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A B S T R A C T   

Designing and operating bioreactors with in-situ product removal (ISPR) can be challenging, particularly in 
discontinuous systems, where the ISPR and substrate feeding need to be effectively scheduled. Mathematical 
models can help assess different scheduling regimes in the fermentation medium and provide a means to optimise 
the process. Focusing on a propionate production case study, a model of a co-culture batch fermentation with 
electrodialysis (the ISPR system), was developed. Using this model, the product yield and/or the productivity 
were maximised by 1) single objective optimisation maximising the product yield (0.49 gpropionate /gglucose) or 
productivity (0.75 gpropionate/L/h), 2) multi objective optimisation to pursue trade-off solutions between the yield 
and productivity and 3) a stochastic optimisation maximising the productivity robustly (0.64 gpropionate/L/h) to 
account for uncertainties associated to the model parameters. With this contribution it is demonstrated that, 
through mathematical models, ISPR can be implemented and adapted to the user’s objectives.   

1. Introduction 

Many biotechnological processes can still not compete economically 
with traditional production methods. Currently, the economic feasibility 
of many fermentation pathways is limited due to diluted concentrations 
in the broth leading to high downstream costs (Woodley et al., 2008). On 
top of this, many fermentation processes have limited yields and limited 
productivities (Zeng, 2019). A key problem associated with these limi
tations is the inhibition of the microbial community by either the sub
strate or product formation (Santos et al., 2021). 

To alleviate the problem of product inhibition, in situ product 
removal (ISPR) can be applied during the fermentation process. The goal 
of this technique is to separate the products, during the fermentation 
process, before their concentration becomes inhibitory to the microor
ganisms, increasing the potential yield, productivity and titre 
(López-Garzón and Straathof, 2014). Additionally, it can be seen as the 
first step of downstream processing, reducing the number of processes 
needed for the extraction of the valued products (Woodley et al., 2008). 

Unfortunately, designing processes with ISPR still remains a chal
lenging task, because the way ISPR is implemented can have critical 

effects on the outcome of these reactors. ISPR can either be installed 
directly inside the reactor (in-situ) or a stream of the fermentation broth 
can be directed out of the reactor towards the ISPR unit (ex-situ). The 
configuration depends on the properties of the product, the number of 
phases involved and the type of recovery process employed (Buque-
Taboada et al., 2006). Regarding the operation of the ISPR, it faces 
challenges such as: 1) higher risks for contamination of the microbial 
community due to longer operational times which can result in unex
pected process oscillations (e.g., a slower product formation due to a 
slower growth rate of the biomass). In the case of ex-situ recovery pro
cesses the risk of contamination is also substantial; 2) large energy 
consumptions of the extraction procedures and; 3) attaining a maximum 
product recovery as many ISPR techniques do not completely extract the 
targeted product (Van Hecke et al., 2014; Woodley et al., 2008). 

To facilitate the design or process optimisation of ISPR systems, 
mathematical modelling is an invaluable tool, minimizing the need for 
experiments and avoiding costly trial-and-error approaches (Van Hecke 
et al., 2014). Several works have already created and used models to 
optimise various reactor systems implementing different ISPR tech
niques (Table 1). For example, Byun et al. (2020) modelled and opti
mised a continuous acetone-butanol-ethanol (ABE) fermentation 
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process with continuous ex situ recovery by adsorption. With the ob
tained model the authors try to maximise productivity, yield, and 
minimise the sugar loss. Similarly Lin and Wang (2008) and Z. Shi et al. 
(2005) also tried to maximise the productivity with the use of optimi
sation algorithms applied to the reactor models. Note that in almost all 
of these examples the extraction procedure is continuous. In other 
words, by modelling a system that incorporates ISPR, it is possible to 
find optimal strategies that maximise certain operational performance 
indexes (e.g., product yield, productivity or titre). 

Focusing on attaining a maximum product recovery, the operational 
design needs to be carefully chosen, certainly for systems implementing 
ISPR discontinuously. For example, how long should an extraction cycle 
last, how many extraction cycles should there be, when is the best 
moment to activate the extraction process to avoid inhibition phenom
ena, when should feeding be introduced with respect to the extraction 
cycles so a maximum amount of product can be extracted, etc. Answers 
to these questions are scarce in literature and deserve further attention. 

Experimental works that implement ISPR discontinuously are that of 
Wang et al. (2012) and Liu et al. (2021). The authors always choose to 
implement the extraction cycles at the same time intervals or when a 
certain amount of product is produced. However different methods of 
scheduling these extraction cycles are not explored. In this work it is 
hypothesised that the scheduling of the extraction cycles can have a 

large effect on the performance of the reactor. 
In this context, the goal of this work is to optimise the experimental 

system of Selder et al. (2020) to find operational strategies using a 
mathematical model. The experimental system is a co-culture fermen
tation in a batch reactor set up, featuring electrodialysis as ISPR. This 
reactor produces propionate from glucose, with lactate as an interme
diate product, where feeding and ISPR are applied discontinuously. 
From the solutions of the optimisation problems, suitable operational 
designs relating to the scheduling of the feed and extraction cycles can 
be proposed, that maximise the productivity and/or the yield. 

To find efficient scheduling practices for this system the following 
workflow is proposed: 1) develop a robust mechanistic model describing 
the fermentation 2) validate the model by comparing a simulation of an 
experiment to independent experimental data and 3) define corre
sponding optimisation problems depending on the needs of the operator. 
An approach to account for model and parametric uncertainty when 
defining an optimisation problem, is also showcased. This approach can 
be used for situations where a robust implementation (i.e., an operation 
with little associated risk) is needed to obtain a desired objective. A 
detailed description of this workflow is included in the methodology so 
that it can be adapted to other ISPR featuring bioprocesses. 

This case study is particularly challenging because: 1) The model 
needs to describe a co-culture fermentation instead of a pure culture, 2) 

Nomenclature 

Parameters Units 
kmba Maximum substrate uptake rate of Bacillus gCODglu 

gCODx
− 1 h− 1 

kmve Maximum substrate uptake rate of Veillonella gCODlac 
gCODx

− 1 h− 1 

kmba_yes Maximum yeast extract uptake rate of Bacillus gCODye 
gCODx

− 1 h− 1 

kmve_ye Maximum yeast extract uptake rate of Veillonella gCODye 
gCODx

− 1 h− 1 

Ksglu Affinity constant glucose uptake gCOD L− 1 

Kslac Affinity constant lactate uptake gCOD L− 1 

Ksyeb Affinity constant yeast extract uptake Bacillus gCOD L− 1 

Ksyev Affinity constant yeast extract uptake Veillonella gCOD L− 1 

Kdecve Decay rate coefficient of Veillonella h− 1 

Yglu Yield of glucose to biomass Bacillus gCODX gCODglu
− 1 

Ylac Yield of lactate to biomass of Veillonella gCODX gCODlac
− 1 

Yyeb Yield of yeast extract to biomass of Bacillus gCODX gCODye
− 1 

Yyev Yield of yeast extract to biomass of Veillonella gCODX 
gCODye

− 1 

KIlac Lactate inhibition constant gCOD L− 1 

KIpro Propionate inhibition constant gCOD L− 1 

KIace Acetate inhibition constant gCOD L− 1 

cf1 Conversion factor: gCOD lactate to gCOD propionate 
gCODpro gCODlac

− 1 

cf2 Conversion factor: gCOD lactate to gCOD acetate gCODace 
gCODlac

− 1 

Inh Inhibition term of propionate and lactate on V. criceti (− ) 

Abbreviations 
COD Chemical oxygen demand 
ISPR In situ product removal 
REED Reverse enhanced electro dialysis  

Table 1 
Literature overview of previous models and experimental systems incorporating In-situ product removal to produce fermentative products.  

Target compound Extraction technique Productivity 
(g/L/h) 

Description Source 

Lactate Absorption column 
(continuous) 

4.35 ISPR used for pH control not to reduce inhibition. Model was used to optimise of 
the final lactate concentration by varying the size of the cell immobilizing cubes 
and the absorption loading 

Sun et al. 
(1999) 

Butanol Flash extraction (continuous) 26.0 Optimising the concentration feed, dilution rate and number of staged to find 
trade-offs between productivity, energy requirements and product purity 

Z. Shi et al. 
(2005) 

Lactate Extraction with organic solvent 
(continuous) 

120.0 Multi-objective optimisation using Fuzzy Optimisation. Optimising the 
productivity, the overall glucose conversion and the reactor yield. The 
operational conditions that where varied: the feed concentrations, the bleed 
ratio, the fermenter volume ratio, and the flow rate ratio. 

Lin and 
Wang 
(2008) 

Phenylethanol / 
Phenylethylacetate 

Membrane extraction 
(continuous) 

0.25 No optimisation applied. A model created incorporating ISPR Adler et al. 
(2011) 

Propionate Anion Exchanger 
(discontinuous) 

0.37 No model made. Comparison of Anion Exchanger-Based (the ISPR) in direct and 
indirect contact of cells in a batch fermentation. 

Wang et al. 
(2012) 

Acetate, Butanol, Ethanol Absorption column 
(continuous) 

3.75 Optimising productivity using Multi-objective optimisation. The feeding rate, 
feed concentration and circulation rate are considered as the operating 
variables. They are optimised with respect to the objectives: maximising the 
productivity, maximising the product yield, or minimising the substrate loss. 

Byun et al. 
(2020) 

ε-Poly-L-lysine Cationic ion-exchange resin 
(discontinuous/ continuous) 

0.39 Experimental system comparing discontinuous and continuous ISPR. No model 
made 

Liu et al. 
(2021)  
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unlike most ISPR systems, feeding and extraction are applied discon
tinuously (as seen in Table 1), potentially extracting the substrate and 3) 
depending on the objective of the operator there are different ways to 
operate the system. 

With this in mind the paper is organised as followed: First the 
methods for model development, including calibration and validation, 
are described. Then, the methods for optimisation are covered, featuring 
different levels of complexity depending on the user’s objectives and 
requirements of solution robustness. Finally, (advanced) monitoring 
techniques are identified as a means to improve the real-time operation 
of ISPR. 

2. Methods 

To optimise the scheduling of the extraction cycles and feeding for 
the experimental system of Selder et al. (2020), a model that accurately 
simulates the system was developed using experimental data. The code 
generated to create this model, as well as the implementation of the 
optimisation problems can be found on the GitHub repository: https://gi 
thub.com/llvdrhau/Co-culture_ISPR_Optimisation-. This experimental 
system is particularly interesting to model as the lactate platform is 
becoming increasingly more relevant, holding the potential to replace 
traditional petrochemical processes (Shahab et al., 2020). 

2.1. Experimental system to model 

In this system, the main goal is to produce propionate in a co-culture 
fermentation, enhanced by the implementation of ISPR. The batch 

reactor uses glucose as substrate and yeast extract as mineral nutrients, 
where glucose was sporadically added by spikes during the process. The 
two bacterial species used in this co-culture were Bacillus coagulans, 
which converts glucose into lactate, and Veillonella criceti, which fer
ments lactate into propionate and acetate in a 2:1 molar ratio (Fig. 1). In 
the beginning the reactor is only inoculated with B. coagulans and after 
12 h V. criceti is added. Additionally, yeast extract was found to be 
consumed by both bacteria and was therefore incorporated in the model 
as an additional substrate. The bottleneck of this process lies with 
V. criceti which is sensitive to substrate (i.e., lactate) and product inhi
bition (Sabra et al., 2013). To tackle the problem of product inhibition 
ISPR was applied by means of reverse electro-enhanced dialysis (REED), 
which selectively removes monovalent organic acid ions (i.e., lactate, 
acetate and propionate) with an electrical field as driving force to an 
accumulation reservoir. The REED unit has a membrane area of 64 dm2 

with a current density of 400 A m − 2 where the polarity of the mem
brane is reversed every 60 s. In the accumulation reservoir (volume of 1 
L) NaOH is recirculated at a concentration of 0.3 M. In the reactor 
(volume of 1.2 L) the pH was controlled by a 6 M KOH and a 2.5 M H₂SO₄ 
solution at a value of 6.2. H₂SO₄ was only used during the electrodialysis 
due to the addition of OH− to the fermenter during the extraction. REED 
was not used continuously throughout the process but was instead 
applied discontinuously during the fermentation in cycles of 2 h. Longer 
extraction cycles were not considered as lactate can also be removed 
during the extraction cycles. This could put V. criceti in a potentially 
substrate-deficient state and severely inhibit its growth. 

2.2. Mathematical model 

The mathematical model consists of mass balances of the different 
components (i.e., glucose, yeast, lactate, propionate, acetate, biomass of 
V. criceti, biomass of B. coagulans and inert dead biomass) in a discon
tinuous reactor (Eq. (1)-(2)). The system is considered as a perfectly 
mixed discontinuous fed-batch reactor where no volume leaves the 
reactor at a constant pH of 6.2. The changes in volume are due to feeding 
in the form of glucose spikes and the inoculation of the V. criceti. The 
model does not consider the changes in volume because of foaming, CO2 
solubilization, or the extraction of volume due to sampling (which was 
only 2 ml per sample). The model also does not consider water transport 
across the REED unit due to electro-osmosis, as this did not occur during 

Fig. 1. Schematic representation of the co-culture fermentation in the work of 
Selder et al. (2020). Red represents the reported inhibition on V. criceti. 

Table 2 
Stoichiometric matrix and the corresponding kinetic expressions. In the matrix Yglu in gCODglu/gCODx, Yyeb in gCODye/gCODx, Yyev in gCODye/gCODx and Ylac in 
gCODye/gCODx are the yields of the different substrates to the biomass of B. coagulans or V. criceti. Parameters cf1 and cf2 are parameters to convert gCOD of lactate to 
gCOD of propionate (0.77 gCODprop/gCODlac) and acetate (0.23 gCODprop/gCODlac) respectively and were calculated by stoichiometric relationships. In the equations 
Sglu, Slac, Sace, Sye, Xba and Xve are the concentrations, in gCOD/L, of glucose, lactate, acetate, yeast extract, biomass of B. coagulans and biomass of V. criceti respectively. 
The maximum substrate uptake rate of B. coagulans and V. criceti are represented by kmba (gCODglu/gCODx/ h) and kmve (gCODlac/gCODx/h) respectively. The 
maximum yeast uptake of B. coagulans and V. criceti are represented by kmba_ye and kmve_ye (gCODye/gCODx/h) respectively. Ksglu, Kslac, KsYeb and KsYev in gCOD/L are 
the affinity constants for the glucose uptake by B. coagulans, lactate uptake by V. criceti, yeast uptake by B. coagulans and yeast uptake by V. criceti respectively. Finally, 
kdecve (h − 1) is the decay coefficient of V. criceti and Inhi the inhibition coefficient.  

Process Compounds          
Glucose 
(gCOD/L) 

Lactate 
(gCOD/L) 

Yeast 
(gCOD/ 
L) 

Propionate 
(gCOD/L) 

Acetate 
(gCOD/L) 

Biomass B. 
(gCOD/L) 

Biomass V. 
(gCOD/L) 

Inert mass 
(gCOD/L) 

Kinetic equations 

1. Glucose uptake − 1 (1-Yglu) 0 0 0 Yglu 0 0 
rglu = kmba

( Sglu

Ksglu + Sglu

)

Xba 

2. Yeast extract 
consumption 
B. coagulans 

0 (1-Yyeb) − 1 0 0 Yyeb 0 0 
ryeB =

kmba ye

( SYe

KsYeb + SYe

)

Xba 

3. Yeast extract 
consumption 
V. criceti 

0 0 − 1 (1-Yyev) 0 0 Yyev 0 
ryeV = kmve

( SYe

KsYev + SYe

)

Inhi⋅ 

Xve 

4. Lactate uptake 0 − 1 0 (1-Ylac) cf1 (1-Ylac) cf2 0 Ylac 0 
rlac =

kmve ye

( Slac

Kslac + Slac

)

Ihni⋅Xve 

5. Decay of V. criceti 0 0 0 0 0 0 − 1 1 rdec = kdecve⋅Xve  
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the experiments. Considering the density of the feed and reactor holdup 
as constant, the mass balances of the different components can be 
defined by the following equations: 

dC(t)
dt

= D(t)
(
Cspike − C(t)

)
+ R(t) − T(t) (1) 

Where C(t) is the concentration of the different compounds in the 
reactor in gCOD/L at time t (ranging from 0 to 63 h), Cspike is the con
centration of the spikes in gCOD/L and T(t) is the transport flow across 
the REED extraction membrane in gCOD/L/h. D(t) represents the dilu
tion rate (h − 1) and is zero except when a spike is added to the 
fermentation reactor and is represented by the following equation: 

D (t) =
F(t)
V(t)

with V(t) = V(0) +
∫ t

0
F(t′ )dt

′ (2) 

Where V(t) is the reactor volume in L and F(t) is feed flowrate in L/ 
h). The initial values of the volume, glucose concentration and bacterial 
concentration, were obtained from the experimental set up of Selder 
et al. (2020) (1.2 L, 15 gCOD/L and 0.035 gCOD/L, respectively). All 
other states are zero at t = 0.” 

The reaction rate, R(t) (Eq.(1)), is calculated by considering the 
following 5 processes: 1) glucose uptake by B. coagulans 2) uptake of 
yeast extract by B. coagulans 3) uptake of yeast extract by V. criceti 4) 
lactate uptake by V. criceti and 5) the decay of V. criceti (Table 2). These 
processes can be formulated as equations in the form of Monod kinetics, 
including inhibition terms for the processes related with V. criceti. In 
cases where the experimental mass balances could not explain the 
evolution of the compounds, the model included the consumption of 
yeast extract as represented by process 2) & 3). The decay of B. coagulans 
was not considered because there was not enough data to accurately 
determine the process. The kinetic expressions describing the reaction 
rates and the reactions stoichiometry can be found in Table 2. By 
multiplying the kinetic equations as an array of equations with the 
stoichiometric matrix, the reaction term R in Eq. (1) can be found for 
each compound. 

In the model the spike and transport events are activated/deacti
vated by switches in the form of a pseudo-step function taking a value of 
1 or 0 at the appropriate times. The pseudo-step function is a hyperbolic 
tangent function, which is a smooth function making it derivable for the 
ODE solver. To benchmark the different strategies and make them 
comparable to the experimental work, all the extraction intervals are 
equal and last 2 h. Note that this constraint on the extraction intervals 
would not be necessary if a more accurate representation of the decay of 
V. criceti could be achieved. If this were the case, the optimisation 
problem could also optimise the length of the intervals where the decay 
of V. criceti does not impact the system dramatically. Unfortunately, to 
the best of our knowledge there are no works that have estimated the 
decay of V. criceti and new costly experiments would have to be carried 
out to be able to estimate this parameter. Hence the same 2 h extraction 
cycles were taken similar to the experiments of Selder et al. (2020). 
During the extraction cycles, if the concentrations of the extracted 
compounds were smaller than 0.1 gCOD/L the extraction process is 
phase out for that specific compound. Otherwise, the extraction rates 
were set to fixed values representing the average extraction rates that 
were seen in the data. 

The mass balances of each component were implemented in MAT
LAB (version r2021a) and solved with built-in numerical solvers of 
MATLAB (ode45). The model uses gCOD to be able to accurately 
determine electron balances. However, for the remainder of this work 
gCOD will be converted to grams so convenient comparisons can be 
made (see supplementary materials for the conversion table). 

2.3. Inhibition term 

In order to include the experimentally observed inhibition of 
V. criceti in the model, the kinetic equations of Table 2 include an 

inhibition term (Inhi). Four potential expressions (Eq. (3)-(6)) were 
considered to describe the experienced inhibition which was either 
attributed to the combined or individual effects of lactate, propionate or 
acetate. 

Inh1 =

(
1

1 + (Slac/KIlac)

)(
1

1 +
(
Spro
/
KIpro

)

)(
1

1 + (Sace/KIace)

)

(3)  

Inh2 =

(
1

1 + (Slac/KIlac)

)(
1

1 +
(
Spro
/
KIpro

)

)

(4)  

Inh3 =

(
1

1 + (Slac/KIlac)

)

(5)  

Inh4 =

(
1

1 +
(
Spro
/
KIpro

)

)

(6) 

In these expressions KIlac, KIpro and KIace are the inhibition constants 
for lactate, propionate and acetate respectively. To determine the exact 
mechanism of inhibition experienced by V. criceti, the different mathe
matical expressions were tested during model calibration based on the 
best experimental data fit. 

2.4. Model calibration and validation 

To calibrate the parameter values of the kinetic equations, the 
following methodology was applied: first the parameters related to the 
two monocultures were calibrated with two datasets each, from batch 
experiments using individual monocultures (datasets 1.1 and 1.2 for 
B. coagulans and dataset 2.1 and 2.2 for V. criceti). The kinetic parame
ters for V. criceti, were calibrated using data from batch experiments 
involving glucose spikes. These datasets were also used to determine the 
most appropriate inhibition mechanisms and its related parameters (Eq. 
(3)-(6)). To calibrate the model to the data, Levenberg-Marquardt and 
trust-region-reflective methods were applied using a built-in solver 
lsqnonlin from MATLAB (Coleman and Li, 1996; Marquardt, 1963). 

Similar to the works of Frutiger et al. (2016), robust parameters were 
obtained by applying the bootstrap method. Briefly explained, this 
method consists of the following steps: 1) A reference parameter esti
mation is carried out to estimate reference residuals (i.e., the error be
tween the experimental and simulation data points); 2) assuming that 
these residuals have a uniform chance of occurring at each point, the 
reference residuals can be used to randomly create a new “artificial” set 
of data points (where the newly generated residuals have the same 
distribution profile as the previously mentioned residuals in step 1); 3) a 
new parameter estimation based on the new artificial dataset is carried 
out; and 4) Steps 2 & 3 are repeated for 500 iterations to find the dis
tribution of the parameters. The parameter values used in the model are 
the mean values of these distributions (Efron, 1992). 

For the parameter estimation, all the half saturation constants and 
the yield of the consumed yeast extract for both bacterial species, were 
given fixed values (Table 2) as available experimental data did not 
provide enough information to estimate them. This approach has a 
negligible impact on the predictive power of the simulations as substrate 
limiting conditions (were the half saturation constants become relevant) 
are barely explored. Additionally, identifiability issues with other pa
rameters and overfitting of the parameters to the data, is avoided (Flo
tats et al., 2006; Seeliger et al., 2002). As overfitting is avoided, the 
residuals used during the bootstrap method are not underestimated and 
hence do not bias the parameter estimation. 

To check and visualise if the simulations of the monoculture exper
iments sufficiently reproduce the experimental data to which the pa
rameters are calibrated to (within a 95% confidence interval), a Monte 
Carlo uncertainty analysis was performed. This analysis performs sim
ulations using different values of the estimated parameters sampled 
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from the distributions obtained from the bootstrap method. In this case, 
sampling was performed by using Latin hypercube sampling (Helton and 
Davis, 2003). Because the model has parameters that are correlated (e. 
g., kdecve and Ylac), the sampling was carried out considering these 
correlations according to the method of Iman and Conover (1982). 
These simulations result in a distribution of simulation outputs that can 
be treated statistically and be visualised in a graph reflecting the un
certainty of the model (McClarren, 2018). 

To quantitatively evaluate the fit of all the model predictions, the 
normalised root-mean-square error (NRMSE) of the model outputs (i.e., 
compound concentrations) were determined, calculated by Eq. (7). The 
NRMSE serves to aggregate the magnitudes of the errors in predictions 
for the various components into a single measure of predictive power 
(Hyndman and Koehler, 2006). 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1

(
yexp
t − ysim

t

)2

N

√

⋅nf − 1 (7) 

In Eq. (7), N is the amount of recorded data, yt
exp the experimental 

data at time t, yt
sim the simulation output at time t and nf is a normal

isation factor being the difference between the maximum and minimum 
value of the experimental data for each component. Once satisfactory 
parameters were found from the separate monoculture experiments, 
they were then combined into one cohesive co-culture model. To vali
date this model a simulation replicating a co-culture experiment with 
extraction cycles was compared to the experimental data. 

2.5. Optimisation of the co-culture model 

To find strategic solutions to operate the system, different optimi
sation problems and their objectives need to be defined. Various 
objective functions can be chosen and, in this case, the yield, the pro
ductivity or both at the same time were chosen as performance indexes. 
These performance indexes are of particular interest because of their 
importance to the economic performance of the process. The yield is an 
especially important metric when the substrate needs to be utilised in 
the most efficient way possible. This efficiency is necessary when either 
the obtained product or the used substrate is a very valuable resource. 
On the other hand, productivity is also an important parameter to 
maximise, certainly in cases where the obtained product is sold cheaply. 
In these cases, large bulks of product need to be sold regularly to ensure 
a healthy profit margin with respect to the capital investments. For this 
process the yield and productivity, are calculated as followed: 

fyield(z) =
mpro

mglu
=

Cext
pro⋅Vres

Cglu,0⋅Vreac + Vspikes⋅Cspike
glu

(8)  

fprod(z) =
mpro

tend
=

Cext
pro⋅Vres

tend
(9) 

The yield (fyield(z), in gpropionate/gglucose) is calculated by dividing the 
mass of extracted propionate (mpro in g) by the mass of glucose added 
during the entire process (mglu in g) (Eq. (8)). mglu is determined by 
adding the initial glucose mass in the rector and the glucose mass added 
by the spikes. To find the mass of extracted propionate the concentration 
in the reservoir (Cext

pro in g/L), and the volume of the reservoir (Vres in L) 
must be known. The initial mass of glucose is calculated as the product of 
the initial volume of the reactor (Vreac in L) and the initial concentration 
of glucose (Cglu,0 in g/L). Finally, the mass of glucose added by the spikes 
is determined by multiplying the total added volume of the spikes (Vspikes 

in L) by the concentration of the glucose spikes (Cspike
glu in g/L). The pro

ductivity (fprod(z), in gpropionate/L/h) is found by calculating the mass of 
extracted propionate and dividing it by the operational time of the 
reactor (tend in h) (Eq. (9)). 

2.5.1. Decision variables 
The objective functions are ultimately determined by the decision 

variables z which relate to the operational design of the reactor. For this 
process 9 decision variables were chosen as represented by the vector z 
= [Cspike

glu , tinoculum, tstart, Δt1, Δt2, Δt3, Δt4, Δt5, Δt6]. Where Cspike
glu is the 

concentration of the glucose spikes, tinoculum the time at which V. criceti is 
inoculated, tstart the time at which the first extraction cycle is activated 
and Δt1 to Δt6 are time intervals between the spikes and the start of an 
extraction cycle. To make the operation comparable to that of the 
experimental system performed by Selder et al. (2020), 6 extraction 
intervals where chosen. 6 intervals were chosen because it is not known 
if more extraction cycles would cause fouling and severely limit the 
extraction rates. For each spike the same concentration (as determined 
by Cspike

glu ) and volume (24 ml) is introduced to the system. Fig. 2 illus
trates the decision variables in relation to a typical operation of the 
system. Additionally, in this system the spikes are always introduced 
between extraction cycles where the interval between the start of the 
extraction cycle and the following spike are longer than 2 h i.e., the time 
it takes for 1 extraction cycle. 

2.5.2. Single objective optimisation 
If only one objective for the process is to be maximised, a single 

objective optimisation problem is used (Eq. (10)-(11)): 

max
z∈Ω

f (z) (10)  

Ω = {z : h(x)= 0, g(x) ≤ 0, a ≤ z ≤ b} (11) 

Where f(z) is the objective function and Ω represents the feasible 
space of the decision variables z. The feasible space is defined by the 
(non-)linear equality constraints h(z), the (non-)linear inequality con
straints g(z) and the lower and upper variable bounds a and b, respec
tively. The equality and inequality constraints are mainly put in place to 
ensure a minimum yield or productivity is achieved. The yield must be 
larger than 0.63 gCOD/gCOD in the case of optimising the productivity 
and the productivity must be larger than 0.60 gCOD/L/h in the case of 
optimising the yield. The bounds of the decision variables make sure 
that the spikes are always introduce between the extraction cycles. 

To solve these single objective problems the built-in function of 
MATLAB patternsearch was used. This algorithm uses derivative-free 
methods, called generalised pattern search according to the works of 
Conn et al. (2009). As the optimisation problem is nonconvex, this al
gorithm was chosen pragmatically given its quick computational speed 
(compared to other derivative-free methods) while avoiding the nu
merical issues of derivative-based algorithms. 

Fig. 2. Depiction of decision variables (vector z) in a typical operation: inoc
ulation of V. criceti ( ), extraction cycles ( ) and glucose spikes (↓). The 
concentration of the spike is determined by Cspike

glu .
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2.5.3. Multi-objective optimisation 
Strategies can also be found using multi-objective optimisation if 

multiple targets are desired to be optimised simultaneously (Eq. (12)- 
(13)). This optimisation technique is especially interesting to apply if the 
various objectives are conflictual (Custódio et al., 2011). In this case, the 
solution is not a single optimal result but rather a whole set of solutions 
called the nondominated set (also known as the Pareto set) representing 
the potential compromises amongst the objectives (Diwekar, 2020). This 
optimisation problem was carried out in MATLAB using the built-in 
function paretosearch. This algorithm uses the aforementioned general
ised pattern search but instead of updating a single point per iteration, it 
updates an iterate list of nondominated points (i.e., the points that have 

the best rank and are closest to the Pareto front) (Custódio et al., 2011). 
The multi-objective optimisation can be defined as followed: 

max
z ∈Ω

F(z) = (f1(z), f2(z), ..., fn(z)) (12)  

Ω = {z : h(x)= 0, g(x) ≤ 0, a ≤ z ≤ b} (13) 

Where F(z) represents the vector of objective functions (f1(z),f2(z), .
.., fn(z)). 

2.5.4. Stochastic optimisation 
If the strategy is sensitive to uncertain parameters, a more robust 

strategy can be found by stochastic optimisation. A strategy can be 
considered as not robust if the implementation of it is not always 
guaranteed to produce the desired result. This can be due to variations in 
the process variables such as the concentration of the initial inoculated 
bacteria, or uncertainty of the model parameters (e.g., the maximum 
substrate consumption rate of the microbial species). To design a process 
which is more robust against these uncertainties, a stochastic optimi
zation problem can be solved. The type of algorithm used to solve this 

Table 3 
Used parameters for the co-culture model with their respective confidence in
tervals (α = 0.05), units and source of the used parameters. The maximum 
consumption rates of the two substrates (glucose and yeast extract or lactate and 
yeast extract) were considered to be equal of each bacterial species (i.e., kmba =

kmba_ye, and kmve = kmve_ye).  

Abbreviation Value CI Units Source 

kmba 3.41 [3.22, 3.84] gCODglu gCODx
− 1 h − 1 Calibrated 

kmba_ye 3.41 [3.22, 3.84] gCODye gCODx
− 1 h − 1 Calibrated 

kmve 10.33 [9.11, 11.73] gCODlac gCODx
− 1 h − 1 Calibrated 

kmve_ye 10.33 [9.11, 11.73] gCODye gCODx
− 1 h − 1 Calibrated 

KSglu 0.10 / gCOD L − 1 Assumed 
KSlac 0.27 / gCOD L − 1 Assumed 
KSyeb 0.10 / gCOD L − 1 Assumed 
KSyev 0.50 / gCOD L-1 Assumed 
Kdecve 0.04 [0.04, 0.09] h − 1 Calibrated 
Yglu 0.07 [0.07, 0.08] gCODX gCODglu

− 1 Calibrated 
Ylac 0.03 [0.02, 0.04] gCODX gCODlac

− 1 Calibrated 
Yyeb 0.07 / gCODX gCODye

− 1 Assumed 
Yyev 0.03 / gCODX gCODye

− 1 Assumed 
KIlac 10.04 [8.42, 12.01] gCOD L − 1 Calibrated 
KIpro 7.34 [5.33, 10.67] gCOD L − 1 Calibrated 
cf1 0.78 / gCODpro gCODlac

− 1 Calculated 
cf2 0.22 / gCODace gCODlac

− 1 Calculated  

Fig. 3. Plots used to evaluate the fit of the calibrated parameters to the monoculture data. On plots (a) to (d) the concentration profiles of lactate, propionate, acetate 
and biomass of V. criceti plotted with data form dataset 2.1 ( ) and 2.2 (●) from the monoculture experiments with V. criceti. On plots (e) to (g) the concentration 
profiles of glucose, lactate and biomass of B. coagulans plotted with data form dataset 1.1 ( ) and 1.2 (*) from the monoculture experiments with B. coagulans. The 
green shading represents the 95% confidence interval of the simulation and were estimated by error propagation of the parameter uncertainties following a Monte 
Carlo procedure. 

Table 4 
Normalised root mean squared errors of the mono-culture models after the 
bootstrap analysis.  

Dataset NRMSE of components  

Glucose Lactate Propionate Acetate Biomass 

Mono-culture 
B. coagulans* 

0.13 0.10 / / 0.08 

Mono-culture V. criceti 
* 

/ 0.13 0.08 0.13 0.15 

Co-culture 
fermentation** 

0.23 0.32 0.18 0.17 0.15  

/ Indicates that this compound did not participate in a particular dataset. 
* Indicates that the data set was used for parameter calibration 
** Indicates the data was used for validation 
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optimisation problem was the “Here and now” algorithm. In this algo
rithm, the objective function and constraints are expressed in terms of a 
probabilistic representation e.g., average value, variance or percentiles 
of a distribution. The lower the percentile chosen as the objective dis
tribution, the more conservative and robust the attained solution is. This 
probabilistic representation is the result of a Monte Carlo simulation 
where the parameters are sampled as explained in Section 2.5 from the 
distributions obtained in the bootstrap method (Diwekar and Rubin, 
1991). The optimisation problem is defined as followed: 

max
z∈Ω

F(z, u) = P1(f (z, u)) (14)  

Ω = {z : P2(h(x, u))= 0,P3(g(z), u) ≥ 0, a ≤ z ≤ b} (15)  

where u is the vector of uncertain parameters sampled from the distri
butions attained by the bootstrap analysis and Pi represents the proba
bilistic representation (e.g., the tenth percentile from the distribution of 
f(z, u)) of the objective and the constraint functions. 

3. Results and discussion 

3.1. Model calibration and validation 

The first stage in calibrating the biochemical model was achieving a 
right representation for the inhibition of V. criceti. For this, model pre
dictions with different inhibition equations (Eq. (3)-(6)) were visually 
compared to the experimental data. The plots to compare the various 
simulations using different inhibition equations can be found in the 

supplementary materials (S1). When only considering lactate as the 
inhibiting compound (Eq. (5)), the simulation results displayed a clear 
mismatch to the experimental data. Considering all organic acids or only 
propionate as the inhibiting compounds (Eq. (3) & (6), respectively) 
resulted in a much better representation of the data. However, im
provements concerning the lactate consumption could still be made. The 
inhibition equation considering lactate and propionate as inhibiting 
compounds (Eq. (4)), clearly displayed the best fit and was therefore 
chosen to describe the inhibition of V. criceti in the model. The com
pounds used in Eq. (4) to describe the Inhibition of V. criceti, are also 
hypothesised to be the cause of inhibition in the experimental work of 
Sabra et al. (2013), further confirming that the correct inhibition 
equation was chosen. 

Robust parameters from the monoculture datasets were found by 
calibration with experimental data, using the Levenberg-Marquardt 
minimisation algorithm embedded in a bootstrap method (Table 3). 
The distributions of the parameters obtained by the bootstrap method 
can be found in the supplementary materials (S2). 

Comparing the obtained parameters to literature data it can be seen 
that the yield for B. coagulans (0.05 gCODX/gCODglu) and a similar 
Veillonella species (0.03 gCODX/gCODlac) are comparable to the yields 
used in the model (0.07 gCODX/gCODglu and 0.03 gCODX/gCODlac 
respectively) (Seeliger et al., 2002; Glaser and Venus 2018). Other pa
rameters such as the maximum growth rate for B. coagulans are 
considerably different. For example, in the works of Hidaka et al. (2010) 
a maximum growth rate of 12.8 gCODglu/gCODx/h was found while a 
growth rate of 3.41 gCODglu/gCODx/h was used in the model. The 
equation used to describe the lactate consumption in Hidaka et al. 

Fig. 4. Validation of the co-culture model on an independent dataset. Plots of glucose (a), lactate (b), propionate (c), acetate (d) and biomass (e) in the reactor can be 
seen. Data (x) glucose spikes (↓) extraction cycles ( ). In subplot (f) the extracted compounds and the corresponding experimental data from the accumulation 
reservoir are shown, propionate ( ), acetate ( ) and lactate ( ). 
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(2010) is considerably more complex and identifiability issues between 
other parameters might explain the different obtained values (Alberton 
et al., 2013). 

To evaluate the goodness of fit, plots (Fig. 3) to compare the simu
lation and experimental data were made and the NRMSE was deter
mined (Table 4). Visually, from Fig. 3, it can be seen that in most cases 
the experimental data points fall in the green shading, representing the 
95% confidence interval of the model solution. Model mismatch is only 
significant for the acetate profile (Fig. 3c), indicating that the model 
cannot describe acetate production with the same level of confidence. 
However, considering that acetate is not of primary interest in our 
evaluation of the system, this flaw in the model is not of much concern. 
In Table 4 it can also be seen that the NRMSE of the calibration datasets 
are all quite low giving us confidence in the obtained model parameters. 

To have a model able of describing the behaviour of the co-culture 
system, the kinetic parameters estimated for each individual strain 
were combined. The complete model was then validated on an inde
pendent dataset (Fig. 4). Comparing the RSME of the validation and 
calibration datasets (Table 4), it can be seen that the values are in the 
same order of magnitude, indicating that overfitting is not significant. 
This further confirms our confidence in the obtained parameters from 
the experimental data. Visually, from Fig. 4, it can be seen that for the 
glucose profile, the two last spikes of glucose don’t reach the datapoints. 
For the lactate profile the simulation clearly follows the data up until the 
last 2 data points, while for acetate and propionate the simulation 
slightly underestimates the concentrations in the beginning of the 
simulation. Finally, for the biomass concentration and the components 
in the reservoir the overall trend is followed, although the simulation 
becomes less accurate towards the end of the simulation. These de
viations could be attributed to 2 factors. The first is the fact that the 
extraction rate can vary in reality. A more realistic and accurate 
approach to model the extraction rates would be to consider the ions and 
base concentrations on both sides of the membrane, which oscillate with 
time. In this way the Donnan exclusion effect could be partially 
accounted for. I.e., as more of the organic acids are accumulated in the 
reservoir, the charge gradient over the membrane weakens and a con
centration gradient starts pushing the organic acids from the highly 
concentrated reservoir, back to the reactor with (potentially) lower 
concentrations. This effect reduces the possible extraction rate over time 
that can otherwise be obtained (Yaroshchuk, 2000). Considering a 
variable extraction rate is especially interesting in situations where the 
concentration of lactate is not low or moderately low (> 4 g/L). As can 
be seen in Fig. 4 and in most of the optimised simulations (see Section 
3.2), the lactate concentrations in the reactor during extraction, are 
mostly very low. As a result, the assumption that the lactate removal rate 
is constant and low is almost always valid. For conditions where this is 
not the case a variable extraction rate, which is dependent on the con
centration of organic acids, would be preferred. Additionally such a 
model would be particularly appropriate for analysing membrane lim
itations, process control, monitoring or the REED design like e.g., in the 
works of Prado-Rubio et al. (2011). However, the pragmatic approach 
followed here (i.e., a constant extraction rate, Eq. (1)) was assessed as 
sufficient for a first approach to the operational design of the fermen
tation process (i.e., the scheduling of extraction and feeding cycles). 
Future works should focus on modelling variable extraction rates for 
cases where a more detailed model is required e.g., for process control. 

Another reason for model mismatch is that the COD (or electron) 
balance of the experimental data did not always comply during the 
whole experiment resulting in data points that, in all likelihood, have a 
significant error. Despite this, it can be claimed that the proposed model 
is able to describe the experimental process satisfactorily and with 
robustness. 

The simulation, resulting in Fig. 4, obtains a productivity and yield of 
0.27 gpropionate /L/h and 0.23 gpropionate/gglucose respectively (Table 5). 
This simulation can be seen as the base case, roughly representing the 
experimental setup of Selder et al. (2020). The base case can be used as a Ta
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frame of reference to compare the results of the various optimisation 
techniques. 

3.2. Optimisation problems 

With the obtained model, three optimisation problems were applied: 
a single objective optimisation, a multi-objective optimisation and 
finally a stochastic optimisation problem. These optimisation problems 
lead to four different strategies serving different proposes and with 
different levels of robustness. The operational design (i.e., the concen
tration of the glucose spikes, the time when V. criceti is inoculated and 
the scheduling of the spikes and extraction cycles) and the obtained 
yield and productivity for each strategy can be found in Table 5. 

3.2.1. Single objective optimisation: optimising the product yield 
A single objective optimisation was used to maximise the yield of the 

system resulting in strategy 1. This strategy is characterised by starting 
all the extraction cycles when the substrate and intermediates (glucose 
and lactate) are consumed (Fig. 5a-b). Each time an extraction cycle 
ends a spike of substrate (glucose) is immediately added to the system. 
In the first few hours of this simulation the maximum concentration of 
lactate is reached, which is just over 4 gCODlactate/L, and the maximum 
propionate concentration is reached, which is just under 10 gCODpropi

onate/L (Fig. 5b-c). Because of these concentrations V. criceti is affected 
by inhibition, primarily caused by the high propionate concentration, 
prolonging the time it takes to deplete lactate. However, for each spike, 
slightly less time is needed to deplete lactate because of the removal of 
the inhibiting propionate and the increasing concentration of V. criceti 
biomass. 

This method of scheduling the spikes and extractions (Table 5, Fig. 5) 
leads to a very high yield of 0.49 gpropionate/gglucose, which represents 

96% of the theoretical maximum of the system (0.51 gpropionate/gglucose). 
The productivity reached for this strategy is 0.40 gpropionate/L/h. 

The biggest advantage of this strategy is that it can be made robust 
and easy to implement: the strategy relies on the fact that lactate is 
depleted during each extraction cycle. So, to make this strategy robust/ 
conservative, more time can be taken before activating the extraction 
cycles after a spike to ensure all the substrate is depleted. In other words, 
this strategy is best implemented when complete substrate utilisation is 
prioritised and a simple operational procedure is desired. 

The main drawback of this strategy is its very long operational time, 
which leads to rather low productivities (0.40 gpropionate/L/h). Accord
ing to Rodriguez et al. (2014), a general goal to reach in terms of pro
ductivity would be 1 g/L/h, to keep capital costs manageable for a 
commodity chemical such as propionate. In this work the authors based 
their economic analysis on a pure culture batch reactor with glucose as 
substrate (including the cost of up and down stream processing) without 
ISPR. Thus, a cost which Rodriguez et al. (2014) does not take into ac
count, is the cost of energy used during REED extractions. However, 
since the extraction cycles are considered as a part of the downstream 
processing, it can be said that a similar productivity needs to be 
achieved. 

To get closer to this goal a single optimisation problem maximising 
the productivity, was implemented resulting in strategy 2. Strategy 2 
almost doubles the productivity (0.75 gpropionate/L/h) compared to the 
previous solution but also has a yield that is roughly 10% lower than 
strategy 1 (0.45 gpropionate/gglucose) representing 88% of the theoretical 
maximum of the system). The simulation resulting in this solution starts 
the first extraction cycle very early and schedules the following 
extraction cycles and spikes very close to each other (Table 5, Fig. 6). As 
a result of the quick succession of extraction cycles, the concentration of 
lactate and propionate in the reactor stays beneath 2 gCODlactate/L and 3 

Fig. 5. Simulation of strategy 1 from the single objective optimisation optimising the yield. On plots (a) to (c) the concentration of glucose, lactate, and propionate 
can be seen. The inoculation of V. criceti is represented by , extraction cycles by and glucose spikes by ↓. Plot (d) is the concentration of the components in 
the reservoir. 

L. Van der Hauwaert et al.                                                                                                                                                                                                                   



Computers and Chemical Engineering 168 (2022) 108059

10

gCODpropionate/L respectively (Fig. 6b-c). At these concentrations the 
effects of inhibition are not as significant compared to the other stra
tegies, allowing for a quicker production of propionate. 

This optimisation problem still does not reach the goal of 1 g/L/h. To 
do so, a parallel extraction unit or more extraction cycles need be 
implemented as the system is limited by the REED extraction rate. 
However, this comes with a significant increase in energy consumption. 
According to Selder et al. (2020) the energy requirement was 0.03 kWh/ 
gpropionate. Assuming the energy requirements increase linearly, an extra 
0.14 kWh would need to be applied to reach the goal of 1 gpropionate/L/h 
representing a 22% increase in energy consumption. 

3.2.2. Multi-objective optimisation: optimising the productivity and yield 
simultaneously 

In many cases, more than 1 performance index is important to a 
certain system. As previously identified the yield and productivity are 
both interesting objectives to improve for this system. To simultaneously 
maximise these performance indexes a multi-objective optimisation can 
be used. This optimisation is interesting in this context because solving 
to maximise the yield and productivity at the same time is conflictual. 
Either the reactor is operated with a quick turnover time to prioritise the 
productivity, which leaves part of the substrate unconsumed, or the 
reactor operation time is long to maximise substrate consumption, 
sacrificing the productivity. The multi-objective optimisation thus leads 
to the nondominated set of solutions representing the potential com
promises amongst the objectives (i.e., yield and productivity). 

Strategy 1 (with the highest yield in the nondominated set) and 
strategy 2 (with the highest productivity in the nondominated set) are 
solutions that can be seen at the two extreme ends of the nondominated 
set of solutions and can be visualised in the form of the Pareto front 
(Fig. 7). These strategies can be considered as the cases where no 

Fig. 6. Simulation of strategy 2 from the multi-objective optimisation optimising the productivity. On plots (a) to (c) the concentration of glucose, lactate, and 
propionate can be seen. The inoculation of V. criceti is represented by , extraction cycles by and glucose spikes by ↓. Plot (d) is the concentration of the 
components in the reservoir. 

Fig. 7. Obtained Pareto front from the multi-objective optimisation, with 
strategy 1,2 and 3 indicated by , and respectively. 
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compromises are made and can thus also be found using the afore 
mentioned single objective optimisation (Section 3.2.1.). 

Strategy 3, a solution found in the middle of the Pareto front (blue
diamond Fig. 7), illustrates a compromise solution (Table 5, Fig. 8) be
tween the yield (0.47 gpropionate/gglucose, representing 92% of the 
theoretical maximum of the system) and the productivity (0.56 gpropio

nate/L/h). In this strategy, the first extraction cycle is activated at hour 
10.4 without waiting for glucose and lactate to deplete. For the 
following extraction cycles, lactate is almost completely depleted and 
the spikes of glucose are always introduced immediately after the 
extraction cycles. The concentrations reached by lactate and propionate 
in this strategy fall slightly under 4 gCODlactate/L and slightly over 6 
gCODpropionate/L (Fig. 7b-c). The effects of inhibition are thus not so 
prominent as in strategy 1 but still likely influence the rate of substrate 
consumption (i.e., lactate), meaning that the following extraction cycles 
are slightly delayed by the inhibition. 

Strategy 3 can be considered as a hybrid strategy, employing oper
ational characteristics from strategy 1 (maximising the yield) as well as 
strategy 2 (maximising the productivity). The first extraction cycle starts 
early on, without waiting for substrate to be consumed, like strategy 2. 
The following cycles are spaced more apart like strategy 1, giving time 
for the intermediate substrate (lactate) to be consumed, thereby utilising 
it as efficiently as possible. With this hybrid approach, an improved 
productivity can be achieved that still has very high yields. There are 
many possible solutions from the Pareto front and it is up to the operator 
to choose the marginal weights given to each of the objectives. These 
weights should be chosen after performing a careful economic evalua
tion of the system. 

An important fact to note for strategy 2 and 3 is that due to the un
certainty in the model and the inherent variability of biological systems 
(e.g., variations in initial bacterial concentration or slight changes in 
consumption rates), propionate might actually not be present in the 
reactor when the first extraction cycle starts. Only the intermediate (i.e., 
lactate) would then be extracted in this case, resulting in a significant 
loss of yield and productivity. As a result, it can be stated that these 
solutions cannot be considered as robust strategies. Intuitively it can be 
said that other solutions from the Pareto set favouring the productivity, 
are also not robust because they lead to a fast succession of spikes and 
extraction cycles. These tight strategies increase the likelihood of only 
extracting lactate due to the inherent model uncertainty. Therefore, care 
must be taken not to give too much weight to the productivity in a multi- 
objective optimisation if a robust strategy is pursued amongst the Pareto 
set. 

3.2.3. Stochastic optimisation: a robust strategy to maximise productivity 
To find a strategy that maximises the productivity and ensures a 

robust implementation at the same time, a stochastic optimisation 
problem was solved. To ensure a more conservative and robust strategy, 
a low percentile of the objective function distribution (in this case the 
tenth percentile, P10) was selected as the optimisation criterion, 
resulting in strategy 4 (Table 5, Fig. 9). Based on this selection, imple
menting this strategy would lead to a 90% probability of obtaining a 
productivity higher than the optimisation criterion, hence a risk-averse 
strategy. Compared to a risk-taking approach i.e., optimising the 90th 
percentile of the objective function, the productivity only increased by 
4%. This increase in productivity it not worth the extra associate risk (i. 

Fig. 8. Simulation of strategy 3 from the multi-objective optimisation with on plots (a) to (c) the concentration of glucose, lactate and propionate in the reactor, 
respectively. The inoculation of V. criceti is represented by , extraction cycles by and glucose spikes by ↓. Plot (d) is the concentration of the components in 
the reservoir. 
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e., only a 10% probability of obtaining a productivity higher than the 
optimisation criterion) which is why the more conservative result is the 
preferred solution. This robust strategy results in a productivity of 0.64 
gpropionate/h/L and a yield of 0.47 gpropionate/ gglucose. As with strategy 2, 
the concentration of lactate and propionate are low in this strategy and 
the effect of inhibition are smaller compared to other strategies, 
resulting once again in a faster production of propionate (Fig. 8b-c). 

Compared to strategy 2, the first extraction cycle in this strategy 
takes place at hour 2. The rationale behind this is to give more time for 
the propionate concentration to increase, making it more likely that 
propionate is present in the reactor during the first extraction cycle. 
Additionally, the following extraction cycles and spikes are organised in 
a way that propionate has more time to be produced compared to 
strategy 2, where cycles are densely packed together. This can be 
observed by the fact that, in the beginning of the simulation the cycles 
are more spaced out, while at the end of the simulation the extraction 
cycles follow each other up more quickly. The reason for this is that 
lactate is more likely to already be converted to propionate due to the 
higher biomass concentrations at the end of the simulation. Another 
difference to the previous strategies is that the spikes of glucose are 
introduced right before extraction cycles take place. 

This strategy has a productivity which is 0.11 gpropionate /h/L lower 
than strategy 2 but has the distinct advantage of being robust to 
implement. Both strategies still do not reach the goal of 1 g/L/h but 
compared to the base case, significant improvements have been made 
where the productivity is at least doubled. 

3.3. Integration of monitoring in optimal ISPR operations 

Real-time data in the form of online measurements could be an 
important aid to implement the envisioned strategies and decrease the 
uncertainty of the model predictions by continuous calibration and 

optimisation. However, real-time monitoring of volatile fatty acids, 
biomass or other metabolites present in this system is not straightfor
ward. Nevertheless, the use of soft-sensors, or data-driven monitoring 
systems can help obtain real-time information of the reactor broth 
thereby aiding the implementation of the strategies. Furthermore, 
whenever a mathematical model is available, state estimators, such as 
nonlinear versions of the Kalman filter (extended Kalman filter, un
scented Kalman filter) can provide better monitoring and decrease the 
impact of noisy measurements (Lopez et al., 2020; Mohd Ali et al., 
2015). 

For the obtained strategies of the case study online monitoring could 
be implemented in the following ways: the key to implementing strategy 
1 is to activate the extraction cycles when lactate is depleted. By 
monitoring when the lactate is almost consumed, the extraction cycles 
can be activated automatically with control systems ensuring complete 
substrate utilisation. For the strategies maximising the productivity 
(strategy 2 & 4), monitoring the propionate concentration can be very 
valuable. In these strategies the first extraction cycle can be activated 
when the concentration of propionate reaches a certain threshold, 
thereby guaranteeing that propionate is present in the reactor during 
extraction. This would make strategy 2, which was deemed non-robust, 
a lot more reliable to implement. 

4. Conclusions 

A modelling and optimisation-based approach to find various 
scheduling strategies (relating to the ISPR and feeding) for the experi
mental system of Selder et al. (2020), was successfully showcased. To 
accomplish this, a model was developed to describe the system pro
ducing propionate using a co-culture fermentation and ISPR. The pa
rameters of this model were calibrated using datasets from monoculture 
experiments and successfully validated on an independent dataset that 

Fig. 9. Simulation of strategy 4 from the stochastic optimisation solution with on plots (a) to (c) the concentration of glucose, lactate and propionate in the reactor. 
The inoculation of V. criceti is represented by , extraction cycles by and glucose spikes by ↓. Plot (d) is the concentration of the components in the reservoir. 
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described the entire process. Optimisation problems were then suc
cessfully implemented to this model to find several operational strate
gies. Single objective optimisation was used to find an optimal strategy 
that maximises the yield or productivity. With multi objective optimi
sation a whole set of trade-off solutions were found between these two 
performance indexes. Finally, stochastic optimisation was used to find 
robust strategies for the cases where model mismatch or inaccuracy in 
implementation could take place. In all the found strategies the yield 
and productivity were consistently improved upon compared to the base 
case and provided an operational rationale that can be adapted, by the 
ISPR designer. For future studies, the implementations of these strate
gies should be verified and with the collected data the model can also be 
further fine-tuned. 
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