1

( √
3

dw1 + 3
−

√
2

dw1 + 2

)

+2
√

dv5

( √
3

dv5 + 3
−

√
2

dv5 + 2

)
+ 2

√
6

5
+ 1 + 2

√
2

3
.

Since γ (T3) = γ − 1, by induction, we know that G A(T3) ≤ f (n, γ ) − 3, so

G A(T ) ≤ f (n, γ ) − 2 + 2
√

2

3
+ 2

√
6

5
+ 2

√
dw1

( √
3

dw1 + 3
−

√
2

dw1 + 2

)

+2
√

dv5

( √
3

dv5 + 3
−

√
2

dv5 + 2

)
.

Case 1.1. We suppose that dw1 = 1. Then,

G A(T ) ≤ f (n, γ ) − 2 + 2
√

6

5
+

√
3

2
+ 2

√
dv5

( √
3

dv5 + 3
−

√
2

dv5 + 2

)
< f (n, γ ),

for any dv5 ≥ 1.
Case 1.2. We suppose that dw1 = 2. Then,

G A(T ) ≤ f (n, γ ) − 3 + 2
√

2

3
+ 4

√
6

5
+ 2

√
dv5

( √
3

dv5 + 3
−

√
2

dv5 + 2

)
< f (n, γ ),

for every dv5 ≤ 10. Therefore, we suppose dv5 = s ≥ 11. If N(v5) = {v4, v6, z1, . . . , zs−2} and dz1 ≥ 4, by the cases above, we 
can assume that any path starting in v5 and containing the edge v5z1 does not have more than four vertices. But, in such 
a case, using Claims 1, 2 and 3, we are done. Consequently, we consider dzi ≤ 3 for every i ∈ {1, 2, . . . , s − 2}.
Case 1.2.1. We suppose that N(w1) = {v4, w2} and dw2 = 1. In such a case, we denote T6 = T − {v1, v2, v3, v4, w1, w2}, so 
we have that

G A(T ) = G A(T6) + 2
s−2∑
i=1

√
dzi

( √
s

dzi + s
−

√
s − 1

dzi + s − 1

)

+2
√

dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)
+ 2

√
3s

3 + s
+ 4

√
6

5
+ 1 + 4

√
2

3
.

By induction, we know that G A(T6) ≤ f (n, γ ) − 6 and, using Lemma 2.2, we obtain

G A(T ) < f (n, γ ) − 5 + 2
√

3s

3 + s
+ 4

√
6

5
+ 4

√
2

3

+2
√

dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)
< f (n, γ ),

for any s ≥ 11 and dv6 ≥ 1.
Case 1.2.2. We suppose that N(w1) = {v4, w2} and N(w2) = {w1, w3}. In such a case, we denote T7 = T − {v1, v2, v3, v4,

w1, w2, w3} and we have

G A(T ) = G A(T7) + 2
s−2∑
i=1

√
dzi

( √
s

dzi + s
−

√
s − 1

dzi + s − 1

)

+2
√

dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)
+ 2

√
3s

3 + s
+ 4

√
6

5
+ 2 + 4

√
2

3
.

Since γ (T7) ≤ γ −2, by induction, we know that G A(T7) ≤ f (n, γ ) −3 − 6
√

6
5 − 2

√
2

3 , then, using also that 
√

s
dzi +s −

√
s−1

dzi +s−1 < 0

for every i ∈ {1, 2, . . . , s − 2},
5
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G A(T ) < f (n, γ ) − 1 + 2
√

3s

3 + s
− 2

√
6

5
+ 2

√
2

3

+2
√

dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)
< f (n, γ ),

for any s ≥ 11 and dv6 ≥ 1.
Case 2. If dv4 = 2 and we take T3 = T − {v1, v2, v3}, then we have γ (T3) = γ − 1 and G A(T3) ≤ f (n, γ ) − 3, consequently,

G A(T ) = G A(T3) + 2
√

dv5

( √
2

dv5 + 2
− 1

dv5 + 1

)
+ 2 + 2

√
2

3

≤ f (n, γ ) − 1 + 2
√

2

3
+ 2

√
dv5

( √
2

dv5 + 2
− 1

dv5 + 1

)
≤ f (n, γ ),

for every dv5 ≤ 2. Therefore, we suppose that dv5 = s ≥ 3. If N(v5) = {v4, v6, z1, . . . , zs−2}, since any path starting in v5 and 
containing the edge v5zi does not have more than five vertices, by the claims and the cases above, we can assume that 
dzi ≤ 2 for every i ∈ {1, 2, . . . , s − 2}. If we take T4 = T − {v1, v2, v3, v4}, then

G A(T ) = G A(T4) + 2
√

dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)

+2
s−2∑
i=1

√
dzi

( √
s

dzi + s
−

√
s − 1

dzi + s − 1

)
+ 2

√
2s

2 + s
+ 2 + 2

√
2

3
.

By induction, since γ (T4) ≤ γ − 1, we know that G A(T4) ≤ f (n, γ ) − 6
√

6
5 − 2

√
2

3 , then

G A(T ) ≤ f (n, γ ) + 2 − 6
√

6

5
+ 2

√
dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)

+2
s−2∑
i=1

√
dzi

( √
s

dzi + s
−

√
s − 1

dzi + s − 1

)
+ 2

√
2s

2 + s
.

Case 2.1. We suppose s ≥ 9. Due to dzi ≤ 2 and 
√

2
( √

s
2+s −

√
s−1

1+s

)
<

√
s

1+s −
√

s−1
s , we have that

2 − 6
√

6

5
+ 2

√
dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)

+2
s−2∑
i=1

√
dzi

( √
s

dzi + s
−

√
s − 1

dzi + s − 1

)
+ 2

√
2s

2 + s

≤ 2 − 6
√

6

5
+ 2

√
dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)

+2(s − 2)

( √
s

1 + s
−

√
s − 1

s

)
+ 2

√
2s

2 + s
< 0,

for every s ≥ 9 and dv6 ≥ 1.

Case 2.2. We suppose 5 ≤ s ≤ 8. Due to dzi ≤ 2 and 
√

s
1+s −

√
s−1
s <

√
2
( √

s
2+s −

√
s−1

1+s

)
, we have

2 − 6
√

6

5
+ 2

√
dv6

( √
s

dv6 + s
−

√
s − 1

dv6 + s − 1

)

+2
s−2∑
i=1

√
dzi

( √
s

dzi + s
−

√
s − 1

dzi + s − 1

)
+ 2

√
2s

2 + s

≤ 2 − 6
√

6

5
+ 2

√
dv6

( √
s

dv + s
−

√
s − 1

dv + s − 1

)

6 6

6
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+2(s − 2)
√

2

( √
s

2 + s
−

√
s − 1

1 + s

)
+ 2

√
2s

2 + s
< 0,

if 5 ≤ s ≤ 8 and dv6 ≥ 1.
Case 2.3. We suppose s = 4. In such a case,

2 − 6
√

6

5
+ 2

√
dv6

(
2

dv6 + 4
−

√
3

dv6 + 3

)

+2
2∑

i=1

√
dzi

(
2

dzi + 4
−

√
3

dzi + 3

)
+

√
8

3

≤ 2 − 6
√

6

5
+ 2

√
dv6

(
2

dv6 + 4
−

√
3

dv6 + 3

)
+ 4

√
2

(
1

3
−

√
3

5

)
+

√
8

3
< 0,

for every dv6 ≤ 15. Therefore, we suppose that dv6 ≥ 16.
Case 2.3.1. We suppose that there exists a minimum dominating set D in T such that v6 ∈ N[D \ {v5}]. Let T1 and T2 be two 
subtrees of T − {v5 v6}, containing v5 and v6, respectively. Then, if N(v6) = {v5, w1, . . . , wr−1}, we have

G A(T ) = G A(T1) + G A(T2) + 2
r−1∑
i=1

√
dwi

( √
r

dwi + r
−

√
r − 1

dwi + r − 1

)

+2
2∑

i=1

√
dzi

(
2

dzi + 4
−

√
3

dzi + 3

)
+ 2

√
2

(
1

3
−

√
3

5

)
+ 2

√
4r

4 + r
.

Since 2 
∑2

i=1

√
dzi

(
2

dzi +4 −
√

3
dzi +3

)
≤ 4

√
2
(

1
3 −

√
3

5

)
, by induction we have

G A(T ) ≤ f (n, γ ) − 3 + 4
√

2

3
+ 2

r−1∑
i=1

√
dwi

( √
r

dwi + r
−

√
r − 1

dwi + r − 1

)

+6
√

2

(
1

3
−

√
3

5

)
+ 2

√
4r

4 + r
.

But, it can be checked that

−3 + 10
√

2

3
− 6

√
6

5
+ 2

√
4r

4 + r
+ 2(r − 1)

√
x

( √
r

x + r
−

√
r − 1

x + r − 1

)

is negative for any r ≥ 16 and x ≥ 1.
Case 2.3.2. We suppose that, for any minimum dominating set D in T , we have D ∩ N[v6] = {v5}. If w1 �= v7 and dw1 ≥ 3, 
then there exist a minimum dominating set D and a1 ∈ N(w1) ∩ D such that, by the above cases, any path starting in v6 and 
containing v6, w1 and a1 has not more than five vertices, consequently, a1 must be adjacent to a leaf. Therefore, applying 
Claims 1, 2 and 3, we are done. Hence, we can suppose that dwi = 2 for every i ∈ {1, 2 . . . , r − 2}. But, if dw1 = 2, by the 
above cases, we can assume that N(w1) = {v6, a1}, N(a1) = {w1, a2} and da2 = 1, consequently, since r ≥ 4, by Claim 4, we 
are done.
Case 2.4. We suppose s = 3, and we distinguish two new cases.
Case 2.4.1. We suppose that dz1 = 1. Then, we have

2 − 6
√

6

5
+ 2

√
dv6

( √
3

dv6 + 3
−

√
2

dv6 + 2

)
+ 2

√
dz1

( √
3

dz1 + 3
−

√
2

dz1 + 2

)
+ 2

√
6

5

= 2 − 4
√

6

5
+

√
3

2
− 2

√
2

3
+ 2

√
dv6

( √
3

dv6 + 3
−

√
2

dv6 + 2

)
,

which is negative for dv6 ≤ 3. Therefore, we assume that dv6 = r ≥ 4 and N(v6) = {v5, w1, . . . , wr−1}.
Case 2.4.1.1. We suppose that there exists a minimum dominating set D in T such that v6 ∈ N[D \ {v5}]. In such a case, if 
we denote T6 = T − {v1, v2, v3, v4, v5, z1}, we have
7
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G A(T ) = G A(T6) + 2
r−1∑
i=1

√
dwi

( √
r

dwi + r
−

√
r − 1

dwi + r − 1

)

+2
√

3r

3 + r
+ 2

√
3

4
+ 2

√
6

5
+ 2 + 2

√
2

3
.

By induction, we know that G A(T6) ≤ f (n, γ ) − 6, then

G A(T ) ≤ f (n, γ ) − 4 + 2
r−1∑
i=1

√
dwi

( √
r

dwi + r
−

√
r − 1

dwi + r − 1

)

+2
√

3r

3 + r
+ 2

√
3

4
+ 2

√
6

5
+ 2

√
2

3
.

But, it can be checked that

−4 + 2
r−1∑
i=1

√
x

( √
r

x + r
−

√
r − 1

x + r − 1

)
+ 2

√
3r

3 + r
+ 2

√
3

4
+ 2

√
6

5
+ 2

√
2

3
< 0,

for every r ≥ 4 and x ≥ 1.
Case 2.4.1.2. We suppose that, for any minimum dominating set D in T , we have D ∩ N[v6] = {v5}. In such a case, since 
r ≥ 4, we can do the same we did in Case 2.3.2.
Case 2.4.2. We suppose that dz1 = 2. Then, we have

2 − 6
√

6

5
+ 2

√
dv6

( √
3

dv6 + 3
−

√
2

dv6 + 2

)
+ 2

√
dz1

( √
3

dz1 + 3
−

√
2

dz1 + 2

)
+ 2

√
6

5

= 1 − 2
√

6

5
+ 2

√
dv6

( √
3

dv6 + 3
−

√
2

dv6 + 2

)
,

which is equal to zero if dv6 = 2. Therefore, we suppose that dv6 ≥ 3. Moreover, by the above cases, we can assume that 
N(z1) = {v5, a1}, N(a1) = {z1, a2}, N(a2) = {a1, a3} and da3 = 1, and, if N(v6) = {v5, v7, w1, . . . , wr−2}, by the above cases 
and Claims 1, 2, 3 and 4, we can also assume that dwi ≤ 3 for every i ∈ {1, 2 . . . , r − 2}.
Case 2.4.2.1. We suppose that there exists a minimum dominating set D in T such that v6 ∈ N[D \ {v5}]. In such a case, if 
we denote T9 = T − {v1, v2, v3, v4, v5, z1, a1, a2, a3}, we have

G A(T ) = G A(T9) + 2
r−2∑
i=1

√
dwi

( √
r

dwi + r
−

√
r − 1

dwi + r − 1

)

+2
√

dv7

( √
r

dv7 + r
−

√
r − 1

dv7 + r − 1

)
+ 2

√
3r

3 + r
+ 4

√
6

5
+ 4 + 4

√
2

3
.

By induction, we know that G A(T9) ≤ f (n, γ ) − 9, then

G A(T ) ≤ f (n, γ ) − 5 + 4
√

6

5
+ 4

√
2

3
+ 2

√
3r

3 + r
+ 2

√
dv7

( √
r

dv7 + r
−

√
r − 1

dv7 + r − 1

)

+2
r−2∑
i=1

√
dwi

( √
r

dwi + r
−

√
r − 1

dwi + r − 1

)
.

Now, using that max
{ √

r
1+r −

√
r−1
r ,

√
2
( √

r
2+r −

√
r−1

1+r

)}
≤ √

3
( √

r
3+r −

√
r−1

2+r

)
for 3 ≤ r ≤ 11 and max

{√
2
( √

r
2+r −

√
r−1

1+r

)
,

√
3
( √

r
3+r −

√
r−1

2+r

)}
≤

√
r

1+r −
√

r−1
r for r ≥ 12, it can be checked that

−5 + 4
√

6

5
+ 4

√
2

3
+ 2

√
3r

3 + r
+ 2

√
dv7

( √
r

dv7 + r
−

√
r − 1

dv7 + r − 1

)

+2(r − 2)
√

3

( √
r

3 + r
−

√
r − 1

2 + r

)
< 0,

for 3 ≤ r ≤ 11 and dv7 ≥ 1, and
8
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−5 + 4
√

6

5
+ 4

√
2

3
+ 2

√
3r

3 + r
+ 2

√
dv7

( √
r

dv7 + r
−

√
r − 1

dv7 + r − 1

)

+2(r − 2)

( √
r

1 + r
−

√
r − 1

r

)
< 0,

for r ≥ 12 and dv7 ≥ 1.
Case 2.4.2.2. We suppose that, for any minimum dominating set D in T , we have D ∩ N[v6] = {v5}. Looking at the proof 
of the Case 2.3.2, we can assume that r = 3, N(w1) = {v6, a1}, N(a1) = {w1, a2} and da2 = 1. We denote dv7 = t and 
T3 = T − {w, a1, a2}. Then

G A(T ) = G A(T3) + 2
√

t

( √
3

t + 3
−

√
2

t + 2

)
+ 2

√
3

( √
3

3 + 3
−

√
2

3 + 2

)

+2
√

6

5
+ 1 + 2

√
2

3
.

By induction, we know that G A(T3) ≤ f (n, γ ) − 3, so

G A(T ) ≤ f (n, γ ) − 1 + 2
√

2

3
+ 2

√
t

( √
3

t + 3
−

√
2

t + 2

)
< f (n, γ ),

for every t ≤ 4.
Finally, we suppose that N(v7) = {v6, v8, b1, b2, . . . , bt−2} with t ≥ 5. If dbi ≥ 2 and we consider the rooted subtree T v7bi

with root v7 and containing bi and all its descendants, since the height is not bigger than 6, we can do in a path of this 
subtree from the root to a leaf with length equal to the height, the same we did with the path v1 − v2 − v3 − v4 − v5 − v6 −
v7 to get that dbi ≤ 3. Therefore, if we consider the subtrees T ′ and T ′′ of T − {v6 v7} containing v6 and v7, respectively, 
we have that

G A(T ) = G A(T ′) + G A(T ′′) + 2
√

dv8

( √
t

dv8 + t
−

√
t − 1

dv8 + t − 1

)

+2
t−2∑
i=1

√
dbi

( √
t

dbi + t
−

√
t − 1

dbi + t − 1

)

+2
√

2

( √
3

2 + 3
−

√
2

2 + 2

)
+ 2

√
3

( √
3

3 + 3
−

√
2

3 + 2

)
+ 2

√
3t

3 + t
.

By induction, we know that G A(T ′) + G A(T ′′) ≤ f (n, γ ) − 3 + 4
√

2
3 , then

G A(T ) ≤ f (n, γ ) − 3 + 4
√

2

3
+ 2

√
dv8

( √
t

dv8 + t
−

√
t − 1

dv8 + t − 1

)

+2
t−2∑
i=1

√
dbi

( √
t

dbi + t
−

√
t − 1

dbi + t − 1

)
+ 2

√
3t

3 + t
.

If 5 ≤ t ≤ 11, then

−3 + 4
√

2

3
+ 2

√
dv8

( √
t

dv8 + t
−

√
t − 1

dv8 + t − 1

)

+2
t−2∑
i=1

√
dbi

( √
t

dbi + t
−

√
t − 1

dbi + t − 1

)
+ 2

√
3t

3 + t

≤ −3 + 4
√

2

3
+ 2

√
dv8

( √
t

dv8 + t
−

√
t − 1

dv8 + t − 1

)

+2(t − 2)
√

3

( √
t

3 + t
−

√
t − 1

3 + t − 1

)
+ 2

√
3t

3 + t
< 0,
9
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for every dv8 ≥ 1.
If t ≥ 12, then

−3 + 4
√

2

3
+ 2

√
dv8

( √
t

dv8 + t
−

√
t − 1

dv8 + t − 1

)

+2
t−2∑
i=1

√
dbi

( √
t

dbi + t
−

√
t − 1

dbi + t − 1

)
+ 2

√
3t

3 + t

≤ −3 + 4
√

2

3
+ 2

√
dv8

( √
t

dv8 + t
−

√
t − 1

dv8 + t − 1

)

+2(t − 2)

( √
t

1 + t
−

√
t − 1

t

)
+ 2

√
3t

3 + t
< 0,

for every dv8 ≥ 1. �
Let us observe that, since the function f (n, γ ), in the above proof, is an increasing function on γ and f

(
n, n

3

) = n − 3 +
4
√

2
3 , the upper bound given in Theorem 2.3 is better that n − 3 + 4

√
2

3 when the domination number of the tree satisfies 
γ < n

3 .

3. Extremal trees for the geometric-arithmetic index

In this section we characterize all the trees attaining the upper bound given in Theorem 2.3. To do that, we consider the 
following family F of graphs, which we define recursively. We consider any path with 3k vertices in F and we construct 
new graphs in the family in two ways.

(i) If T ∈ F satisfies that there exists v ∈ V (T ) such that v belongs to a minimum dominating set in T , N(v) = {v1, v2}, 
and dv1 = 2 = dv2 , and we take any path P , whose consecutive vertices are u1, u2, . . . , u3t+1, then the graph T ′ such 
that V (T ′) = V (T ) ∪ V (P ) and E(T ′) = E(T ) ∪ E(P ) ∪ {vu1}, belongs to F .

(ii) If T ∈ F , v is a leaf in T and we take any path P , whose consecutive vertices are u1, u2, . . . , u3t , then the graph T ′
such that V (T ′) = V (T ) ∪ V (P ) and E(T ′) = E(T ) ∪ E(P ) ∪ {vu1}, belongs to F .

Using again the function

f (n, γ ) = 3γ +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n − 3γ ) − 3 + 4

√
2

3
,

we present the following results.

Lemma 3.1. If T ∈F , then G A(T ) = f (n(T ), γ (T )).

Proof. If T is a path with 3k vertices we can easily check that the result is true. (i) We suppose that there exists T ∈
F that satisfies that G A(T ) = f (n(T ), γ (T )) and there exists v ∈ V (T ) such that N(v) = {v1, v2}, dv1 = 2 = dv2 , and v
belongs to a minimum dominating set in T . If we consider T ′ ∈ F , attaching to v a path P , whose consecutive vertices are 
u1, u2, . . . , u3t+1, by the edge vu1, we have

G A(T ′) = G A(T ) + G A(P ) − 2 + 6
√

6

5
− 2

√
2

3
+ 1

= 3γ (T ) +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n(T ) − 3γ (T )) − 3 + 4

√
2

3

+3t − 2 + 4
√

2

3
− 1 + 6

√
6

5
− 2

√
2

3

= 3(γ (T ) + t) +
(

6
√

6

5
+ 2

√
2

3
− 3

)
((n(T ) + 3t + 1) − 3(γ (T ) + t))

−3 + 4
√

2

3

10
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= 3γ (T ′) +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n(T ′) − 3γ (T ′)) − 3 + 4

√
2

3
.

(ii) If T ∈F satisfies that G A(T ) = f (n(T ), γ (T )), T has a leaf v , P is a path whose consecutive vertices are u1, u2, . . . , u3t , 
and we consider the graph T ′ such that V (T ′) = V (T ) ∪ V (P ) and E(T ′) = E(T ) ∪ E(P ) ∪ {vu1}, since the only neighbor of 
v has degree 2, we have

G A(T ′) = G A(T ) + G A(P ) − 2
√

2

3
+ 1 + 1 − 2

√
2

3
+ 1

= 3γ (T ) +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n(T ) − 3γ (T )) − 3 + 4

√
2

3

+3t − 3 + 4
√

2

3
+ 3 − 4

√
2

3

= 3γ (T ′) +
(

6
√

6

5
+ 2

√
2

3
− 3

)
(n(T ′) − 3γ (T ′)) − 3 + 4

√
2

3
. �

Theorem 3.2. G A(T ) = f (n(T ), γ (T )) if and only if T ∈F .

Proof. By Lemma 3.1, we only need to prove that any tree T satisfying G A(T ) = f (n(T ), γ (T )) belongs to the family F . 
By absurdum, we suppose that there exists a tree T such that G A(T ) = f (n(T ), γ (T )) and T /∈ F . We take the tree T
satisfying that with the minimum number of vertices. We consider T as a rooted tree with root vr+1 and height r, and 
take v1, v2, . . . , vr+1 a path from the root to a leaf v1 in T . If we follow the proof of Theorem 2.3, we can assume that 
dv2 = dv3 = dv4 = 2 and dv5 = 2 or dv5 = 3, dz1 = 2 and dv6 = 2.

If dv5 = 2 and we take T ′ = T − {v1, v2, v3}, we have

G A(T ) = G A(T ′) − 2
√

2

3
+ 3 + 2

√
2

3
≤ f (n(T ′), γ (T ′)) + 3 = f (n(T ), γ (T )),

thus, G A(T ′) = f (n(T ′), γ (T ′)). If T ′ ∈ F , since v4 is a leaf in T ′ , we would have that T belongs to F . Therefore, T ′ /∈ F
and we get a contradiction with the minimality of T .

If dv5 = 3, dz1 = 2 and dv6 = 2 and we consider T ′ = T − {v1, v2, v3, v4}, we have

G A(T ) = G A(T ′) − 2 + 6
√

6

5
+ 2 + 2

√
2

3
≤ f (n(T ′), γ (T ′)) + 6

√
6

5
+ 2

√
2

3
≤ f (n(T ), γ (T )),

thus, G A(T ′) = f (n(T ′), γ (T ′)) and γ (T ′) = γ − 1, it means, v5 belongs to a minimum dominating set in T ′ . If T ′ ∈F , then 
T would belong to F . Therefore, T ′ /∈F and we get a contradiction with the minimality of T . �
4. Conclusions

We have determined an upper bound for the geometric-arithmetic index of trees and we have characterized the extremal 
trees for this bound, but these results can be applied to obtain a lower bound for another topological index, the arithmetic-
geometric index. The arithmetic-geometric index, which firstly appeared in [15], is defined as

AG(G) =
∑

uv∈E(G)

du + dv

2
√

dudv
.

For any tree T with n ≥ 3 vertices, it was recently proved in [19] that

AG(T ) ≥ n − 3 + 3√
2

and AG(T ) + G A(T ) ≥ 2n − 6 + 17
√

2

6
,

and that these lower bounds are only attained by the paths Pn with n vertices. Then, by our Theorem 2.3, it T is a tree 
with order n and domination number γ , we obtain

AG(T ) ≥ n +
(

4 − 6
√

6

5
− 2

√
2

3

)
(n − 3γ ) − 3 + 3√

2
,

11
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and this lower bound is only attained by the paths P3k . Moreover, since 4 − 6
√

6
5 − 2

√
2

3 > 0, this lower bound improves the 
general one n − 3 + 3√

2
when γ (T ) < n

3 .

The family F of graphs attaining the upper bound in Theorem 2.3 was already given in [4] as extremal trees for a 
similar upper bound. Using the same family Ts,r they gave there for the lower bound of the Randić index, we think that the 
following conjecture could be true.

Conjecture 4.1. If T is a tree with order n and domination number γ , then

G A(T ) ≥ 2(n − 2γ + 1)
√

n − γ

n − γ + 1
+ 2

√
2(γ − 1)

√
n − γ

n − γ + 2
+ 2

√
2(γ − 1)

3
.

Moreover, this lower bound is attained if and only if T = Ts,r .

If this conjecture were true, since the inequalities

AG(T ) ≤ n
√

n − 1

2
and AG(T ) + G A(T ) ≤ (n2 + 4n − 4)

√
n − 1

2n

were proved in [19], and they are only attained when T is a star, we would have

AG(T ) ≤ (n2 + 4n − 4)
√

n − 1

2n
− 2(n − 2γ + 1)

√
n − γ

n − γ + 1

−2
√

2(γ − 1)
√

n − γ

n − γ + 2
− 2

√
2(γ − 1)

3
.

This upper bound is smaller than n
√

n−1
2 when γ ≥ 2.
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