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RESUMO EN GALEGO

Esta tese realizouse no marco dunha colaboración entre os autores e a empresa Danieli
Group dentro do proxecto Europeo ROMSOC. Danieli Group é unha empresa líder
no mercado mundial da construción de maquinarias para a produción de aceiro. En
concreto, este traballo enfócase en máquinas para a coada continua de aceiro.

A coada continua de aceiro é un proceso durante o que este metal fundido é coado
dentro dun molde, xeralmente formado por catro placas, que permiten a entrada e a
saída do aceiro. O molde é arrefriado a través de auga a alta presión que corre en
tubaxes no interior das placas do molde. O obxectivo do molde é, por unha banda,
dar a forma ao aceiro e, por outra, facer unha primeira solidificación, de xeito que,
á saída do molde, o aceiro ten unha capa sólida e pode ser guiado por rolos. Nesta
segunda fase, o aceiro é arrefriado mediante auga que incide directamente sobre o
aceiro ata a completa solidificación.

A parte máis crítica deste proceso é o molde, o corazón do coador. Como se
mencionou, nel empeza a solidificación do aceiro e dáse forma á peza. Por tanto, aí
prodúcense moitos fenómenos físicos, como o cambio de fase do aceiro, o seu fluxo
turbulento, o transporte de inclusións, a transferencia de calor do aceiro cara ao molde
e o seu sistema de refrixeración, e tamén as deformacións termo-mecánicas debidas
aos cambios de temperatura e ás forzas que se xeran no aceiro e entre o aceiro e o
molde.

Todos estes fenómenos fan que no molde poidan acontecer accidentes que re-
ducen a operatividade e a calidade da maquinaria e tamén a seguridade do operador.
Por exemplo, é común que o aceiro se pegue a unha placa interior do molde, e nese
caso é necesario diminuír rapidamente a velocidade de coada para facer despegar o
aceiro. En caso contrario, o aceiro solidificado non podería saír do molde, obstruín-
dose este, de xeito que o aceiro líquido podería derramarse por riba, o que suporía
un grave problema. Tamén, pode acontecer que o arrefriado non sexa suficiente e, en
consecuencia, a capa sólida do aceiro tampouco sexa suficientemente espesa durante
a segunda fase e rompa, derramando o aceiro líquido.

Para evitar estes problemas e controlar o progreso da coada, é importante ter
unha ferramenta para a súa supervisión neste tramo tan crítico do proceso. Pero non
é posible facer medidas no interior do molde, onde o aceiro está solidificando. A día
de hoxe, as únicas medidas posibles son obtidas por termopares colocados nas placas
do molde, situados nunha superficie paralela á cara quente das placas a uns poucos



xiv Resumo en galego

centímetros no interior. Ata o de agora, estas medicións de temperaturas foron uti-
lizadas directamente para supervisar o molde. Pero, este método de supervisión é
moi empírico, baséase na experiencia do operador e depende da xeometría específica
do molde Polo tanto, para poder supervisar mellor a instalación, é necesario para o
operador dispoñer de datos que proporcionen máis información sobre o comporta-
mento do molde. O partner industrial desta investigación identificou o fluxo de calor
entre molde e aceiro como o dato de interese para a supervisión. De feito, a visu-
alización deste fluxo en tempo real permite a detección rápida de cada imprevisto e
unha repentina reacción. Por iso, o obxectivo desta investigación é determinar o fluxo
de calor entre o molde e o aceiro.

Para a estimación deste fluxo de calor, dispoñemos das propiedades físicas do
molde, da súa xeometría, da temperatura da auga de arrefriado e das medidas que
se obteñen dos termopares. Estes dannos a temperatura puntual do molde en cada
segundo. O obxectivo deste traballo é, a partir destes datos conseguir estimar en
tempo real o fluxo decalor entre molde e aceiro.

Nesta tese estudamos este problema no contexto dos problemas inversos. En par-
ticular, expoñemos o problema, a través da asimilación de datos, como un problema
de control óptimo, buscando o fluxo de calor que minimiza unha distancia entre as
temperaturas medidas nos termopares e as calculadas ao resolver o problema directo
de transferencia de calor nas placas do molde co fluxo de calor como condición de
contorno. Podemos dividir este traballo en tres fases: a modelización do molde, a es-
timación do fluxo de calor e a redución do custo computacional para conseguir unha
estimación en tempo real.

Con respecto á modelización do molde, moitas opcións serían posibles. Pode-
mos modelar todos ou parte dos fenómenos que acontecen no interior do molde e no
sistema de arrefriado. Con todo, isto sería computacionalmente moi esixente e difi-
cilmente sería posible cumprir o requisito de tempo real. Polo tanto, eliximos utilizar
como dominio só as placas sólidas do molde e modelar a transferencia de calor que
nelas acontece. Con esta elección o fluxo de calor que buscamos é unha condición de
contorno do noso modelo (en particular, unha condición de tipo Neumann).

A partir desta elección, desenvolvemos unha xerarquía de modelos do molde.
Nesta xerarquía, o primeiro modelo é o máis complexo e, a partir diste, agregando
hipóteses simplificadoras, creamos a xerarquía completa. De todos os modelos que
conforman, utilizamos dous nas fases sucesivas. Ambos son modelos de condución
de calor nun sólido homoxéneo (as placas do molde), pero un é estacionario e outro
non estacionario. En concreto, na Parte I da tese consideramos o caso estacionario e
na Parte II o non estacionario.
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Como xa mencionamos, con respecto á estimación do fluxo de calor, encadramos
o problema no marco da asimilación de datos, explotando a estrutura do control óp-
timo. Neste marco, moitas metodoloxías foron desenvoltas na literatura. Na primeira
parte da tese, testamos o comportamento destes métodos clásicos na solución do noso
problema.

Para o test dos métodos desenvolvidos, deseñamos uns casos benchmark. En par-
ticular, deseñamos bechmarks académicos e industriais. Os primeiros son casos par-
ticulares nos cales a xeometría e a condicións ao bordo permiten de obter unha solu-
ción analítica do problema. Entón, permítennos de saber a solución exacta do prob-
lema directo e comparala coa calculada. Tamén nestes benchmarks, posicionamos
termopares virtuais e aplicámoslle a temperatura exacta da solución analítica como
medida.

Polo outro lado, os benchmark industriais son deseñados para parecerse á situación
real que se atopa nun colador. Por tanto, a xeometría, os parámetros físicos e as
condicións ao bordo son as dun verdadeiro molde. Nestes casos non temos a solu-
ción analítica do problema directo e podemos usalos só para testar a estimación do
fluxo de calor. En particular, elixímonos arbitrariamente un fluxo de calor e cal-
culamos numericamente o correspondente campo de temperatura. As temperaturas
calculadas o onde posicionamos os termopares é usada como medida e así testeamos
a capacidade dos métodos desenvolvidos de estimar o fluxo que eliximos.

A través destes benchmarks, comprobamos que os métodos clásicos non permiten
obter boas estimacións do fluxo de calor. Isto é principalmente debido á proximidade
das medidas coa fronteira onde estamos a buscar o fluxo, de xeito que este resulta
sobreestimado na proximidade das proxeccións dos termopares na fronteira e subes-
timado nas áreas entre eles.

Como consecuencia, plantexámonos desenvolver un novo método que poida velar
por unha boa estimación do fluxo de calor. No desenvolvemento diste novo método,
tivemos en conta que a proxección dos termopares na interface entre molde e aceiro
crea unha malla uniforme. A partir de aí, estudamos unha parametrización do fluxo
baseada en funcións radiais, cada unha delas centrada na proxección dun termopar.
Esta parametrización permítenos reducir a procura nun espazo infinito dimensional
a outro finito dimensional. Ademais, puidemos desenvolver un método para a solu-
ción do problema de control óptimo que sexa directo e non iterativo (como a maioría
dos métodos clásicos). O desenvolvemento deste método directo pasa pola escrit-
ura vectorial do funcional custo que queremos minimizar no problema de control
óptimo, e a súa derivación con respecto aos pesos da parametrización. Como resul-
tado obtemos que os pesos da parametrización, correspondentes a un punto crítico
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do noso funcional, poden atoparse resolvendo un sistema linear que ten o tamaño
da parametrización (da orde de poucos centos). Para ensamblar o sistema linear é
necesario facer moitas simulacións cuxo custo computacional depende do tamaño
da malla elixida. Con todo, podemos facer todas estas simulacións nunha fase of-
fline porque non requiren ningunha medida dos termopares. Entón, neste método
explotamos unha división offline-online na cal temos unha fase offline, que é com-
putacionalmente custosa, e unha fase online, que é moi rápida e computacionalmente
moi eficiente. Este, no caso de ter un modelo do molde estacionario (Part I) per-
mítenos obter unha estimación do fluxo de calor en tempos moi rápidos que compren
co requisito de tempo real do problema.

A aplicación deste novo método nos casos benchmark que deseñamos comprobou
a súa excelente capacidade de estimar o fluxo de calor. Ademais, aplicando técnicas
de regularización, este método é capaz de proporcionar boas estimacións tamén cando
as medidas son afectadas por ruído, como é habitual en medidas industriais.

Resumindo, na primeira parte desta tese, empezamos desenvolvendo unha xer-
arquía de modelos para a modelización do fluxo de calor nos moldes. A contin-
uación, para o modelo estacionario de condución de calor, expoñemos o problema
da estimación do fluxo de calor. Para a solución deste problema aplicamos métodos
tradicionais, obtendo unha estimación pobre do fluxo de interese. A continuación,
desenvolvemos un novo método que, explotando unha parametrización do fluxo de
calor, permítenos obter unha boa estimación e, sendo un método directo, permítenos
satisfacer o requisito de tempo real que nos require a aplicación.

Na segunda parte centrámonos no caso non estacionario. O modelo do molde é,
tamén esta vez, un modelo de condución nun sólido homoxéneo, pero considerando
os efectos non estacionarios. Neste marco, a formulación do problema de asimilación
de dados non é trivial. De feito, como para formular o problema inverso temos que
considerar o obxectivo de estimar o fluxo de calor en tempo real, necesitamos es-
tar sempre á fronte da liña temporal en canto ela estírase. Dado que os termopares
miden a frecuencia cada Hertz, podemos dividir a liña temporal en anacos dun se-
gundo e expor o problema de estimación no último destes anacos, asumindo que xa
calculamos o fluxo de calor para os anacos anteriores. Ao facer isto, creamos unha
secuencia de problemas inversos que son resoltos cada un no seu tempo. Para re-
solver estes problemas inversos, desenvolvemos uns métodos novos que explotan a
mesma parametrización espacial que empregamos parao caso estacionario. Pero, no
caso non estacionario, necesitamos considerar a variación temporal do fluxo de calor.
Para facer isto, establecemos pesos da parametrización non estacionarios. En partic-
ular, consideramos dous casos: pesos constantes a anacos e pesos lineares a anacos
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en cada intervalo dun segundo. En ámbolos dous casos, conseguimos desenvolver
métodos directos para a solución dos problemas inversos.

Para testar estes novos métodos e a súa capacidade para estimar o fluxo de calor
deseñamos varios casos bechmark. Os resultados móstrannos que os dous métodos
(constante a anacos e linear a anacos) teñen comportamentos moi distintos. No caso
da a aproximación constante a anacos do fluxo de calor, o método proporciona unha
boa estimación e a calidade desta estimación non depende da discretizacion temporal
ou espacial. Ademais, o método é resistente dalgunha forma ao ruído nas medidas.

O método linear a anacos, en cambio,vese moi influenciado pola elección da
malla e da discretización temporal. En particular, atopamos que discretizacións máis
grosas implican unha mellor estimación do fluxo. E, se usamos unha malla e/o un
paso temporal demasiado longo, o método vólvese moi inestable. Ademais, esta
inestabilidade atópase tamén na resistencia ao ruído nas medidas. En efecto, este
método é máis sensible co anterior.

Na parte I desta tese, dividimos o problema en modelización do molde, solución
do problema de estimación do fluxo de calor e redución do custo computacional. Vi-
mos como, no caso estacionario, desenvolver un método directo para a estimación do
fluxo xa nos permitiu obter unha solución en tempo real. Por tanto, non foi necesario
estudar técnicas para a redución do custo computacional.

Estes novos métodos non estacionarios, en cambio, necesitaron un estudo adi-
cional. Estes requiren en cada intervalo temporal a solución dun problema de trans-
ferencia de calor no dominio computacional. Isto significa que, en cada intervalo, é
preciso calcular unha solución que require un custo computacional que depende da
malla e da discretización espacial utilizada. Polo tanto, estes non garanten un ren-
demento en tempo real. Para conseguilo, é necesario aplicar técnicas de redución de
orde.

A redución de orde é unha das novas fronteiras no campo da análise numérica.
A idea de base é utilizar as solucións obtidas a través de simulacións anteriores dun
modelo para diferentes valores dun parámetro, para obter novas simulacións a un
custo computacional moi inferior. Entre todos os posibles métodos de redución
de orde (e.g. neural networks, balancing methods ou nonlinear manifold meth-
ods) eliximos traballar con métodos de bases reducidas e, en particular, co método
POD-Galerkin. Simplificando, podemos resumir este método como segue: Imax-
inemos que temos un problema definido a partir dunha ecuación en derivadas parci-
ais parametrizada e que queremos obter de forma rápida a solución deste problema
para distintos valores dun parámetro; dito parámetro pode ser unha propiedade física
(e.g. a difusividade), unha condición de contorno, etc. Resolvemos o problema para
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distintos valores do parámetro, asumindo que as solucións viven nunha variedade su-
ficientemente regular. Podemos asumir que as solucións do problema para valores do
parámetro diferentes dos utilizados pode atoparse a través dunha combinación lin-
ear das solucións xa calculadas. Entón, faise unha descomposición ortogonal propia
(POD) das solucións xa calculadas, atopando así os modos. Estes modos son orde-
nados de forma xerárquica, no sentido que os primeiros son os que manteñen máis
información. A continuación, faise unha proxección de Galerkin das ecuacións que
queremos resolver sobre os primeiros modos e, desta maneira, obtense o modelo re-
ducido.

O modelo que nos ocupa neste traballo ten como parámetro a temperatura inicial
do molde ao inicio de cada intervalo temporal. Esta temperatura pode ser calquera,
polo tanto, é imposible facer unha mostraxe apropiada. Así que, para esta aplicación,
desenvolvemos unha técnica nova para a creación do modelo de orde reducida. Esta
nova técnica crea as bases POD de maneira automática durante as iteracións do prob-
lema inverso. En particular, en cada intervalo temos unha nova temperatura inicial
como dato de entrada para o problema que queremos reducir. Esta temperatura ini-
cial corresponde á solución do problema no anaco de tempo considerado. Entón, se
supoñemos que temos dispoñibles durante a fase offline as medidas de temperaturas
que veñen dunha coada anterior, podemos utilizar as correspondentes solucións coma
se fose o noso mostreo e a partir destas mostras calcular os modos POD. Con todo,
este proceso requiriría, para os cálculos dos modos, uns cálculos moi onerosos ao
final desta fase e unha memoria moi grande para ter almacenadas todas as solucións
e todos os modos.

Por iso, investigamos a utilización de técnicas POD incrementais que nos permi-
tan calcular os modos POD sen gardar todas as solucións en memoria. Para facer que
este método sexa fiable, é necesario garantir que os modos utilizados sexan bos rep-
resentantes do novo campo de temperatura inicial que está a entrar a cada paso. Para
iso, desenvolvemos un estimador do erro de proxección deste campo de temperaturas
sobre os modos. Grazas a este estimador, podemos avaliar se o modelo reducido pode
ser utilizado ou se necesita ser expandido a través dunha nova simulación completa.
Este novo método para a creación automatizada e data-driven do modelo reducido foi
testado nos benchmarks que desenvolvemos e mostrou a súa habilidade en crear un
modelo reducido rápido e fiable a través do estimador do erro.

Por último, analizamos a sensibilidade do problema á elección do tamaño da
malla e do paso de tempo para o caso de aproximación do fluxo de calor a través de
bases lineares en tempo. O algoritmo que estudamos utiliza unha distancia entre as
temperaturas calculadas e as medidas para elixir automaticamente unha combinación



Resumo en galego xix

de malla e paso de tempo que corresponda a un método de aproximación do fluxo
que sexa estable. Tamén este algoritmo demostrou nas probas numéricas ter un bo
comportamento.

En resumo, nesta tese nos plantexamos o problema de desenvolver ferramentas
matemáticas para o control dun molde para a coada continua de aceiro. Primeiro, tra-
ballando co equipo da empresa que colaborou nesta investigación, identificamos que
o fluxo de calor entre molde e aceiro é a cantidade de interese para esta aplicación.
Por tanto, empezamos identificado como posible formulación un enfoque determinís-
tico no marco da asimilación de dados, de control óptimo e dos problemas inversos.
O primeiro paso foi o modelar os fenómenos físicos que ocorren nun molde. Neste
respecto, desenvolvemos unha xerarquía de modelos que a partir dun primeiro mod-
elo moi complexo crea novos modelos agregando hipóteses simplificadoras. Esta
xerarquía permitiunos ter moi claro as hipóteses que levaba cada modelo á hora de
elixilo. Aínda que esta xerarquía inclúe moitos modelos, para o problema seguinte
da estimación do fluxo de calor só consideramos dous. ámbolos dous son modelos
de condución de calor na rexión sólida das placas do molde. Pero, un é estacionario
e o outro non.

Na primeira parte desta tese enfrontamos o problema de estimación do fluxo de
calor no caso estacionario. Primeiro, aplicamos metodoloxías estándares para a solu-
ción do problema sen obter resultados satisfactorios. Entón, desenvolvemos un novo
método que explota a parametrización do fluxo de calor a través de funcións de base
radiais. O resultante método permite unha estimación directa do fluxo de calor e,
ademais, ten unha descomposición offline-en liña que permite de ter unha fase en
liña moi económica computacionalmente que nos permite a estimación do fluxo en
tempo real.

Despois do caso estacionario, movémosnos ao non estacionario. Neste caso, de-
spois de expor o problema inverso de forma secuencial, desenvolvemos uns novos
métodos para a estimación dun fluxo de calor non estacionario. Estes explotan a
mesma parametrización espacial do caso estacionario, pero utilizan pesos para a
parametrización que son tempo dependentes. Estes novos métodos, tamén teñen
unha descomposición offline-en liña. Pero, na fase en liña necesitan de resolver un
problema cuxo custo computacional depende da discretizacion utilizada. Entón, non
podían ser utilizados tal como estaban e foi necesario utilizar técnicas de redución de
orde para cumprir coa petición de tempo real. Entón, explotamos un método de bases
reducidas chamado POD-Galerkin para a creación do modelo reducido. Con todo,
non foi posible utilizar o método directamente e desenvolvémonos un novo método
para a creación automática e data-driven do espazo POD e, agregándoo cun novo



xx Resumo en galego

estimador do erro, fixemos este novo algoritmo fiable e resistente.
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1 INTRODUCTION AND
MOTIVATION

The present thesis is one of the eleven that are part of the Reduced Order Mod-
elling, Simulation and Optimization of Coupled systems (ROMSOC) - H2020 - Marie
Sklodowska-Curie Actions (MSCA) - ITN - 765374 program [137]. ROMSOC is a
European Industrial Doctorate (EID) project sponsored by the European Commission
in the framework of Horizon 2020 as part of the MSCA [51].

This program brings together fifteen international academic institutions and 11
industry partners to work together on complex industrial problems. These industrial
applications investigate very different topics, ranging from the European Extremely
Large Telescope optics [145] to fluid-structure interaction in blood pumps [92]. More-
over, the objective of this program has been, not only to solve the industrial problems,
but also to use them to boost the development of novel mathematical methodologies
with the advantage of testing them in their real world environment.

Being part of the ROMSOC program, the present thesis has been developed in
cooperation with the Scuola Internazionale Superiore di Studi Avanzati (SISSA) of
Trieste [139], in particular the SISSA mathLab [138], and Danieli & C. Officine
Meccaniche SpA of Buttrio [35], both of them being based in Italy. Since Danieli is a
worldwide leader in the production of steel plants, the subject of this thesis is related
to the steel making. In particular, we deal with the Continuous Casting (CC) of steel
focusing on the mold region.

We start this introduction by describing the setting of this research with an overview
of the industrial process of steel CC. Then, we describe in Section 1.2 the general
problem of controlling the mold behaviour during casting that will serve us as moti-
vation for this investigation. Later, in Section 1.3, we discuss the physical phenomena
happening in the mold region, we give an overview on previous attempts to model the
mold and introduce the mold models that we use later in the thesis. In Section 1.4,
we introduce the problem of estimating the mold-steel heat flux. Since this heat flux
is the quantity of interest in controlling the mold behaviour, the mold-steel heat flux
estimation will be the core topic of the present thesis. To conclude, we summarize in
Section 1.5 the objectives and novelties of this research while Section 1.6 provides
the thesis outline.
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1.1 CONTINUOUS CASTING
The steel CC is presently the most used process to produce steel worldwide. For
example, in 2017, 96% of the steel was produced using CC (see [165]). Continuous
casters as in Figure 1.1.1 have been used for many decades now. Consequently, the
process has undergone a long sequence of improvements driven by the experience of
the commercial operators and, more recently, numerical simulations (see [154]). In
this section we provide a general description of the CC process, we refer the inter-
ested reader to Irving’s monograph [72] for a detailed description.

Figure 1.1.1: Schematic overview of the continuous casting process (adapted from [81]).
The molten steel is tapped from the ladle to the tundish. Then, the SEN injects it into
the mold where the steel begins its solidification. Starting from the mold, the steel slab is
cooled and it reaches complete solidification in the secondary cooling region.

We can summarize the CC process as follows. At first, the metal is liquefied.
Then, it is tapped into the ladle. When it is at the correct temperature, the metal goes
into the tundish. In the tundish, the metal flow is regulated and smoothed. Moreover,
the tundish plays the role of a reservoir to continue the casting when the ladle is

2
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empty and must be substituted.
Through the Submerged Entry Nozzle (SEN), the metal is drained into a mold.

The SEN drains the metal below a layer of flux powder which is floating at the top
of the molten metal (see Figure 1.1.2). Part of the powder in contact with the steel
melts down creating a liquid layer. This layer fills the gap between the steel and the
mold protecting the steel from re-oxidation. Moreover, it absorbs the non-metallic
inclusions, lubricates the steel shell as it passes through the mold, and controls the
heat flux between the solidifying steel shell and the mold (see [77]).

Figure 1.1.2: Schematic of a vertical section of the mold region (taken from [155]). On
the left, the main phenomena occurring within the mold are illustrated. In particular, the
figure shows the gap which forms between the steel and the mold. This gap is filled by
the flux powder which liquefies in contact with the hot steel and resolidifies close to the
mold face. In the lower part of the mold an air gap can occur due to the slab shrinkage.
Molds are generally tapered to reduce this air gap.

The role of the mold in the CC process is to cool down the steel until it has a
solid skin which is thick and cool enough to be supported by rollers. We call slab the
mold output. The steel of the slab is still molten in its inner region, thus a secondary
cooling section follows the mold. Supported by cooled rollers, the slab is cooled
until complete solidification by directly spraying water over it. At the end of this
cooling region, the casting is completed. To be ready for its final application, the
strand generally continues through additional mechanisms which may flatten, roll or
extrude the metal into its final shape.

In this work, we focus on CC of thin slabs. Slabs are cataloged thin when their

3
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thickness is smaller than 70 mm, while their width is between 1 and 1.5 m, in general.
Thanks to the small thickness, the solidification in the slab is relatively fast, conse-
quently the casting speed is generally high, between 7 and 14 meters per minute.

Thin slab molds are made of four different plates: two wide plates and two lat-
eral plates, all made of copper (see Figure 1.1.3). In general, lateral plates can be
moved or changed to modify the slab section dimensions. The geometry of these
plates is more complex than one can expect: they have drilled channels where the
cooling water flows, slots in the outside face for thermal expansion, thermocouples,
and fastening bolts. To compensate the shrinkage of the slab with the cooling and
minimize the gap, the molds are tapered. Moreover, the upper portion of the mold
forms a funnel to accommodate the SEN.

Steel

ThermocoupleCooling water

Figure 1.1.3: Schematic of a horizontal section of the mold. We denote in red the inner
region of the mold where the steel is tapped. From this schematic, we also see the drilled
channels where the cooling water flows and the position of the thermocouples in the mold
plates.

In the rest of this chapter, we first discuss the problem of controlling the mold
behaviour for a safe and productive functioning of a continuous caster. Then, we
discuss the physical phenomena happening in the mold region and the state of the
art in their modeling. Later, we consider the mold monitoring problem in an inverse
problem and data assimilation setting. To conclude, we summarize the objectives and
contributions of this investigation, and present the thesis outline.

1.2 CONTROL OF THE MOLD
As shown in Figure 1.1.2, several phenomena related to steel flow, solidification,
stresses and heat transfer appear in the mold region. This complexity makes the mold
the most critical part of the CC process. Thus, when running a continuous caster,
productivity and safety issues must be addressed at the mold.

4



CHAPTER 1. INTRODUCTION AND MOTIVATION

Regarding quality, the presence of imperfections on the external surface of the
casted piece (cracks, inclusions, etc.) must be avoided. In fact, since casted pieces
are generally laminated in later productions, surface defects would become evident
affecting also the mechanical properties of the final products.

Due to the creation of the solid skin, a frequent problem arising during CC is the
sticking of the steel to the mold. After the detection of a sticking, the casting speed
is reduced to reestablish the desired metal flow before restoring the nominal casting
speed. This affects the product quality and the productivity of the caster. Also, if not
detected on time, it can lead to dangerous events forcing the shutdown of the caster.

Less frequent but more catastrophic events are the liquid break-out and the exces-
sive increase of the mold temperature. The former is due to a non-uniform cooling
of the metal. Thus, the skin in some regions of the slab is so thin that it breaks. The
latter is generally considered as the most dangerous event in a casting plant. In fact,
if the mold temperature is high enough to cause the boiling of the cooling water, we
have a dramatic decrease in the heat extraction. Then, the temperature in the mold
would quickly rise causing the melting of the mold itself, eventually. Both these in-
cidents are very dangerous and costly. In fact, they generally require the shutdown of
the caster, the substitution of expensive components and an extended turnaround.

For all these reasons, the early detection of problems in the mold is crucial for a
safe and productive operation of continuous casters. Moreover, their early detection
becomes more difficult and relevant as casting speed (thus productivity) of the casters
increases.

Since, continuous casters have been running for decades, CC operators already
faced all these problems. To have insight of the scenario in the mold, they provided
the molds with a measuring equipment. In particular, they measure the pointwise
temperature of the mold by thermocouples (see Figure 1.1.3) and the cooling water
temperature as well as its flow at the inlet and outlet of the cooling system. Finally,
they also measure the height of the meniscus at the top of the mold (see Figure 1.1.2)
to know how full the mold is.

The way CC operators use the data coming from the measurement equipment
is the following. The thermocouples’ temperatures are used to have insight of the
mold temperature field. On the other hand, the water temperature rise is used to
approximate the heat extracted from the steel by assuming the process to be at steady-
state and making an energy balance (we will explain it in detail in Section 3.2).

This approach allowed operators all over the world to run continuous casters for
decades. Nevertheless, it has several drawbacks: it relies on the experience of oper-
ators, gives very limited information about the heat flux at the mold-slab interface,

5
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and is customized for each geometry so it requires new effort to be applied to new
designs. So, a new tool for analyzing the mold behavior is necessary.

In presenting the goal of this investigation, we begin by reporting that CC op-
erators consider that knowing the local heat flux between mold and slab is the most
important information to monitor the mold behaviour. In fact, it allows the operator
to detect any unwanted behaviour of the steel within the mold. This quantity can-
not be experimentally measured since it is not possible to make direct measurements
in the solidification region. The only measurements available are temperature mea-
surements by thermocouples that are buried inside the mold plates and cooling water
temperature measurements. Thus, our goal is to develop a mathematical tool that,
given these measurements, estimates the sought heat flux.

By considering the mold itself to be our computational domain and focusing our
interest on its thermal behavior, the mold-slab heat flux can be seen as the Neumann
Boundary Condition (BC) on a portion of the boundary. To compute its value, we
pose the following inverse problem: given the temperature measurements provided
by the thermocouples, estimate in real-time the boundary heat flux at the mold-slab
interface that minimize a distance between the measured and simulated temperature
at the thermocouples points.

To tackle this complex problem, we can think of dividing it into three related
ones:

• Accurate modeling of the thermal problem in the physical mold.

• Solution of the inverse problem of estimating the heat flux.

• Reduction of the computational cost of the inverse problem solution to achieve
real-time computation.

In the rest of this chapter, we discuss more in details the above problems giving an
overview on their state of the art.

1.3 PHYSICAL PROBLEM
In this section, we give a description of the physical phenomena that occur in the mold
region of a caster. Then, we give an overview on previous efforts in modeling them
and, finally, we present the physical problems that we will consider in the present
work.

Going from the inside to the outside of the mold, we encounter several physical
phenomena (see Figure 1.1.2). In the inner part of the mold, we have the liquid
pool of steel. There, we have a molten metal flow with dispersed argon bubbles and
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inclusion particles. All around the liquid pool, we encounter the solid skin and, in
between, the mushy region. Here, the steel changes phase undergoing solidification.
Between the steel and the mold, there is a thin layer of flux powder which is liquid
close to the steel and solid where in contact with the mold. Finally, we encounter the
mold which is surrounding the flux powder (in case of not perfect casting, we can
also have an air gap between the mold and the slab).

The mold is composed of a solid (copper) region and a liquid region (water)
representing its cooling system. In the copper, we have heat conduction due to the
temperature gradients. In the water, we have an incompressible flow inside tubes. To
prevent the water from boiling, it is pumped at a very high pressure and flow rate.
Therefore, a turbulent flow with high Nusselt number is expected.

According to the previous description, the main physical phenomena for CC in-
clude (see [1]):

• Fully-turbulent, transient fluid motion in a complex geometry (SEN, strand liq-
uid pool), affected by dispersed particles and thermal buoyancy.

• Thermodynamic reactions.

• Multiphase flow and heat transport.

• Dynamic motion of free liquid surfaces and interfaces.

• Thermal, fluid and mechanical interactions between solids, liquids and gases.

• Heat transfer in solids.

• Distortion and wear of the mold.

• Solidification of steel shell.

• Shrinkage of the solidifying steel shell.

• Crack formation.

1.3.1 State of the Art

Due to its complexity, the literature on CC mold modeling is extensive. For each
physical phenomenon in the previous list, we have at least a dedicated model and
several investigations. For this reason, a number of review articles describing the
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models used for CC appeared (see e.g., [153, 154]), and we therefore include only a
small selection of particularly relevant works.

In particular, Meng and Thomas [93] investigated the modeling of transient slag-
layer phenomena in the steel-mold gap. They coupled a heat transfer model in the
mold, gap, and steel with analytical transient models of liquid slag flow and solid slag
stress to predict transient shear stress, friction, slip, and fracture of the slag layers.
Thomas et al. [156] studied the steel flow and solidification in the mold including
the transport of superheat with the turbulent transient flow of molten steel, surface
level fluctuations, and the transport and entrapment of inclusion particles. Huespe et
al. [70] developed a 2D model to simulate the CC of round billets with the objective
of determining stresses and strains inside the solidified material at the early stage of
casting. Their thermal analysis took into account phase-change in the material and
heat transfer through the mold. For the mechanics, they used two models assuming
elastoplastic and viscoplastic hardening materials.

A number of works is dedicated to the modeling of the molten steel fluid flow and
solidification. The modeling of the molten steel flow is the subject of the review paper
of Yuan [170]. In general, the steel is assumed an incompressible Newtonian fluid and
the most popular approach is to solve steady-state, single-phase, Reynolds-Averaged
Navier-Stokes (RANS) equations together with a turbulence model (see [112]). How-
ever, Large Eddy Simulation (LES) simulations have also been performed especially
for the transient case when RANS becomes less accurate (see [30]).

The solidification of the steel is obviously related to the molten steel flow in the
inner region. Then, to model the solidification is a complex, coupled problem and,
as such, has been intensively investigated in the literature. In general, this is a phase
change problem, so a vast literature is available on the subject (see e.g., [6,74,81,82,
85, 88, 95, 100, 147, 151, 169, 175–177]). A detailed description of the solidification
in casting is available in Stefanescu’s monograph [146], while a review on the initial
solidification models was done by Wang [161].

Since steel is not a pure metal, its solidification is not isothermal but is character-
ized by the presence of a mushy region. Moreover, the steel solidification is affected
by several factors, mainly: the mold heat extraction, the slag layer, the molten steel
temperature and velocity field. All this makes modeling the steel solidification a
difficult task.

In general, the slab can be considered as a solid-liquid two-phase system. In
order for this system to be fully described, equations expressing mass, momentum,
solute and energy transport have to be developed for each phase. A general two-phase
description of a binary solidification system was developed in the well-known two-
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fluid model (see e.g., Carver [24]). In this model, separate governing equations for
each phase (solid and liquid) are developed. Then, they are coupled through inter-
phase transfer terms.

From the above model, Voller [160] developed a set of one-phase models for steel
solidification. These models were derived making the following assumptions: (i)
Newtonian and laminar flow, (ii) homogeneous and isotropic properties in the phases,
(iii) effects of small disturbances in the fields (e.g., dispersion fluxes, supercooling of
the liquid, etc.) are neglected, and (iv) thermodynamic equilibrium at the solid-liquid
interface. In these models, the variables are usually the “mixture” properties. The
models developed by Voller are: the mushy fluid model, the columnar dendritic with
dispersed microstructure and the columnar dendritic with distinct microstructure. The
former model is often used in modeling solidification in CC molds (see e.g., [83]).

Voller’s models assume a laminar flow, however solidification of turbulent flows
(common in CC) was also investigated. Prescott and Incropera [121, 122] developed
a low Reynolds number k− � model to handle turbulence during solidification. They
used a simple approach modifying the turbulence kinetic energy in the domain which
may include a mushy zone. Within a coherent mushy zone, turbulence is assumed
dampened by shear which is linearly correlated with the reduction of the mush per-
meability. The influence of turbulence on the momentum and energy transports is
then considered by an effective viscosity and thermal conductivity. Using this model,
Wu et al. [166] tested on a 2D benchmark case the effect of turbulence on the thick-
ness of the solid skin and mushy region. They concluded that the turbulence plays an
important role near the front of the mushy zone and in the downstream region leading
to a significantly smaller mushy region.

This was just an overview on well established solidification models in CC. More
sophisticated models have been developed for alloy solidification in which complex,
thermal-fluid-structure coupling was considered. We refer the interested reader to [8].

After an overview on modeling phenomena inside the mold, we now discuss the
modeling of the mold itself. The most popular model was developed by Samarasek-
era and Brimacombe [133]. They developed a model for billet molds considering a
slice of the mold in the casting direction, so the domain is 2D. The mold is assumed
in steady-state, the water in plug flow, and thermal properties of the materials are as-
sumed independent of temperature. Then, the model is a 2D heat conduction model
in the solid coupled by a Robin BC to a sectional heat balance for the water.

Du et al [37–39], studied the thermal and mechanical behaviour of a slab mold.
For the thermal model, they assumed that the heat flow along the casting direction
is negligible, whereas it varies along the horizontal direction. The top and bottom
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of the mold were considered to be adiabatic and the material thermal properties con-
stant. Thus, they used a 2D transient heat conduction model. For the stress model,
they assumed that the mold is in plane stress condition, the mechanical properties
are temperature dependent, and there is no creeping. They used the thermal model
to compute the temperature field. Then, the obtained temperature field was loaded
into the stress model for stress and distortion analysis. Similarly, Park et al. [114]
used a 3D transient heat conduction model for the mold copper plate with convec-
tive BC for the water cooling and assuming linear increase in the water temperature.
The computed temperature field was then used to compute the thermal effects on the
deformation of the mold.

Gupta et al. [63] studied the effect of mold coating and geometry on the thermal
field by using a steady-state 3D heat conduction model. As BCs, they applied an
empirical mold-slab heat flux formula, convective BC for the cooling water assuming
linear temperature increase in the water, and adiabatic BC on the rest of the boundary.

Xie et al. [168] studied the heat transfer in continuous slab molds by also model-
ing the water flow. They ignored the taper and the bolt holes of the mold, and assumed
that all the heat is extracted by the water. As usual, radiate heat was ignored. The
water flow was assumed steady and incompressible, and the slots in which the water
flows are assumed straight lines. Then, they coupled a heat conduction problem in the
solid coupled with an advection-diffusion model for the temperature in the water by
a Robin transmission condition. The velocity in the water was computed by RANS
equations with k − � turbulence model.

1.3.2 Specific Physical Problem

As discussed in Section 1.2, our goal is to monitor the real-time behavior of CC
molds by estimating the mold-slab heat flux. To tackle this task, we require a mold
model. We could think of modelling all the phenomena discussed in Section 1.3
from the SEN to the secondary cooling region. However, the resulting model would
be quite complex and computationally expensive to deal with, especially for real-time
applications. Then, our approach is to have the mold plates as computational domain
and the unknown heat flux as a BC.

In the rest of this section, we consider the problem of developing a physical model
for CC molds. Firstly, we present a set of general assumptions. Then, we propose a
hierarchy of models by adding further assumptions to the previous set.

In modeling the thermal behavior of the mold, we consider the following well
established assumptions (see [133, 154]):

10
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• The copper mold is assumed a homogeneous and isotropic solid material.

• The cooling water temperature is known.

• The thermal expansion of the mold and its mechanical distortion are negligible.

• The material properties are assumed constant.

• The boundaries in contact with air are assumed adiabatic.

• No boiling in the water is assumed.

• The heat transmitted by radiation is neglected.

The adiabaticity of the boundaries in contact with air is justified when considering
the magnitude of the heat extracted by the cooling water when compared to the one
extracted by the still air around the mold. A similar justification, can be used for
neglecting the mold radiation. Considering the thermal conductivity constant comes
also from a practical consideration. CC molds are generally made by copper and they
work in a temperature range in between 600 K and 800 K. In this range the thermal
conductivity varies of about 2%. Thus, this is the maximum error coming from this
assumption.

Finally, since we want to have solution in real-time (e.g., at each second) and the
casting speed is of few meters per minute, we consider steady-state models at first.
Then, we will relax this assumption. Moreover, we only consider 3D mold models
because we are interested in the heat flux in all the mold-slab interface.

As a final remark, the running parameters of the cooling system and its geome-
try ensure a fully developed turbulent flow. In fact, these molds are equipped with a
closed loop cooling system where the water is pumped at a high pressure. The av-
erage velocity in each cooling channel is approximately 10 m/s, the diameter being
approx. 10 mm. Thus, the Reynolds number in the cooling system is around 105,
which ensures a turbulent flow.

According to the mentioned assumptions, we consider the following physical
problem:

(MS1) The domain is composed of the (solid) copper mold and (liquid) cooling water.
Then, a liquid-solid steady-state three-dimensional heat transfer model one-
way coupled with a turbulent fluid flow model for the fluid dynamics of the
cooling water is considered.

11
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The one-way coupling is in the sense that we neglect the effects that changes in the
fluid temperature have on the fluid dynamics (i.e. buoyancy).

Notice that in the mold, we consider the cooling water flowing in circular chan-
nels with constant cross section. Then, we can consider simplified 1D models for the
turbulent flow in tubes (see e.g., [164], Chapter 7). These models give the shape of
the averaged boundary layer in a tube and the velocity has only one component, the
vertical component along the axis of the tube. Thus, we must pay attention in making
this simplification for the following model since we neglect the heat transport due to
turbulence eddies and mixing. Therefore, we derive the following simplified version
of the previous model:

(MS2) The domain is composed of the (solid) copper mold and (liquid) cooling water.
Then, a liquid-solid steady-state three-dimensional heat transfer model one-
way coupled with a simplified tube flow model for the fluid dynamics of the
cooling water is considered.

Thanks to the high Reynolds number of the flow, we can further assume that the
cooler and hotter water molecules are well mixed. Consequently, the temperature
in each section of the cooling channel is approximately constant. Moreover the wa-
ter is pumped in a closed circuit, the water flow rate being constant. In turn, since
the channels have constant section, the velocity of the fluid is also uniform and con-
stant (plug flow). Making these assumptions, we end up with the following model
which is a three dimensional version of the 2D model proposed by Samarasekera and
Brimacombe [133]:

(MS3) The domain is composed of the (solid) copper mold and (liquid) cooling water.
A steady-state three-dimensional heat conduction model with a convective BC
on the portion of the boundary in contact with the cooling water is considered.
Assuming constant temperature in each transversal section of the cooling sys-
tem, the water thermal model is given by a cross sectional heat balance. In this
case the two models are two-way coupled by the boundary condition.

Finally, considering that the temperature increase of the cooling water is of only
few degrees, we can assume that the water temperature is known. Then, we consider
the following simplification of the previous model:

(MS4) The computational domain is only composed of the (solid) copper mold. We
consider a steady-state three-dimensional heat conduction model with a con-
vective BC in the portion of the boundary in contact with the cooling water.
The water temperature is known at the inlet and outlet of the cooling system.
The water temperature is assumed to be linear.

12
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As previously mentioned, we now drop the steadiness assumption to develop an
unsteady-state version of model (MS4):

(MU4) The computational domain is only composed of the (solid) copper mold. We
consider an unsteady-state three-dimensional heat conduction model with a
convective BC in the portion of the boundary in contact with the cooling water.
The water temperature is known at the inlet and outlet of the cooling system.
The water temperature is assumed to be linear in space and constant in time.

We have now available a hierarchy of models which we built by adding assump-
tions. Figure 1.3.1 illustrates this models hierarchy.

Incompessible
Navier-Stokes Model

Liquid-solid
3D Steady-state 3D Steady-state

Heat Transfer Model

(MS1)

Incompessible
Pipe Flow Model

1D Steady-state
Liquid-solid

3D Steady-state

Heat Transfer Model

(MS2)

Model in Solid

1D Steady-state
Heat Conduction
3D Steady-state

Pipe Thermal Model

(MS3)

3D Heat Conduction Model in Solid
Steady-state

(MS4)

3D Heat Conduction Model in Solid

(MU4)

Unsteady-state

Figure 1.3.1: Scheme of the models hierarchy for the CC mold.

1.4 ESTIMATING THE MOLD-SLAB HEAT FLUX
Having defined the physical problem, we consider that the main objective of the
present research is to compute in real time the heat flux at the steel-mold interface
from the temperature monitoring data in the industrial plant. The thin slab casting
molds that we consider are equipped with a number of thermocouples. These ther-
mocouples are all buried at the same distance (few millimeters) from the hot face of

13



UMBERTO EMIL MORELLI

the mold and they measure the temperature at a frequency of 1 Hz. As usual in exper-
imental measurements, the measured temperature is affected by errors that depend on
the thermocouple type, accuracy and tolerance range.

The objective of our research is to use these measured temperatures to estimate
the boundary heat flux. From a mathematical point of view, problems of this kind
are generally called Inverse Heat Transfer Problem (IHTP). A characteristic of these
inverse problems is that their solution could not exist, could be not unique and could
not depend continuously on the data. Thus, they are not well-posed in the sense of
Hadamard (see [99]) but instead they are ill-posed problem.

The ill-posedness of these inverse problems requires a careful handling and the
application of regularization techniques to recover well-posedness. In this section, we
review previous efforts in solving similar inverse problems with a focus on IHTPs.

1.4.1 State of the Art

The literature on IHTPs is vast. For a detailed review we refer to [2, 11, 26, 111].
As already mentioned, also the problem of computing the mold-slab heat flux from
temperature measurements in the mold is not new in the literature (see e.g., [90, 127,
158]). From a mathematical point of view, this problem is the estimation of a Neu-
mann BC (the heat flux) having as data pointwise measurements of the state variable
in the interior of the domain. Such problems were also addressed in investigations
not related to CC (see e.g., [129, 159]). Due to the vastness of the literature on the
subject, we focus on previous efforts in BC estimation in IHTPs and mold-slab heat
flux estimation, giving only few references about the general inverse problems frame-
work.

Research in IHTPs started in the 50s. It was driven by the interest in know-
ing thermal properties of heat shields and heat fluxes on the surface of space vehi-
cles during re-entry. From a heuristic approach in the 50s, researchers moved to a
more mathematically formal approach. In fact, in the 60s and 70s, most of the reg-
ularization theory that we use nowadays to treat ill-posed problems was developed
(see [2, 9, 10, 31, 157]). Here, we discuss in general the most popular methodologies
used for the solution of IHTPs.

A possible classification of inverse problems is by the kind of object to be es-
timated. In particular, Dantas and Orlande [36] divided them into four categories:
boundary problems, regarding the estimation of BCs; coefficient problems, concern-
ing with the estimation of physical properties; retrospective problem, estimating the
initial conditions; and geometric problems, dealing with the estimation of geometric

14



CHAPTER 1. INTRODUCTION AND MOTIVATION

characteristics of a body. In general, two approach can be used for their solution: (i)
to use a deterministic least square approach, stating the problem as the minimization
of a functional and using the optimal control framework, or (ii) to use a statistical
approach, stating the problem in the Bayesian framework.

Using a deterministic approach, we want to estimate a function such that it min-
imizes a measure of the distance between the state variable (e.g., temperature) that
we measure and the one that we compute. This is the most used approach because
we can state the inverse problem in the optimal control framework. In this setting,
we can exploit for the solution of the problem several techniques that were proposed
in the literature. Namely, the most popular methods are Conjugate Gradient Method
(CGM) [101], Levenberg-Marquardt Method (LMM) [123] and Tikhonov regulariza-
tion [61]. The choice of the methodology to use depends, in general, from the type
of inverse problem and the object to estimate.

In the Bayesian setting, we threat the object to estimate as a random variable.
Then, by the Bayes theorem, its conditional probability with respect to the data we
measure (posterior) is given by the prior probability times the likelihood. The prior
probability contains the knowledge we have of the object to estimate (e.g., range
of values), while the likelihood contains the direct problem. With this approach,
we put all the information we have (e.g., the physical model, the measurements, the
statistical model of the noise) inside the prior probability and the likelihood, obtaining
the probability of the quantity we want to estimate. This approach is very useful to
threat uncertainty in the data and/or in the model. However in general, it requires
some very expensive Monte Carlo methods to sample the posterior probability which
are well known for being computational expensive.

To provide an overview of the previous efforts in solving the present inverse prob-
lem, we briefly describe some works related to the estimation of boundary heat flux
in CC molds. Traditionally (see [90]), a heat flux profile was selected and by trial
and error adapted to match the measured temperatures. Pinhero et al. [119] were the
first to use an optimal control framework and regularization methods. They used a
steady-state version of the 2D mold model proposed by Samarasekera and Brima-
combe [133] and parameterized the heat flux with a piecewise constant function.
Finally, they used Tikhonov’s regularization for solving the inverse problem and val-
idated the results with experimental measurements. A similar approach was used
in [94]. Ranut et al. [127, 128] estimated the heat flux transferred from the solidify-
ing steel to the mold wall both in a 2D and 3D domain. They used a steady-state heat
conduction model for the mold and parameterized the heat flux with a piecewise lin-
ear profile in 2D and symmetric cosine profile in 3D. For the solution of the inverse
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problem, they used the CGM and a mixed GA-SIMPLEX algorithm (see [104]) in
2D while in 3D they only used the GA-SIMPLEX algorithm. Their results were also
tested with experimental data.

Hebi et al [67, 91] attempted to estimate the solidification in round billet CC by
using a 3D transient heat conduction model in the strand and the mold with a Robin
condition at the mold-strand interface. Then, they planted the following inverse prob-
lem: find the Heat Transfer Coefficient (HTC) between mold and strand such that a
distance between measured and computed temperatures at the thermocouples is min-
imal. They assumed the HTC to be piecewise constant. It was firstly set to a uniform
value. Then, by using sensitivity coefficients, each piece was iteratively adapted to
match the measured temperature. To allow convergence, a relaxation factor was intro-
duced in between the iterations. They validated the results with plant measurements
without obtaining a good agreement. A similar approach was used by Gonzalez et
el. [62] and Wang et al. [69, 152, 162, 174], the latter using a Neumann condition at
the mold-strand interface.

Wang and Yao [163] used the aforementioned inverse problem solution technique
to estimate the HTC in round billet CC mold. Then, they used the results obtained
to train a Neural Network (NN) for on-line computation. Similarly, Chen et al [32],
used the fuzzy inference method for estimating the mold heat flux. They modeled the
mold with a 2D steady-state heat conduction model in the solid and parameterized
the boundary heat flux. They tested the results on a numerical benchmark obtaining
a good agreement.

Yu and Luo [76] considered a 2D vertical section of a slab and the solidification
problem therein. They developed a modified Levenberg–Marquardt method to esti-
mate the HTC in the secondary cooling region from temperature measurements on
the surface of the slab.

Udayraj et al. [158] applied CGM with adjoint problem for the solution of the
inverse steady-state 2D heat conduction problem, this method was first proposed by
Alifanov [2] for the regularization of boundary inverse heat transfer problems. By
using this method there is no need of parameterizing the heat flux. However, the
method underestimate the heat flux away from the measurements. To overcome this
issue, the authors proposed to average the computed heat flux at each step and use the
uniform averaged value as initial estimation for the following step. Similarly, Chen et
al. [33] tackled the problem of estimating the steady boundary heat flux in 2D circular
CC supporting rollers based on temperature measurements inside the domain. For its
solution, they used the CGM proposed by Alifanov [2].

We conclude this section by describing previous works that are related to the
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present research but not to CC. Ambrosi et al. [3, 159] studied the mathematical for-
mulation of the force traction microscopy problem. This inverse problem consists in
obtaining the boundary stress field on a portion of the boundary (Neumann BC) based
on the pointwise measurement of the displacement (state variable) inside the domain.
The similarity with the present research is the presence of pointwise observations and
a boundary inverse problem with (linear) elliptic direct problem. In [3], they stated
the 2D direct problem and the related inverse problem in the standard optimal control
framework due to Lions [87] for which the unknown BC is the distributed bound-
ary control. Then in [159], they extended the formulation to the 3D linear elasticity
model proving existence and uniqueness of the optimal control solution.

1.5 OBJECTIVES

From the previous overview on the state of the art, we appreciate that the problem of
estimating the mold-steel heat flux as been addressed by some researchers already.
However, we could not find in the literature a reliable solution to this problem that
is able to reconstruct the heat flux in all the mold-steel interface simultaneously and
to provide the solution in real-time. To solve this industrial problem, the goal of the
present work is to develop mathematical tools able to estimate the mold-steel heat
flux in real-time given the thermocouples measurements.

To reach this goal, we split it in four interconnected objectives: the accurate mod-
elling of the mold, the formulation and solution of the heat flux estimation problem,
the reduction of the computational cost to achieve real-time performance, and the test
of the developed mathematical tools.

With respect to the mold modelling, we approach this task with the objective of
generating a model hierarchy. Starting from a first set of assumptions, we derive the
related model for the heat transfer into the mold. Then, we generate a hierarchy of
models by adding further assumptions to this initial set. This cutting edge collection
of models is by itself a first unprecedented outcome of this thesis.

Once that the mold hierarchy is constructed, we select two models and study the
related boundary heat flux estimation problems. In formulating these inverse prob-
lems, we propose novel formulations together with the classical one that we could
find in the literature. When dealing with their solution, we study the employment
of traditional techniques such as Alifanov’s regularization together with the develop-
ment of novel methodologies. In particular, we propose original direct methods that
exploit the parameterization of the sought heat flux. The advantage of these methods
is twofold. Firstly, they are direct methods that do not require several iterations to
find a solution. Secondly, they rely on the offline-online decomposition, meaning
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that we have a computational expensive offline phase that can be computed before
starting the machinery and a computationally cheap online phase that estimates the
mold-slab heat flux.

In some cases, this offline-online decomposition is sufficient to achieve real-time
performances. In others, we investigate the developement of innovative Model Order
reduction (MOR) techniques for the reduction of the computational cost of the online
phase to ensure the fulfillment of the real-time constrain.

Also due to the industrial implications of this research, to properly test all the
proposed methodologies is crucial. To do it, we design new specific benchmark test
cases. These test cases are both academic with analytical solutions and numerical
test case in which we mimic the real industrial scenario. We use these benchmarks to
perform several different analysis both to validate the simulation of the mold models,
and to test and compare the performance of the proposed inverse solvers.

1.6 THESIS OUTLINE
We divide the present thesis in two parts. In the first one, we consider the steady-state
mold models and the related inverse problems. In the second, we use the unsteady-
state mold model formulating the heat flux estimation problem in this setting.

Each part as a similar structure. Firstly, we introduce the mathematical models to
simulate the heat transfer in CC molds for the considered direct problems providing
the related literature review. In a following chapter, we formulate the inverse prob-
lems for the computation of the boundary heat flux. After a review of the most impor-
tant results for the mathematical analysis of the proposed inverse problem, we present
novel methodologies for the solution of these problems. Moreover, if necessary, we
describe the application and development of MOR techniques for the speed-up of the
proposed inverse solvers.

Finally, we discuss the design of benchmark test cases. Then, we use them to
validate and compare all the different methodologies for the solution of the inverse
problems.
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Estimation of the Boundary Heat
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2 STEADY-STATE DIRECT
PROBLEM

In the present chapter, we discuss the mathematical formulation of the steady-state
physical models introduced in Section 1.3.2.

We begin this chapter by introducing the domain of interest and the main nota-
tion in Section 2.1. In Section 2.2, we present the characteristic physical data of CC
molds. Section 2.3 introduces some modeling assumptions which are common to all
the mold models of the thesis. In Section 2.4, we introduce the mathematical formu-
lation of model (MS1) and (MS2). These models share the same thermal model, the
difference being in the considered fluid flow model. In fact, model (MS1) incorpo-
rates an incompressible Navier-Stokes fluid model, and model (MS2) an empirical
tube flow model. Both provide the fluid velocity required by the advection-diffusion
thermal model. For the involved steady-state thermal model, we prove the existence
and uniqueness of the solution.

In Section 2.5, we derive model (MS3), introduced in Section 1.3.2, by adding
some assumptions to model (MS1) that allow us to consider a 1D thermal model in
the fluid domain. This model was first proposed for the 2D case by Samarasekera
and Brimacombe (see [134]); we present here its derivation in the 3D case. Finally,
in Section 2.6, we formulate the mathematical description of model (MS4) by adding
further simplifying assumptions on model (MS3). The resulting model is a 3D heat
conduction model in the solid domain with a convection BC at the portion of the solid
boundary in contact with the cooling fluid.

2.1 COMPUTATIONAL DOMAIN AND NOTATION

Consider a fluid and a solid domains, Ωf and Ωs, which are open Lipschitz bounded
subsets of IR3, with smooth boundaries Γf and Γs and such that Ωf ∩ Ωs = ∅ (see
Figures 2.1.1 and 2.1.2). Let Γf = Γfin ∪ Γfout ∪ Γsf , where Γ̊fin , Γ̊fout and Γ̊sf

have mutually empty intersections and Γ̊fin is non empty. Likewise, let Γs = Γsin ∪
Γsex ∪ Γsf where Γ̊sin , Γ̊sex and Γ̊sf are disjoint sets. Moreover, let Γsf := Γf ∩ Γs

be not empty. Let Ω be defined by

Ω :=
˚

(Ωf ∪ Ωs), (2.1.1)
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and Γ = ∂Ω = Γsin ∪ Γsex ∪ Γfin ∪ Γfout . The Eulerian Cartesian coordinate vector
is denoted by x ∈ Ω and ni(x) is the unit normal vector that is directed outwards
from Ωi, i ∈ {f, s}.

y

x

z

Γfout

Γfin

Ω

Γsin

Γsex

Figure 2.1.1: Schematic of the domain, Ω, and its boundaries. It is divided into two
subdomains: the solid domain (mold), Ωs, and the fluid domain (cooling system), Ωf .

In this setting, Ωs and Ωf correspond to the region of the space occupied by
the mold and its cooling system, respectively. The boundary Γfin is the inlet of
the cooling system, while Γfout the outlet. The interface between the mold and the
cooling system is denoted by Γsf . Finally, Γsin is the portion of the mold boundary
in contact with the solidifying steel.

In the following, we consider the standard Sobolev space H1(Ω), with H1/2(Γ)
being its image given by the trace operator

γΓ : H1(Ω) → H1/2(Γ). (2.1.2)

Analogously, we consider H1(Ωi), i ∈ {f, s}, and H1/2(Γl(i)), with l(f) ∈ {fin, fout, sf},
and l(s) ∈ {sin, sex, sf}.

We now define the space

V (Ωf ) := {w ∈ [H1(Ωf ) ∩ L∞(Ωf )]
3| ∇ ·w = 0,

γΓsf
w · nf = 0}, (2.1.3)

22



CHAPTER 2. STEADY-STATE DIRECT PROBLEM

Γsex

y

x Γsex

Ωs

Ωf

Γsin

(a) Cross section along a plane normal to the z axis.
z

Γsex

Γsex

Γsex

Γsf

y

Γsin

Γfin

Γfs

Γfout

(b) Vertical section of one plate along
a plane normal to the x axis.

Figure 2.1.2: Cross sections of the domain, Ω. For clarity, the fluid domain is colored in
blue and the solid domain in gray.

Moreover, we define the Hilbert spaces (see [17])

H1
Γfin

(Ω) :={w ∈ H1(Ω)| γΓfin
w = 0},

H1(Ω) :=H1(Ωs)×H1(Ωf ),

H1
Γfin

(Ω) :=H1(Ωs)×H1
Γfin

(Ωf ),

(2.1.4)

with the standard norm

�(ws, wf )�H1(Ω) = (�ws�2H1(Ωs)
+ �wf�2H1(Ωf )

)1/2. (2.1.5)

We identify H1(Ω) (resp. H1
Γfin

(Ω)) with the subspace of H1(Ω) (resp. H1
Γfin

(Ω))
of the functions with equal trace at the interface Γsf (see [17]). So that, a function
z in H1(Ω) can be identified by the pair (zs, zf ) of its restrictions to the domains
Ωs and Ωf . Taking into account that Γfin ⊂ Γ and since the trace operator from
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H1(Ω) onto H1/2(Γfin) is continuous and surjective, there exists a lifting operator.
Therefore, for a w̃ in H1/2(Γin) there exists Rw̃ in H1(Ω) such that (see [124])

Rw̃ = (Rw̃s , Rw̃f
) ∈ H1(Ω), γΓfin

Rw̃ = w̃. (2.1.6)

Moreover, there exists a constant C > 0, such that

�Rw̃�H1(Ω) ≤ C �w̃�H1/2(Γfin
) , ∀w̃ ∈ H1/2(Γfin). (2.1.7)

The objective of the direct problem is to compute the absolute temperature in
Ω. In what follows, we denote the absolute temperature by T . Consequently, the
absolute fluid an solid temperatures are denoted by Tf and Ts respectively. Moreover,
we denote the fluid velocity by u and the fluid pressure by p. Finally, let us define
the fluid deformation rate tensor by

D[u] :=
∇u+∇uT

2
. (2.1.8)

2.2 PHYSICAL DATA
In this section, we provide some physical data characteristic of CC molds. We use
them in the next sections to motivate some modeling assumptions and simplifica-
tions. Table 2.1 summarizes the typical values of different physical quantities for a
CC mold. The presented copper properties are for a metal temperature of 600 K
(see [47]), while the water properties are for a temperature of 313 K and a pressure
of 10 bar. These are the nominal operating temperatures in a caster.

We define the following quantities:

• The average cross section velocity for a fluid flowing through a tube is given by

uavg :=
Q

Atube
, (2.2.1)

where Q is the cooling water flow rate and Atube its cross sectional area. Note
that since the flow rate and the area are constant, uavg is also constant.

• The Reynolds number in the cooling tubes is

Re :=
2ρfuavgdtube

µf
, (2.2.2)

where dtube is the tube diameter. Considering the values in Table 2.1, in the
cooling tubes it is 1.52e5. Since it is above 1e4, we have a fully developed
turbulent flow (see [25]).
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• Finally, another important dimensionless quantity is the Peclet number. We
define it as

Pe :=
ρfCpfdtubeuavg

kf
. (2.2.3)

According to Table 2.1, in the cooling tubes we have Pe = 6.6e5.

Table 2.1: Typical physical parameters for CC molds.

Physical domain Parameter Value

Solid (copper) Thermal conductivity [47], ks 383 W/(mK)
Density [44], ρs 8940 kg/m3

Specific heat capacity [42], Cps 390 J/(kgK)

Fluid (water) Thermal conductivity [48], kf 0.63 W/(mK)
Density [43], ρf 992 kg/m3

Specific heat capacity [46], Cpf 4180 J/(kgK)
Dynamic viscosity [45], µf 6.54e− 4 Pa s

Design inlet temperature, T̃f 313 K
Design flow rate per tube, Q 1 l/s
Tubes diameter, dtube 0.01 m
Area of tubes cross section, Atube 7.85e− 5 m2

Average cross section velocity, uavg 10 m/s
Reynolds number, Re 1.52e5
Peclet number, Pe 6.6e5

2.3 GENERAL ASSUMPTIONS FOR CC MOLD MOD-
ELS

In this section, we introduce some assumptions that are common to all the models of
this chapter.

We shall assume all along the following assumptions on the data:

(H1.1) The thermal conductivity is constant and strictly positive in each sub-domain:
kf ∈ IR+ and ks ∈ IR+.

(H1.2) The fluid density and its specific heat are constant and strictly positive: ρf ∈
IR+, Cpf ∈ IR+.

(H1.3) The solid density and its specific heat are constant and strictly positive: ρs ∈
IR+, Cps ∈ IR+.

(H1.4) The mold-steel heat flux, g, belongs to L2(Γsin).
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(H1.5) The fluid temperature at the inlet boundary, T̃f , is known and belongs to H1/2(Γfin).

(H1.6) The heat source in the fluid, ff , and in the solid, fs, belong to L2(Ωf ) and
L2(Ωs), respectively.

(H1.7) The dynamic viscosity of the fluid is constant and strictly positive: µf ∈ IR+.

(H1.8) The fluid flow is assumed incompressible, Newtonian and at steady-state.

In what follows, we present a hierarchy of CC mold models. This hierarchy is
created adding assumptions to (H1.1)-(H1.8).

2.4 THREE-DIMENSIONAL STEADY-STATE LIQUID-
SOLID HEAT TRANSFER MODEL

In this section, we consider the physical problems (MS1) and (MS2) introduced in
Section 1.3.2. As already mentioned, they share the same thermal model, the differ-
ence being in the considered fluid model. We recall that the thermal and the fluid
models are assumed to be one-way coupled. Then, we discuss the formulation of the
fluid flow and thermal models that arise in CC molds.

The CC mold heat transfer problem is characterized by a forced heat convection
region (the cooling water) in contact with a heat conduction region (the solid part of
the mold). This physical problem is commonly referred in the literature as a conjugate
heat transfer problem (see [89]).

Since the thermal and the fluid models are one-way coupled, we firstly need to
compute the fluid velocity. Then, we input it into the thermal model. As described
in the previous chapter, we consider the steady-state incompressible Navier-Stokes
equations for modeling the fluid flow in model (MS1) in Section 2.4.1. While, for
model (MS2), we replace it by a simplified tube model in Section 2.4.2. Both these
fluid models are well established in the literature (see e.g. [164]). Finally, we discuss
in Section 2.4.3 the mathematical formulation of their common thermal model with
the corresponding proof of solution uniqueness.

2.4.1 Incompressible Navier-Stokes Flow Model

According to the assumptions made, the fluid must satisfy the steady-state Navier-
Stokes equations for an incompressible flow. Being a viscous flow, we impose non
slip BC at the solid wall, Γsf . Moreover, we assume that the inlet velocity and
pressure are known on Γfin and that the flow is fully developed at the outlet Γfout

(see [79]). Then, we consider the following
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Problem 2.1. Find u and p defined in Ωf such that

∇ · u(x) = 0, in Ωf ,

ρf∇ · [u(x)⊗ u(x)] = −∇p(x) +∇ · (2µf (x)D[u](x)) + ρfb(x), in Ωf ,
(2.4.1)

with BCs




u(x) = uin(x) on Γfin , (2.4.2)

p(x) = pin(x) on Γfin , (2.4.3)

u(x) = 0 on Γsf , (2.4.4)

∇u(x) · n(x) = 0 on Γfout , (2.4.5)

where b(x) = (0, 0,−9.81) m/s2 is the gravitational acceleration. This system of
equations is known as the "primitive variables" formulation of the incompressible
Navier-Stokes equations [130].

2.4.2 Pipe Flow Model

In the cooling system, the water is flowing in circular tubes. The cross section of
these tubes and the flow rate are constant. Then, being an incompressible fluid, the
fluid mean velocity is also constant.

According to Figure 2.4.1, let r be the radial coordinate, u the axial velocity
and umax the velocity at the center line of the tube. We consider a fully developed
turbulent flow with constant flow rate, Q, and cross section Atube.

Joining the theoretical work made by Blasius with experimental measurements,
Prandtl developed an empirical model which provides good results for high Reynolds
turbulent flows (see [164], Chapter 7). This model is commonly called the one-
seventh-power law. It assumes that the flow velocity has only the component along
the axis of the tube. Then, the flow velocity is axisymmetric with respect to the tube’s
center line. As a result, it is a function of the mean velocity in the tube’s section, uavg,
and of the radial distance from the center line only. We summarize the assumptions
made:

(H2.1) The axis of the tube is parallel to ez .

(H2.2) The flow velocity has only the component along the axis of the tube which is
function of the tube radial coordinate only, i.e. u(x) = −u(r)ez .
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u(r)

r
u
m
a
x

Rtube

Figure 2.4.1: Schematic of one of the tubes of the cooling system of a CC mold. We
denote by Rtube the tube radius, r denotes the radial coordinate, u the fluid velocity and
umax its maximum value. Notice that in this pipe flow model, the fluid velocity is a function
of the radial coordinate only.

The one-seventh-power law developed by Prandtl is

u(r) = umax

�
1− r

R

� 1
7
, (2.4.6)

The maximum velocity umax can be computed as a function of the Darcy-Weisbach
friction factor, f , and the mean tube velocity in the section (see [164])

umax = uavg(1 + 1.33
�
f). (2.4.7)

We remember that according to (2.2.1), uavg is constant.
To complete the model, we require an equation to compute the friction factor, f .

Several empirical formulas are available. For its simplicity, we use the Swamee-Jain

28



CHAPTER 2. STEADY-STATE DIRECT PROBLEM

equation (see [78])

f =
0.25

�
log
�
�Cu/(2Rtube)

3.7 + 5.74
Re0.9

��2 , (2.4.8)

here �Cu is the tube’s effective roughness height (1 µm for copper).

2.4.3 Thermal Model

In deriving the thermal model, we make the following assumption:

(H1.9) The fluid velocity, u, is known, belongs to V (Ωf ) and is such that γΓfout
u ·

nf ≥ 0.

This assumption comes from physical consideration on the flow field. In particular,
adherence condition to solid walls was considered on Γsf . Moreover, we assume that
at Γfout the flow is directed outward of the domain.

The thermal behavior of the mold, assuming known the hydrodynamic behavior
of the fluid, can be modeled by the following advection-diffusion elliptic equations

Problem 2.2. Find Tf and Ts such that

ρfCpfu(x) ·∇(Tf (x))− kfΔTf (x) = ff (x), in Ωf ,

−ksΔTs(x) = fs(x), in Ωs,
(2.4.9)

with BCs




Tf (x) = T̃f (x) on Γfin , (2.4.10)

−kf∇Tf (x) · nf (x) = 0 on Γfout , (2.4.11)

−ks∇Ts(x) · ns(x) = g(x) on Γsin , (2.4.12)

−ks∇Ts(x) · ns(x) = 0 on Γsex , (2.4.13)

and transmission conditions
�

Tf (x) = Ts(x) on Γsf , (2.4.14)

ks∇Ts(x) · ns(x) + kf∇Tf (x) · nf (x) = 0 on Γsf . (2.4.15)

Below, we try to obtain a weak formulation for this problem. To do this, let us
assume for a moment that Problem 2.2 admits a regular solution T = (Ts, Tf ) ∈
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H1(Ω). So, given a function z ∈ H1
Γfin

(Ω), we have, by (2.4.9) and integration by
parts, that

ρfCpf

�

Ωf

(u(x) ·∇Tf (x))z(x)dx+

�

Ωf

kf∇Tf (x) ·∇z(x)dx+

�

Ωs

ks∇Ts(x) ·∇z(x)dx−

−
�

Γf

kf
∂Tf (x)

∂n
z(x)dΓ−

�

Γs

ks
∂Ts(x)

∂n
z(x)dΓ =

�

Ωf

ff (x)z(x)dx+

�

Ωs

fs(x)z(x)dx.

(2.4.16)

Considering boundary conditions (2.4.11)-(2.4.13) and transmission condition (2.4.15),
we have

ρfCpf

�

Ωf

(u(x) ·∇Tf (x))zf (x)dx+

�

Ωf

kf∇Tf (x) ·∇zf (x)dx+

�

Ωs

ks∇Ts(x) ·∇zs(x)dx+

�

Γsin

g(x)zs(x)dΓ =

�

Ωf

ff (x)zf (x)dx+

�

Ωs

fs(x)zs(x)dx.

(2.4.17)

From hypothesis (H1.5) and thanks to (2.1.6) and (2.1.7), there exists

RT̃ = (RT̃s
, RT̃f

) ∈ H1(Ω), γΓfin
RT̃ = T̃f , (2.4.18)

with
��RT̃

��
H1(Ω)

≤ C
���T̃f

���
H1/2(Γfin

)
. Then, if T ∈ H1(Ω) and verifies (2.4.10), we

can write

T = T −RT̃ ∈ H1
Γfin

(Ω). (2.4.19)
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So, we can rewrite (2.4.17) as

ρfCpf

�

Ωf

(u(x) ·∇T f (x))zf (x)dx+

�

Ωf

kf∇T f (x) ·∇zf (x)dx+

�

Ωs

ks∇T s(x) ·∇zs(x)dx+

�

Γsin

g(x)zs(x)dΓ =

�

Ωf

ff (x)zf (x)dx+

�

Ωs

fs(x)zs(x)dx−

ρfCpf

�

Ωf

(u(x) ·∇RT̃f
(x))zf (x)dx−

�

Ωs

ks∇RT̃s
(x) ·∇zs(x)dx−

�

Ωf

kf∇RT̃f
(x) ·∇zf (x)dx, ∀z ∈ H1

Γfin
.

(2.4.20)

Given that any regular solution of Problem 2.2 should verify (2.4.20), if it exists,
it can be found between the solutions of

Problem 2.3. Find T = (T s, T f ) ∈ H1
Γfin

(Ω), such that

ρfCpf

�

Ωf

(u(x) ·∇T f (x))zf (x)dx+

�

Ωf

kf∇T f (x) ·∇zf (x)dx+

�

Ωs

ks∇T s(x) ·∇zs(x)dx = −
�

Γsin

g(x)zs(x)dΓ+

�

Ωf

ff (x)zf (x)dx+

�

Ωs

fs(x)zs(x)dx−
�

Ωf

kf∇RT̃f
(x) ·∇zf (x)dx− ρfCpf

�

Ωf

(u(x) ·∇RT̃f
(x))zf (x)dx−

�

Ωs

ks∇RT̃s
(x) ·∇zs(x)dx,

(2.4.21)

for all (zs, zf ) in H1
Γfin

(Ω).

Notice that all integrals in (2.4.21) are well defined in the spaces considered. Indeed,
Problem 2.3 is the proposed weak formulation for Problem 2.2.
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Defining the bilinear form

a : H1(Ω)×H1(Ω) → IR,

a(w, z) = ρfCpf

�

Ωf

(u(x) ·∇wf (x))zf (x)dx+

�

Ωf

kf∇wf (x) ·∇zf (x)dx+

�

Ωs

ks∇ws(x) ·∇zs(x)dx,

(2.4.22)

with w and z belonging to H1(Ω); and the linear functional F : H1(Ω) → IR defined
by

F (z) = −
�

Γsin

g(x)zs(x)dΓ+

�

Ωf

ff (x)zf (x)dx+

�

Ωs

fs(x)zs(x)dx−

−ρfCpf

�

Ωf

(u(x) ·∇RT̃ (x))zf (x)dx−
�

Ωf

kf∇RT̃ (x) ·∇zf (x)dx−

−
�

Ωs

ks∇RT̃s
(x) ·∇zs(x)dx,

(2.4.23)
with z belonging to H1(Ω), Problem 2.3 can be written as

Find T = (T s, T f ) ∈ H1
Γfin

(Ω): a(T , z) = F (z),

∀z = (zs, zf ) ∈ H1
Γfin

(Ω).
(2.4.24)

We conclude this section by providing the proof of the existence and uniqueness
of the solution of Problem 2.3.

Proof. The H1
Γfin

(Ω)-coercivity for the last two terms of (2.4.22) is given thanks to
hypothesis (H1.1) (see [5, 50])

�

Ωf

kf∇wf ·∇wfdx+

�

Ωs

ks∇ws ·∇wsdx =

kf �∇wf�2L2(Ωf )
+ ks �∇ws�2L2(Ωs)

≥

min(kf , ks)
�
|wf |2H1(Ωf )

+ |ws|2H1(Ωs)

�
=

min(kf , ks)|w|2H1(Ω) ≥ min(kf , ks)CΩ �w�2H1(Ω) ,

(2.4.25)

for all w = (ws, wf ) ∈ H1
Γfin

(Ω), where the last inequality is given by the Point-
caré inequality, which can be used taking into account that Γfin has nonzero Haus-
dorff measure on the boundary; in (2.4.25) CΩ is a constant only dependent on Ω
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(see [124]). We recall that u belongs to

V (Ωf ) := {w ∈ [H1(Ωf ) ∩ L∞(Ωf )]
3| ∇ ·w = 0,

γΓsf
w · nf = 0}. (2.4.26)

We now verify the H1
Γfin

(Ω)-coercivity of the first term of the bilinear form as
defined in (2.4.22)

ρfCpf

�

Ωf

(u(x) ·∇zf (x))zf (x)dx =
1

2
ρfCpf

�

Ωf

�
u(x) ·∇(z2f (x))

�
dx.

(2.4.27)
Firstly, notice that all integrals are well defined thanks to u ∈ V (Ω). Integrating by
parts, using assumptions (H1.2) and (H1.9), and considering zf ∈ H1

Γfin
(Ωf )

1

2
ρfCpf

�

Ωf

(u(x) ·∇z2f (x))dx =

1

2
ρfCpf

�
−
�

Ωf

z2f (x)∇ · u(x)dx+

�

Γf

z2f (x)u(x) · n(x)dΓ
�

=

=
1

2
ρfCpf

��

Γfin

z2f (x)u(x) · n(x)dΓ+

�

Γfout

z2f (x)u(x) · n(x)dΓ+

+

�

Γfsf

z2f (x)u(x) · n(x)dΓ
�

=
1

2
ρfCpf

��

Γfout

z2f (x)u(x) · n(x)dΓ
�

≥ 0.

(2.4.28)
The integral

�
Γf

z2f (x)u(x) · n(x)dΓ has meaning because the trace of functions of

H1(Ω) belongs to Lq(Γ) for q = 4 (see Theorem 4.7 of [102]). The bilinear form is
then H1

Γfin
(Ω)-coercive.

For the bilinear form to be continuous must exist a positive constant M such that

|a(w, z)| ≤ M �w�H1(Ω) �z�H1(Ω) , ∀w, z ∈ H1(Ω). (2.4.29)

For the first term of (2.4.22), we have
�����ρfCpf

�

Ωf

(u(x) ·∇wf (x))zf (x)dx

����� ≤ ρfCpf �∇wf�L2(Ωf )
�u�L∞(Ωf )

�zf�L2(Ωf )

≤ ρfCpf �w�H1(Ω) �u�L∞(Ωf )
�z�H1(Ω) , ∀w, z ∈ H1(Ω),

(2.4.30)
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where Holder and Cauchy-Schwartz inequalities were used as well as the inequality
�∇v�L2(Ω) ≤ �v�H1(Ω) for all v in H1(Ω). For the second and third term,

����
�

Ωi

ki∇wi(x) ·∇zi(x)dx

���� ≤ ki �∇wi�L2(Ωi)
�∇zi�L2(Ωi)

≤ ki �w�H1(Ω) �z�H1(Ω) , ∀w, z ∈ H1(Ω) and i ∈ {s, f}.
(2.4.31)

Thus,
|a(w, z)| ≤ M �w�H1(Ω) �z�H1(Ω) , (2.4.32)

with M = ρfCpf �u�L∞(Ωf )
+ kf + ks. Therefore, we have proved that the bilinear

form a(w, z) is continuous on H1(Ω)×H1(Ω) and H1
Γfin

-coercive.
The functional F (z) is clearly linear and bounded by

|F (z)| ≤ N �z�H1(Ω) , (2.4.33)

with N = �g�L2(Γsin )
+ �ff�L2(Ωf )

+ �fs�L2(Ωs)
+ (ρfCpf �u�L∞(Ωf )

+ kf +

ks)
��RT

��
H1(Ω)

.
We can conclude that due to the Lax-Milgram theorem (see [124]), the solution

of Problem 2.3 exists and is unique.

2.5 THREE-DIMENSIONAL STEADY-STATE HEAT CON-
DUCTION MODEL COUPLED WITH 1D COOLING
MODEL

In this section, we describe the mathematical formulation of model (MS3). This
model is inspired by the 2D mold model proposed by Samarasekera and Brimacombe
(see [134]). It substitutes the three-dimensional heat transfer problem in the fluid
domain with a 1D sectional heat balance equation, imposing convective transmission
conditions at the interface and assuming the fluid to be in plug flow.

As already mentioned, the fluid flows in a fully developed turbulent regime. This
is due to the high Reynolds number and the steady flow rate (see Section 2.2 and2.3).
Let us consider the value of the Peclet number given in Table 2.1. It is a measure of
the quotient of the heat advection with respect to the heat conduction. For this value
of the Peclet number, the heat conduction is negligible with respect to the advection
in the tube axial direction. Moreover due to the high Reynolds number (2.2.2), the
turbulent mixing plays an important role in diffusing temperature radially in each
cross section of the channels. Then, more than the fluid temperature field, we are
interested in knowing a section averaged value.

To summarize, we add the following assumptions to those of model (MS1)
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(H3.1) The source terms are null: fi = 0, i = s, f .

(H3.2) The axis of the tube is parallel to ez .

(H3.3) The fluid velocity is known and has only the axial component (plug flow), i.e.
u(x) = uez = −uavgez .

(H3.4) Due to the high Peclet number, the heat conduction in the tube axial direction
is neglected, i.e. ∂2T

∂z2
= 0.

Let us denote by ΔA the Laplacian in a plane perpendicular to the tubes axes. Due
to assumptions (H3.1)-(H3.4), the fluid and solid temperature is found by solving

Problem 2.4. Find Tf and Ts such that

ρfCpfu
∂Tf (x)

∂z
− kfΔATf (x) = 0, in Ωf ,

−ksΔTs(x) = 0, in Ωs,
(2.5.1)

with BCs




Tf (x) = T̃f (x) on Γfin , (2.5.2)

−kf∇Tf (x) · nf (x) = 0 on Γfout , (2.5.3)

−ks∇Ts(x) · ns(x) = g(x) on Γsin , (2.5.4)

−ks∇Ts(x) · ns(x) = 0 on Γsex (2.5.5)

and transmission conditions�
Tf (x) = Ts(x) on Γsf , (2.5.6)

ks∇Ts(x) · ns(x) + kf∇Tf (x) · nf (x) = 0 on Γsf . (2.5.7)

Let us define the section averaged temperature

Tfavg(z) := (Atube)
−1

�

Atube

Tf (x)dσ, (2.5.8)

where the integral is on the normal section of each tube. Integrating the first of the two
equations (2.5.1) on the section of each tube, using the Gauss theorem and (2.4.15),
we obtain

ρfCpf

�

Atube

∂Tf

∂z
da−

�

Atube

kfΔATfda =

ρfCpfAtube

dTfavg

dz
−
�

Ptube

kf∇Tf · nfdl =

ρfCpfAtube

dTfavg

dz
+

�

Ptube

qsfdl = 0,

(2.5.9)
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where Ptube is a normal section to Γsf and qsf := −kf∇Tf ·nf = ks∇Ts ·ns is the
heat flux at the fluid-solid interface. Then, the mathematical formulation of model
(MS3) is

Problem 2.5. Find Tfavg and Ts such that

ρfCpfAtube

dTfavg(z)

dz
+

�

Ptube

qsf (x)dl = 0,

−ksΔTs(x) = 0, in Ωs,

(2.5.10)

with BCs 



Tfavg(z) = T̃favg on Γfin , (2.5.11)

−ks∇Ts(x) · ns(x) = g(x) on Γsin , (2.5.12)

−ks∇Ts(x) · ns(x) = 0 on Γsex (2.5.13)

and transmission condition

Tfavg(z) =
1

Ptube

�

Ptube

Tsdl on Γsf ,

ks∇Ts(x) · ns(x) =qsf (x) on Γsf ,

(2.5.14)

where we impose an integral version of the continuity transmission condition on Γsf .

2.6 THREE-DIMENSIONAL STEADY-STATE HEAT CON-
DUCTION MODEL

In the present section, we derive from Problem 2.2 the mathematical formulation of
model (MS4). It is a threedimensional, steady-state, heat conduction model in the
solid domain corresponding to the solid part of the mold.

In this section, we consider the fluid domain to be empty and we model the water
cooling by a convection condition on the boundary Γsf . Then, we apply the following
assumptions

(H4.1) The fluid domain is empty: Ωf = ∅.

(H4.2) The heat transfer coefficient is constant and strictly positive: h ∈ IR+.

(H4.3) The cooling water temperature, Tf , is known, constant, and belongs to L2(Γsf ).

These assumptions are motivated by the industrial water temperature measurements.
In fact, due to the very high water flow rate, the water temperature increase is of order
unity and almost constant along the casting.

Due to assumptions (H4.1)-(H4.3), the thermal model of Problem 2.2 reduces to
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Problem 2.6. Find Ts such that

− ksΔTs = 0, in Ωs, (2.6.1)

with BCs




−ks∇Ts · n = g on Γsin , (2.6.2)

−ks∇Ts · n = 0 on Γsex , (2.6.3)

−ks∇Ts · n = h(Ts − Tf ) on Γsf . (2.6.4)

We recall that for this problem the following result is well established (see [107],
Theorem 3.14):

Theorem 2.1. Under the assumptions (H1.4),(H4.2) and (H4.3), the solution to
Problem 2.6 exists and is unique in H1(Ωs). Moreover, there exists a γ > 0 such
that the solution to Problem 2.6 belongs to C0,γ(Ωs).

As a final remark, we recall (see Theorem 3.3.6 in [129]),

Theorem 2.2. If g and Tf belong to Ls(Γsin) and Ls(Γsf ) respectively, with s > 2,
then the solution Ts to Problem 2.6 belongs to C(Ωs) and

�Ts�C(Ωs)
≤ C

�
�g�Ls(Γsin )

+ �Tf�Ls(Γsf )

�
, (2.6.5)

where the constant C is independent of h.

2.6.1 Numerical Discretization

This section presents the discretization of the model introduced in the previous
section. We use the Finite Volume Method (FVM) for this discretization (see [52]).

In order to perform a space finite volume discretization of Problem 2.6, we in-
troduce a mesh of the domain. In particular, let T be a mesh on the computa-
tional domain Ωs compatible with the boundary partition. The mesh is such that
Ωs = ∪K∈T K, where an element of T , denoted by K, is an open subset of Ωs that
we call “control volume”.

Due to the geometrical complexity of CC molds, we use unstructured nonorthog-
onal cell-centered grids. Thus, according to Moraes et al. [96], we can have a second-
order accurate finite volume scheme for our diffusion problem.
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For the finite volume schemes considered here, the discrete unknown temperature
is denoted by TsK ,K ∈ T . The value TsK is expected to be some approximation of
Ts on the cell K. As usual in FVM, we integrate (2.6.1) over each cell K of the
mesh T . Then, by the divergence formula, we obtain an integral formulation of the
fluxes over the boundary of the control volume. Finally, we discretize the fluxes on
the boundary with respect to the discrete unknowns.

Let us introduce the following notation. We denote by E the set of faces of the
control volumes. For each K ∈ T and σ ∈ E , m(K) denotes the three-dimensional
Lebesgue measure of K and m(σ) denotes the two-dimensional measure of σ. The
mesh size is defined by size(T ) := sup{m(K), K ∈ T }. Let Nh be the cardinality
of T . Let xK := 1

m(K)

�
K xdx denote the control volume centroid for each K ∈ T .

Let xσ := 1
m(σ)

�
σ xdΓ denote the centroid for each σ ∈ E . Moreover, we define

dK,σ := xσ − xK , EK := {σ ∈ E|σ ⊂ ∂K}, Eint := {σ ∈ E|σ ⊂ Ωs} and
Eext := {σ ∈ E|σ ⊂ ∂Ωs}.

We start the discretization of Problem 2.6 by integrating (2.6.1) over each control
volume and applying the divergence theorem

�

K
−ksΔTs(x)dx =

�

∂K
−ks∇Ts(x) · n(x)dΓ = 0, ∀K ∈ T . (2.6.6)

Applying the mean value theorem, we get
�

∂K
−ks∇Ts(x) · n(x)dΓ ≈ −ks

�

σ∈EK
(∇Ts)σ · sσ = 0, (2.6.7)

where (∇T )σ is the gradient evaluated at the face centroid, xσ, and sσ = nσm(σ),
nσ being the normal unitary vector, pointing to the outside of K, evaluated at the face
centroid. In FVM, we refer to the term (∇Ts)σ · sσ as “flux".

The difficult in computing the flux at the centroid of the faces of the control vol-
umes is due to the gradient term. Considering the control volume KP in Figure 2.6.1
and one of its neighbors KN , we define the vector

dPN := xKN
− xKP

. (2.6.8)

If the vectors dPN and sσ are aligned for cells sharing the face σ (orthogonal grid),
we have the following second order approximation of the gradient evaluated at the
cell face

(∇Ts)σ · sσ ≈ |sσ|
TsN − TsP

|dPN | . (2.6.9)
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xKN

sσ
σ

KP

y
z

x
xKP

xσ

dPN
dKP ,σ

Figure 2.6.1: A polyhedral cell representing the general control volume Kp of the finite
volume discretization that is sharing the face σ with its neighbor KN . We denote by xK

its centroid, by xσ the face centroid, by dPN the vector going from the centroid of KP to
the centroid of its neighbor, KN .

We now consider the BCs (2.6.2)-(2.6.4). Let

gσ :=
1

m(σ)

�

σ
gdΓ, ∀σ ⊂ Γsin ,

Tfσ :=
1

m(σ)

�

σ
TfdΓ, ∀σ ⊂ Γsf .

(2.6.10)

Moreover, we introduce similar approximation of Ts at σ, denoted by Tsσ , for all
σ ∈ E . Then, we do the following approximations

(∇Ts)σ · sσ ≈ m(σ)
Tsσ − TsP

|dKP ,σ|
, ∀σ ⊂ Γsf ,

�

σ
h(Ts(x)− Tf (x))dΓ ≈ hm(σ)(Tsσ − Tfσ), ∀σ ⊂ Γsf ,

�

σ
gdΓ ≈ m(σ)gσ, ∀σ ⊂ Γsin ,

(2.6.11)

where KP is the element at which σ belongs. By introducing the first two equations
in (2.6.4), we have

− ks
Tsσ − TsP

|dKP ,σ|
= h(Tsσ − Tfσ). (2.6.12)
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Thus, we can write

Tsσ =
ksTsK − h|dKP ,σ|Tfσ

h|dKP ,σ|+ ks
, ∀σ ⊂ (Γsf ∩ ∂KP ). (2.6.13)

Then, we have

−ks(∇Ts)σ · sσ ≈− ksm(σ)
Tsσ − TsP

|dKP ,σ|

=− ksm(σ)

|dKP ,σ|

�
ks

h|dKP ,σ|+ ks
TsP +

h|dKP ,σ|
h|dKP ,σ|+ ks

Tfσ − TsP

�

=− ksm(σ)

|dKP ,σ|

� −h|dKP ,σ|
h|dKP ,σ|+ ks

TsP +
h|dKP ,σ|

h|dKP ,σ|+ ks
Tfσ

�
.

(2.6.14)
Defining

qKP ,σ :=
hksm(σ)

h|dKP ,σ|+ ks
, (2.6.15)

we can write

− ks(∇Ts)σ · sσ ≈ qKP ,σ(TsP − Tfσ), ∀σ ⊂ (Γsf ∩ ∂KP ). (2.6.16)

Then, thanks to (2.6.7)-(2.6.16), we have the following finite volume scheme for
Problem 2.6


−ks

�

σ∈EKP
\Γ

m(σ)

|dPN | +
�

σ∈EKP
∩Γsf

qKP ,σ


TsP =

ks
�

σ∈EKP
\Γ

m(σ)

|dPN |TsN +
�

σ∈EKP
∩Γsf

qKP ,σTfσ −
�

σ∈EKP
∩Γsin

m(σ)gσ, ∀KP ∈ T .

(2.6.17)
As expected by a second-order approximation (see [52]), the first term on the right-
hand side depends on the temperature in the neighbors of the cell K. In principles,
the discussion in not complete because the general unstructured, non-orthogonal case
requires some correction terms to recover the second order accuracy. Then, we refer
the interested reader to the work of Moraes et al. [96] for further details.

To conclude, we define the vector of unknowns with dimension Nh

(Ts)i := Tsi , ∀Ki ∈ T , (2.6.18)
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the matrix A ∈ IRNh×Nh , such that

Aij =− ks
�

σ∈EKi
\Γ

m(σ)

|dPN | +
�

σ∈EKi
∩Γsf

qKi,σ, if i = j

Aij =− ks
�

σ∈EKi
\Γ

m(σ)

|dPN | , if i neighborhood of j

Aij =0, otherwise,

(2.6.19)

and the source vector

(b)i =
�

σ∈EKi
∩Γsf

qKi,σTfσ −
�

σ∈EKi
∩Γsin

m(σ)gσ. (2.6.20)

Thus, we can now assemble the linear system related to the scheme (2.6.17)

ATs = b. (2.6.21)

Since it has the typical structure of a finite volume discretization, we refer to [96] for
all the details related to its solution.
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3 STEADY-STATE INVERSE
PROBLEM

This chapter is devoted to the formulation and solution of the inverse problem of
estimating the mold-steel heat flux, g, using the model (MS4) that we derived in
Section 2.6.

We formulate two different inverse problems that are differentiated by the avail-
able measurement data. Firstly, in Section 3.1, we consider the case of having only
the thermocouples temperature measurements. Secondly, in Section 3.2, we assume
to have also the total heat flux measurement. In both cases, we initially discuss the
mathematical formulation of the inverse problem. Then, we propose some method-
ologies for its solution.

3.1 INVERSE THREE-DIMENSIONAL STEADY-STATE
HEAT CONDUCTION PROBLEM

This section is devoted to the formulation and the study of the inverse problem of
Problem 2.6 in the case of having as data the thermocouples temperature measure-
ments. Using a deterministic, least square approach, we state it as an optimal control
problem with pointwise observations.

We introduce the following notation. Let Ψ := {x1,x2, . . . ,xM} be a collection
of points in Ωs. We define the application xi ∈ Ψ → T̂ (xi) ∈ IR+, with T̂ (xi) being
the experimentally measured temperature at xi ∈ Ψ. Moreover, let Gad be a bounded
set in L2(Γsin).

Then, we state the inverse problem as

Problem 3.1. Given {T̂ (xi)}Mi=1, find the heat flux g ∈ Gad that minimizes the func-
tional J1 : L2(Γsin) → IR+,

J1[g] :=
1

2

M�

i=1

[Ts[g](xi)− T̂ (xi)]
2, (3.1.1)

where Ts[g](xi) is the solution of Problem 2.6 at point xi, for all i = 1, 2, . . . ,M .

Notice that, thanks to Theorem 2.1, the state variable Ts is continuous in Ωs. Thus,
its value at pointwise observations is well-defined.
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We now introduce the sensitivity problem related to Problem 2.6. We derive it
by perturbing the heat flux g → g + δg, causing a variation of the temperature field,
Ts[g] → Ts[g] + δTs[δg]. Subtracting Problem 2.6 from the obtained problem, we
have

Problem 3.2. (Sensitivity) Find δTs such that

− ksΔδTs[δg] = 0, in Ωs, (3.1.2)

with BCs




−ks∇δTs[δg] · n = δg on Γsin , (3.1.3)

−ks∇δTs[δg] · n = 0 on Γsex , (3.1.4)

−ks∇δTs[δg] · n = h(δTs[δg]) on Γsf . (3.1.5)

Then,

Proposition 3.1. We have that Ts[g + δg] = Ts[g] + δTs[δg]. Beside, δTs is linear:
δTs[δg1 + δg2] = δTs[δg1] + δTs[δg2].

We now derive in a formal way the adjoint of Problem 3.1. Firstly, we multiply
(2.6.1) by a Lagrange multiplier λ. Then, we integrate over Ωs and add it to (3.1.1)
obtaining

L[g,λ] = 1

2

M�

i=1

(Ts[g](xi)− T̂ (xi))
2 +

�

Ωs

ksΔTs[g](x)λ(x)dx. (3.1.6)

To compute the Fréchet derivative with respect to g of L[g,λ], dLg[δg,λ], we first
write

L[g + δg,λ]− L[g,λ] =
M�

i=1

δTs[δg](xi)(Ts[g](xi) +
1

2
δTs[δg](xi)− T̂ (xi))

+

�

Ωs

ksλ(x)ΔδTs[δg](x)dx.

(3.1.7)
The Fréchet derivative of L is then obtained by neglecting the second order terms

dLg[δg,λ] =
M�

i=1

δTs[δg](xi)(Ts[g](xi)− T̂ (xi)) +

�

Ωs

ksλ(x)ΔδTs[δg](x)dx.

(3.1.8)
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Finally, Integrating the previous equation twice by parts and applying the BCs of
Problem 3.2, we write

dLg[δg,λ] =
M�

i=1

δTs[δg](xi)(Ts[g](xi)− T̂ (xi)) +

�

Ωs

ksΔλ(x)δTs[δg](x)dx

−
�

Γsin∪Γsex∪Γsf

ksδTs[δg](x)∇λ(x) · n(x)dΓ−
�

Γsin

λ(x)δg(x)dΓ

−
�

Γsf

hλ(x)δTs[δg](x)dΓ.

(3.1.9)
We can now state the adjoint problem as

Problem 3.3. (Adjoint) Find λ such that

ksΔλ[g] +

M�

i=1

(Ts[g](x)− T̂ (x))δ(x− xi) = 0, in Ωs, (3.1.10)

with BCs
�

ks∇λ[g] · n = 0 on Γsin ∪ Γsex , (3.1.11)

ks∇λ[g] · n+ hλ[g] = 0 on Γsf , (3.1.12)

δ(x − xi) being the Dirac function centered at xi. A similar problem is proposed
in [27] without deriving it.

We notice that if λ is solution of Problem 3.3, −λ[g] represents the Fréchet deriva-
tive with respect to the inner product in L2(Γsin). Then, we have

dLg[δg,λ] = −
�

Γsin

λ[g](x)δg(x)dΓ = �−λ[g](x), δg(x)�L2(Γsin )
. (3.1.13)

Considering that L[g,λ[g]] = J1[g], the Gâteaux derivative of the functional J1[g] is

J �
1g = −λ[g] in L2(Γsin). (3.1.14)

Different methods can be used for the solution of this minimization problem.
Here, we discuss its solution by Alifanov’s regularization method (see [2]) and pa-
rameterization of the heat flux, g.
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3.1.1 Alifanov’s Regularization

Alifanov’s regularization method is a CGM applied on the adjoint equation (see
[99]). We consider the following iterative procedure for the estimation of the function
g that minimizes the functional (3.1.1). Given an initial estimation g0 ∈ L2(Γsin),
for n > 0 a new iterant is computed as

gn+1 = gn − βnPn, n = 0, 1, 2, . . . (3.1.15)

where n is the iteration counter and β is the stepsize in the search direction Pn given
by

P 0 = J �
1[g

0], Pn+1 = J �
1[g

n+1] + γn+1Pn for n ≥ 1, (3.1.16)

γn+1 being the conjugate coefficient, and J �
1[g] the Gâteaux derivative of J1 given

by (3.1.14).
The stepsize βn in (3.1.15) is obtained by minimizing the functional J1[gn−βPn]

with respect to β. Therefore, βn is the solution of the critical point equation of the
functional J1, restricted to a line passing through gn in the direction defined by Pn,
i.e. βn is the critical point of J1[gn − βPn] which then satisfies

J1[g
n − βnPn] = min

β

�
1

2

M�

i=1

{Ts[g
n − βPn](xi)− T̂ (xi)}2

�
. (3.1.17)

Recalling Problem 3.2,

J1[g
n − βPn] =

1

2

M�

i=1

[Ts[g
n − βPn](xi)− T̂ (xi)]

2

=
1

2

M�

i=1

[(Ts[g
n]− βδTs[P

n])(xi)− T̂ (xi)]
2.

(3.1.18)

Differentiating with respect to β, we obtain the critical point equation

dJ1[g
n − βnPn]

dβ
=

M�

i=1

[(Ts[g
n]− βnδTs[P

n])(xi)− T̂ (xi)](−δTs[P
n](xi)) = 0.

(3.1.19)
Finally, we have

βn =

�M
i=1{Ts[g

n](xi)− T̂ (xi)}δTs[P
n](xi)�M

i=1(δTs[Pn](xi))2
. (3.1.20)
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With respect to the conjugate coefficient, γ, its value is zero for the first itera-
tion and for other iterations it can be calculated using Fletcher-Reeves expression as
follows (see [56])

γn =
�J �

1[g
n]�2L2(Γsin )

�J �
1[g

n−1]�2L2(Γsin )

. (3.1.21)

Notice that, to use this iterative procedure, we have to compute at each iteration the
Gâteaux derivative J �

1g(x), which is given by (3.1.14). Thus, we must solve the
adjoint problem to compute it.

To conclude, we summarize Alifanov’s regularization procedure in Algorithm 1.

Algorithm 1 Alifanov’s regularization for the inverse Problem 3.1.

Set g0 and n = 0
while n < nmax do

Compute Ts[g
n] by solving Problem 2.6

Compute J1[g
n] by (3.1.1)

if J1[gn] < J1tol then
Stop

end if
Compute λ[gn] by solving Problem 3.3
Compute J �

1[g
n] by (3.1.14)

if n ≥ 1 then
Compute the conjugate coefficient, γn, by (3.1.21)
Compute the search direction, Pn, by (3.1.16)

else
P 0 = J �

1[g
0]

end if
Compute δTs[P

n] by solving Problem 3.2 with δg = Pn

Compute the stepsize in the search direction, βn, by (3.1.20)
Update heat flux gn by (3.1.15)
n = n+ 1

end while
return gn

Anticipating the results of Chapter 4, we notice that this algorithm tends to over-
estimate the heat flux close to the measurement points and underestimates it in be-
tween them. It is due to the pointwise source term in the adjoint problem and to the
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thermocouples being very close to the boundary. This limitation of this method was
already pointed out in the literature by [158]. To overcome it, they proposed the fol-
lowing modification of the method: to compute at each iteration the mean value of
the heat flux and use it as initial guess for the next iteration. However, this modifica-
tion is very artifact and gives only little improvements of the final result. Then, we
propose in the next section a novel methodology that exploits the parameterization of
the heat flux.

3.1.2 Parameterization of the Boundary Conditions

In this section, we consider a parameterization of the boundary heat flux, g, to find
a solution of Problem 3.1 with a direct method. In the literature, the parameterization
of g was already proposed (see e.g. [127]). However, we propose a novel approach
both for the parameterization and for the solution of the resulting inverse problem.

We start by considering that we want to parameterize an unknown function in
L2(Γsin). Then, we notice that in thin slab casting molds, the thermocouples are
all located few millimeters inward from Γsin (see Figure 1.1.3). All together they
form a uniform 2D grid. Then, to parameterize g, we use Radial Basis Function
(RBF) centered at the projections of the thermocouples points on Γsin (see [23]). In
particular, we use Gaussian RBF. However, the following discussion can be applied
to other basis functions.

The parameterization of the boundary heat flux reads (see [120] appendix)

g(x) ≈
M�

j=1

wjφj(x). (3.1.22)

where the φj(x) are M known base functions, and the wj are the respective unknown
weights.

Let ξξξi, 1 ≤ i ≤ M , be the projection of the point xi ∈ Ψ on Γsin , i.e. such that

ξξξi = argmin
ξξξ∈Γsin

�xi − ξξξ�2 , xi ∈ Ψ. (3.1.23)

By centering the RBF in these points, their expression is

φj(x) = e−(η�x−ξξξj�2)
2

, for j = 1, 2, . . . ,M, (3.1.24)

where η is the shape parameter of the Gaussian basis. By increasing (decreasing) its
values, the radial decay of the basis slows down (speeds up).

48



CHAPTER 3. STEADY-STATE INVERSE PROBLEM

Notice that by doing this parameterization, we change the problem from estimat-
ing a function in an infinite dimensional space to estimating the vector of the coeffi-
cients w ∈ IRM . Defined the heat flux parameterization, the objective of the inverse
problem is to determine w which identifies g once the basis φj , j = 1, 2, . . . ,M are
fixed. So, we rewrite the inverse Problem 3.1 as

Problem 3.4. (Inverse) Assume that g is as in (3.1.22). Given the temperature mea-
surements, T̂ (Ψ) ∈ IRM , find ŵ ∈ IRM which minimizes the functional

J1[w] =
1

2

M�

i=1

[Ts[g](xi)− T̂ (xi)]
2. (3.1.25)

To solve Problem 3.4, suppose to have the solutions of Problem 2.6, Ts[φj ], for
j = 1, 2, . . . ,M . Denote by Tad the solution of

Problem 3.5. Find Tad such that

− ksΔTad = 0, in Ωs, (3.1.26)

with BCs
� −ks∇Tad · n = 0 on Γsin ∪ Γsex , (3.1.27)

−ks∇Tad · n = h (Tad + Tf ) on Γsf . (3.1.28)

We have

Theorem 3.2. Given w, Ts[φj ] for j = 1, 2, . . . ,M and Tad ,

Ts[w] =
N�

j=1

wj(Ts[φj ] + Tad)− Tad, (3.1.29)

is the solution to Problem 2.6.

In the following, to simplify notation and if there is no room for error, Ts[w]
represents the solution Ts[g] of Problem 2.6 with g as in (3.1.22).
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Proof. By substituting (3.1.29) into (2.6.1), we have

− ksΔTs[w] = −ksΔ(
N�

j=1

wj(Ts[φj ] + Tad)− Tad) = 0, in Ωs. (3.1.30)

On the other hand, with respect to the BCs associated to that problem, we can write

−ks∇Ts[w] · n =− ks∇




N�

j=1

wj (Ts[φj ] + Tad)− Tad


 · n

=

N�

j=1

wjφj = g, on Γsin

(3.1.31)

− ks∇Ts[w] · n = −ks∇




N�

j=1

wj (Ts[φj ] + Tad)− Tad


 · n = 0, on Γsex

(3.1.32)

−ks∇Ts[w] · n =− ks∇




N�

j=1

wj (Ts[φj ] + Tad)− Tad


 · n

=h




N�

j=1

wj (Ts[φj ] + Tad)− Tad − Tf


 , on Γsf

(3.1.33)

Let us now define the residual R[w] ∈ IRM as the vector whose components are

(R[w])i := (T[w])i − (T̂)i, (3.1.34)

where T[w] and T̂ denote the vectors of IRM whose i-components are (T[w])i =
Ts[w](xi) and (T̂)i = T̂ (xi), respectively. So, we can rewrite the cost functional of
the inverse problem (3.1.25) as

J1[w] =
1

2
R[w]TR[w]. (3.1.35)

To minimize it, we solve the critical point equation

∂J1[ŵ]

∂wj
=

M�

i=1

R[ŵ]i
∂(Ts[ŵ])i

∂wj
= 0, for j = 1, 2, . . . ,M. (3.1.36)
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Thanks to Theorem 3.2, equation (3.1.36) can be written as

R[ŵ]T (T[φj ] +Tad) = 0, for j = 1, 2, . . . ,M, (3.1.37)

being Tad the vector of IRM whose i-component is Tad(xi). Then, the vector asso-
ciated to the solution of the direct problem in the measurement points, T[w] ∈ IRM ,
is given by

T[w] =

M�

j=1

wjT[φj ] +




M�

j=1

wj − 1


Tad. (3.1.38)

Let us denote by Θ the matrix of IRM×M such that

Θij := Ts[φj ](xi) + Tad(xi). (3.1.39)

Then, (3.1.37) can be written as

ΘTR[ŵ] = 0. (3.1.40)

Recalling the definition of R and (3.1.38), we have

ΘTR[ŵ] = ΘT (Θŵ −Tad − T̂) = 0. (3.1.41)

Then, we obtain the solution of the inverse problem by solving the linear system of
order M ×M

ΘTΘŵ = ΘT (T̂+Tad). (3.1.42)

In the literature, this is generally called the normal equation.
In this setting, (3.1.42) is a linear map from the observations to the heat flux

weights. Consequently, we have that the existence and uniqueness of the solution to
the inverse problem depends on the invertibility of the matrix ΘTΘ. We can easily
see that the matrix ΘTΘ is symmetric and positive semi-definite. In general however,
we can not ensure that it is invertible. In fact, the invertibility depends on the choice
of the basis function, the computational domain and the BCs.

In the numerical tests, we will see that this matrix tends to be ill-conditioned.
This is a reflect of the ill-posedness of the inverse problem. Different regularization
techniques for linear systems are available to overcome this issue (see e.g. [7]). Here,
we consider the Truncated Singular Value Decomposition (TSVD) regularization.

To briefly describe this regularization technique, we denote the Singular Values
Decompostion (SVD) of ΘTΘ by

ΘTΘ = UΣV T =

r�

i=1

uiσiv
T
i , (3.1.43)
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where σi denotes the i-th singular value of ΘTΘ (numbered according to their de-
creasing value), r denotes the last no null singular value (i.e. the rank of ΘTΘ), ui

and vi are the i-th column of the semi-unitary matrices U and V respectively (both
belonging to IMM×r), and Σ is the square matrix of IMr×r such that Σii = σi and
Σij = 0 if i �= j. Then, the TSVD regularized solution of (3.1.42) is

w =

αTSV D�

i=1

�
uT
i Θ

T (T̂+Tad)

σi

�
vi. (3.1.44)

This solution differs from the least square solution only in that the sum is truncated at
i = αTSV D instead of i = r. In this way, we cut off the smallest singular values that
are responsible of the errors propagation. For a detailed discussion on the solution
of discrete ill-posed inverse problems, we refer the reader to Hansen’s monograph on
the subject [65].

We conclude our discussion of this method by noticing its most interesting feature
for our investigation. In fact, it is already suitable for real-time computations since
we can divide it into an offline (expensive) phase and an online (cheap) phase. In
the offline phase, we compute the Ts[φj ] for j = 1, 2, . . . ,M and Tad by solving
Problem 2.6 and Problem 3.5. Then, in the online phase, we input the measurements
T̂ and solve the linear system (3.1.42). For the choice made when selecting the basis
functions, the linear system has the dimensions of the number of thermocouples. As
a consequence, we can solve it in real-time even with limited computational power.
This makes this method very promising for our application.

As a final remark, we notice that for the application of this method, linearity of
the direct problem is essential. In fact, it is a necessary condition for Theorem 3.2.

3.2 INVERSE THREE-DIMENSIONAL STEADY-STATE
HEAT CONDUCTION PROBLEM WITH TOTAL HEAT
FLUX MEASURE

In CC molds, together with the thermocouples pointwise measurements, we can
also have approximated total heat flux measurements. In fact, assuming all bound-
aries but Γsin and Γsf to be adiabatic, all heat is extracted by the cooling water at
Γsf . Further, assuming the water heat capacity, Cpf , constant, the water mass flow
rate, ṁ, known and the process to be at steady-state, the total heat flux is given by

Ĝ =

�

Γsin

gdΓ = ṁCpf (Tfout − Tfin), (3.2.1)
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where Tfin and Tfout are the cooling water temperatures at the inlet and outlet of the
cooling system, respectively. Then, the total heat flux measurements are obtained by
equation (3.2.1) where Tfin , Tfout and the water mass flow rate ṁ are experimentally
measured.

In this section, we discuss the formulation and solution of the inverse problem
of estimating the boundary heat flux, g, by considering both the thermocouples and
total heat flux measurements.

Using again a least square, deterministic approach, we state the inverse problem
as

Problem 3.6. (Inverse) Given {T̂ (xi)}Mi=1 and Ĝ, find the heat flux g ∈ Gad that
minimizes the functional J2 : L2(Γsin) → IR+,

J2[g] :=
1

2

M�

i=1

[Ts[g](xi)− T̂ (xi)]
2 +

1

2
pg

��

Γsin

gdΓ− Ĝ

�2

, (3.2.2)

where Ts[g](xi) is the solution of Problem 2.6 at points xi, for all i = 1, 2, . . . ,M ,
and pg[

K2

W 2 ] is a weight applied to the total heat measurement.

Notice that, thanks to Theorem 2.1 the state variable Ts is continuous in Ωs, then its
value at pointwise observations is well-defined.

To derive the adjoint of Problem 3.6, we redo computations (3.1.6)-(3.1.9). It
turns out that it is again Problem 3.3. However, the Fréchet derivative with respect to
the inner product in L2(Γsin) of J2 is

dLg[δg,λ] =−
�

Γsin

�
λ[g](x)− pg

��

Γsin

gdΓ− Ĝ

��
δg(x)dΓ =

�−λ[g] + pg

��

Γsin

gdΓ− Ĝ

�
, δg�L2(Γsin )

.

(3.2.3)

Considering that L[g,λ[g]] = J2[g], the Gâteaux derivative of the functional J2[g] is

J �
2[g] = −λ[g] + pg

��

Γsin

gdΓ− Ĝ

�
in L2(Γsin). (3.2.4)

Different methods can be used for the solution of this minimization problem.
As for the minimization of J1, we discuss its solution by Alifanov’s regularization
method and by parameterization of the heat flux, g.
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3.2.1 Alifanov’s Regularization

In this section, we expand the discussion in Section 3.1.1 on Alifanov’s regular-
ization to the inverse Problem 3.6.

We consider the following iterative procedure for the estimation of the function
g that minimizes functional (3.1.1). Given an initial estimation g0 ∈ L2(Γsin), for
n > 0 a new iterant is computed by (3.1.15), with the conjugate direction given by

P 0 = J �
2[g

0], Pn+1 = J �
2[g

n+1] + γn+1Pn for n ≥ 1, (3.2.5)

γn being the conjugate coefficient, and J �
2[g] the Gâteaux derivative of J2.

The stepsize, βn, is obtained by minimizing the functional J2[gn − βPn] with
respect to β. Therefore, βn is the solution of the critical point equation of the func-
tional J , restricted to a line passing through gn in the direction defined by Pn, i.e.
βn is the critical point of J2[gn − βPn] which then satisfies

J2[g
n − βnPn] = min

β

�
1

2

M�

i=1

{Ts[g
n − βPn](xi)− T̂ (xi)}2+

1

2
pg

��

Γsin

gn − βnPndΓ− Ĝ

�2


 .

(3.2.6)

Recalling Problem 3.2,

J2[g
n − βPn] =

1

2

M�

i=1

[Ts[g
n − βPn](xi)− T̂ (xi)]

2 +
1

2
pg

��

Γsin

(gn − βnPn)dΓ− Ĝ

�2

=

1

2

M�

i=1

[(Ts[g
n]− βδT [Pn])(xi)− T̂ (xi)]

2 +
1

2
pg

��

Γsin

(gn − βnPn)dΓ− Ĝ

�2

.

(3.2.7)
Differentiating with respect to β, we obtain the critical point equation

dJ2[g
n − βnPn]

dβ
=

M�

i=1

[(Ts[g
n]− βnδT [Pn])(xi)− T̂ (xi)](−δT [Pn](xi))+

pg

��

Γsin

(gn − βnPn)dΓ− Ĝ

��
−
�

Γsin

PndΓ

�
= 0.

(3.2.8)
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Finally, we have

βn =

�M
i=1{Ts[g

n](xi)− T̂ (xi)}δT [Pn](xi)
�M

i=1(δTs[Pn](xi))2 − pg

��
Γsin

PndΓ
�2−

pg

��
Γsin

PndΓ
���

Γsin
gndΓ− Ĝ

�

�M
i=1(δTs[Pn](xi))2 − pg

��
Γsin

PndΓ
�2 .

(3.2.9)

With respect to the conjugate coefficient, γ, its value is zero for the first itera-
tion and for other iterations it can be calculated using Fletcher-Reeves expression as
follows [56]

γn =
�J �

2[g
n]�2L2(Γsin )

�J �
2[g

n−1]�2L2(Γsin )

. (3.2.10)

Notice that, to use this iterative procedure, we have to compute at each iteration the
Gâteaux derivative J �

2g(x) which is given by (3.2.4). Thus, we must solve the adjoint
problem to compute it.

Alifanov’s regularization algorithm for this inverse problem is summarized in
Algorithm 2.

3.2.2 Parameterization of the Boundary Conditions

In this section, we apply the discussion made in Section 3.1.2 to Problem 3.6.
Considering the parameterization (3.1.22), due to (3.1.34), we rewrite (3.2.2) as

J2[w] =
1

2
RTR+

1

2
pg



�

Γsin

N�

j=1

wjφj(x)dΓ− Ĝ




2

=
1

2
RTR+

1

2
pg




N�

j=1

wj

�

Γsin

φj(x)dΓ− Ĝ




2

.

(3.2.11)

Defining the vector in IRN such that

(φφφ)i :=

�

Γsin

φj(x)dΓ, (3.2.12)
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Algorithm 2 Alifanov’s regularization with total heat flux measurement for solving
inverse Problem 3.6.

Set g0 and n = 0
while n < nmax do

Compute Ts[g
n] by solving Problem 2.6

Compute J2[g
n] by (3.2.2)

if J2[gn] < J2tol then
Stop

end if
Compute λ[gn] by solving Problem 3.3
Compute J �

2[g
n] by (3.2.4)

if n ≥ 1 then
Compute the conjugate coefficient, γn, by (3.2.10)
Compute the search direction, Pn(x), by (3.2.5)

else
P 0 = J �

2[g
0]

end if
Compute δTs[P

n] by solving Problem 3.2 with δg = Pn

Compute the stepsize in the search direction, βn, by (3.2.9)
Update heat flux gn by (3.1.15)
n = n+ 1

end while
return gn

we write
J2[w] =

1

2
RTR+

1

2
pg(w

Tφφφ−G)2. (3.2.13)

As in Section 3.1.2, we now write the critical point equation for J2[w]

∂J2[ŵ]

∂wj
=

M�

i=1

Ri
∂(Ts[ŵ])i

∂wj
+ pg(ŵ

Tφφφ−G)(φφφ)j = 0, for j = 1, 2, . . . , N.

(3.2.14)
Then, introducing the matrix in IRN×N such that

Φij = (φφφ)i(φφφ)j , (3.2.15)

we can write the critical point equation as

(ΘTΘ+ pgΦ)ŵ = pgGφφφ+ΘT (Tad + T̂). (3.2.16)
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By solving the linear system (3.2.16) we obtain the weights ŵ of the parameteriza-
tion. Then, by (3.1.22) we compute the estimated heat flux g. Also in this setting, the
discussion at the end of Section 3.1.2 on the regularization of the linear system and
the offline-online decomposition holds.
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4 BENCHMARKS

In this chapter, we present several numerical tests conducted on designed benchmark
cases. It is through these tests the we validate and analyze the performances of the
direct and inverse problems solution methodologies that we proposed in the previous
sections.

4.1 BENCHMARK 1
In this section, we propose an academic benchmark case. It is a steady-state heat
conduction problem in a homogeneous isotropic solid occupying a rectangular paral-
lelepiped domain. By carefully selecting the BCs on the faces of the parallelepiped,
we are able to compute the analytical solution of the heat conduction problem. Then,
we use this academic test to validate the numerical solution of the direct problem.
Moreover, by arbitrarily selecting some temperature measurements points, we test
the different inverse problem solution methodologies discussed in Chapter 3.

Let the domain be Ωs = (0, L)× (0,W )× (0, H) as in Figure 4.1.1 with positive
real constants L,W and H . Let Γs be boundary of Ωs. Then, the different boundaries
of the domain to be considered are

Γsf := {x ∈ Γs| x = (x,W, z)}, Γsin := {x ∈ Γs| x = (x, 0, z)},
ΓI := {x ∈ Γs| x = (x, y,H)}, ΓIII := {x ∈ Γs| x = (x, y, 0)},
ΓII := {x ∈ Γs| x = (L, y, z)}, ΓIV := {x ∈ Γs| x = (0, y, z)}.

(4.1.1)

To have an analytical solution, Tan, in Ωs, we consider a slight modification of
Problem 2.6 that does not change its essential aspects.

Problem 4.1. Find Ts such that

− ksΔTs = 0, in Ωs, (4.1.2)

with BCs




−ks∇Ts · n = gan on Γsin , (4.1.3)

−ks∇Ts · n = qL on ΓL, L ∈ {I, II, II, IV }, (4.1.4)

−ks∇Ts · n = h(Ts − Tf ) on Γsf . (4.1.5)
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Figure 4.1.1: Schematic of the solid rectangular parallelepiped domain that we use in the
benchmark test cases.

Let a, b, c be real constants. To have an analytical solution in Ωs, we consider the
following data as BCs for Problem 4.1,

qI(x) = 2ksaH, qIII(x) = 0,

qII(x) = −ks(2aL+ by), qIV (x) = ksby,

Tf (x) =
ks(bx+ c)

h
+ ax2 + cy − az2 + bxW + c,

(4.1.6)

with
gan(x) = ks(bx+ c), (4.1.7)

ks being the thermal considered conductivity, that is assumed constant. Then,

Tan(x) = ax2 + bxy + cy − az2 + c, (4.1.8)

is the solution to Problem 4.1.
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4.1.1 Direct Problem

We now discuss the numerical solution of Problem 4.1. Due to its simplicity, the
domain Ωs is discretized by uniform, structured, orthogonal, hexahedral meshes. To
study the convergence of the numerical solution to the analytical one, we consider
grids with different degree of refinement. In all tests, we use the same number of
edges for the three axes.

As previously discussed in Section 2.6.1, we use the FVM for the discretization
of Problem 4.1. With respect to the used finite volume scheme, since we have a struc-
tured orthogonal grid, no correction is needed when computing the gradient normal
to the cells faces. Moreover, we use linear interpolation to interpolate the values from
cell centers to face centers. The resulting scheme is second order accurate.

From the discretization of Problem 4.1, we obtain a linear system as in (2.6.21).
We solve it by using a preconditioned CG solver with diagonal incomplete Cholesky
preconditioning. The tolerance used for the linear system solver is 10−12. All the
computations are performed in ITHACA-FV [73, 142] which is a C++ library based
on OpenFOAM [98] developed at the SISSA Mathlab.

Finally, Table 4.1 summarizes the parameters used for the computations.

Table 4.1: Parameters used for the simulation of Benchmark 1.

Parameter Value
Thermal conductivity, k 3.0 W/(mK)
Heat transfer coefficient, h 5.0 W/(m2K)
a 5 K/m2

b 10 K/m2

c 15 K/m2

L 1 m
W 1 m
H 1 m

To evaluate the accuracy of the numerical solutions, we show in Figure 4.1.2 the
decay of the absolute and relative difference in the L2-norm between the computed
and true temperature field. The test confirms the second order accuracy of this finite
volume scheme. We conclude that Problem 4.1 is numerically well solved.
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Figure 4.1.2: Decay of the absolute and relative difference between the L2-norm of the
computed and true temperature field with the mesh refinement.

4.1.2 Inverse Problem with Temperature Measurements

To numerically analyze the performances of the inverse solvers, we design the
following test: we select a surface inside Ωs which is parallel to Γsin , and on this sur-
face we locate M measurement points which correspond to the location of M virtual
thermocouples. The temperature in these points is given by T̂ (xi) = Tan(xi), i =
1, . . . ,M , being Tan the solution of Problem 4.1, given by (4.1.8). Using these tem-
peratures as measurements, we apply the methods described in Chapter 3 to solve the
inverse Problem 3.1, considering Ts[g](xi) as the solution of Problem 4.1 replacing
gan by g.

The virtual thermocouples are located in the plane y = 0.2 m. Their (x, z)
coordinates are shown in Figure 4.1.3. Then, we have 16 thermocouples located on
the nodes of a uniform lattice at the plane y = 0.2 m, unless otherwise stated.

The parameters used for the computations are summarized in Table 4.2. In this
section, we test the inverse methodologies of Chapter 3 analyzing the effect of differ-
ent parameters such as grid refinement, CG stopping criterion, RBF shape parameter,
measurement noise, etc. To analyze the numerical results, we will often use the fol-
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Figure 4.1.3: Positions of the virtual thermocouples for Benchmark 1.

lowing error norms

�ε�L2(Γsin )
=

����
g − gan
gan

����
L2(Γsin )

, �ε�L∞(Γsin )
=

����
g − gan
gan

����
L∞(Γsin )

.

(4.1.9)
Notice that from (4.1.7), gan > 0.

Table 4.2: Parameters used in testing the inverse problem solvers in Benchmark 1.

Parameter Value
N. of thermocouples 16
Thermocouples plane y = 0.2 m
g0 0 W/m2

RBF kernel Gaussian
N. of RBF 16
Shape parameter, η 0.7

4.1.2.1 Alifanov’s Regularization

Now, we analyze the effect that the grid refinement and the stop criterion have on
the results obtained by Alifanov’s regularization.

We begin by comparing in Figure 4.1.4 (a) and (b) the behavior of the functional
J1 together with the L2- and L∞-norm of the relative error defined in (4.1.9) as
functions of the number of iterations of Algorithm 1. Both the cost function and the
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relative error have a sharp decay in the first 10 iterations. Then, the convergence rate
has a dramatic decrease reaching a plateau after 60 iterations.
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(a) Cost functional, J1.

10 20 30 40 50 60 70

Iteration

10−2

10−1

100

||ε||L2(Γsin)

||ε||L∞(Γsin)

(b) Relative error.

Figure 4.1.4: Behavior of the cost functional J1 (a) and of the heat flux relative error L2-
and L∞-norms (b) as a function of Alifanov’s regularization iterations for the Benchmark
1.

To have qualitatively insight on the results, we compare the computed heat flux
at different iterations in Figure 4.1.5. In few iterations, the estimated heat flux is
already in good agreement with the analytical BC and iterating further only provides
a slightly improvement of the estimation.

(a) Iteration 10 (b) Iteration 70 (c) gan

Figure 4.1.5: The estimated heat flux by Alifanov’s regularization at different iterations
(a,b) is compared to the analytical value (c) in the Benchmark 1.

We now investigate how the grid refinement influences the performance of this
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algorithm. Figure 4.1.6 shows the behavior of the relative error of the estimated
heat flux with the grid refinement. This test is performed with the stopping criterion
J1 < J1tol = 1e − 4K2. The error in general decreases by increasing the mesh
refinement. However, the decrease is not monotonic with a small increase for the 403

elements grid.

 0.100 0.067 0.050 0.033 0.025 0.020

Cell edge length [m]

10−1

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

||ε||L2(Γsin)

||ε||L∞(Γsin)

Figure 4.1.6: Behavior of the relative error norms (4.1.9) with the grid refinement in the
Benchmark 1.

4.1.2.2 Parameterization of the Boundary Condition

We now test the performances of the parameterization method described in Sec-
tion 3.1.2. In particular, we consider the effects that the basis functions parameters
have on the results and the conditioning of the linear system (3.1.42). Moreover, also
in this case, we test the effect of the mesh refinement on the estimated heat flux.

As already mentioned, we consider Gaussian RBFs as basis functions for the
parameterization of the boundary heat flux. Recalling (3.1.24), the basis functions
are given by

φj(x) = e−(η�x−ξξξj�2)
2

, for j = 1, 2, . . . ,M,

where we locate the centers ξξξj at the projection of the virtual measurement points on
the boundary Γsin according to (3.1.23).
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Both the choice of the basis functions (3.1.24) and of the position of their cen-
ter are arbitrary. However, they come suggested from the physics of the problem.
The Gaussian RBFs are selected because their radial decay reduces the correlation
between bases which are far away. For a similar reason, the RBFs are centered at the
projection of the measurements to have a relationship between bases and measure-
ments. This reasoning applies well to CC molds because we have the thermocouples
located in a surface parallel and close to the boundary where we want to estimate the
heat flux. In a more general scenario, these choices lose their motivation.

To completely define the basis functions, we still must tune the shape parameter
η. Then, we first analyze the influence of η on the invertibility of system (3.1.42) and
on the boundary heat flux estimation. This parameter controls the decay of the RBF.
For bigger (smaller) values of η the decay is faster (slower). Figure 4.1.7 (a) shows
the decay of the normalized singular values of ΘTΘ for different η. The singular
values are normalized by dividing them all by the first one. In general, we can see
that to bigger values of the shape parameter, correspond a slower decay of the singular
values.
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Figure 4.1.7: Effect of the RBFs shape parameter, η, on (a) the normalized singular values
of the matrix ΘTΘ and on (b) the L2- and L∞-norms of the relative error and on the
condition number of the linear system (3.1.42).

Figure 4.1.7 (b) shows the condition number of the linear system (3.1.42). The
condition number is computed as the ratio between the bigger and the smaller singular
value

κΘTΘ =
σmax

σmin
. (4.1.10)

The figure shows it together with the L2- and L∞-norms of the relative error (4.1.9).
The method used for the solution of the linear system (3.1.42) is LU factorization
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with full pivoting. In the Figure 4.1.7 (b), we see that the best results are obtained
for η = 0.1 (see Figure 4.1.8). Interestingly, looking at the behavior of the condition
number, we notice that the quality of the results is not correlated to the conditioning
of (4.1.9).

To have qualitatively insight on the results, Figure 4.1.8 show the true and the
computed heat flux together with the relative error between the two. From this figure,
we appreciate the outstanding performance of this method.

(a) gan (b) Estimated (c) Relative Error

Figure 4.1.8: Comparison of the analytical (a) and estimated (b) boundary heat flux for the
Benchmark 1 together with the relative error between the two (c). This result is obtained
by using the parameterization method with RBF shape parameter η = 0.1.

As for Alifanov’s regularization, we test the effects of grid refinement on the
estimation of the heat flux. Figure 4.1.9 shows that this method is almost insensitive
to the mesh refinement. In fact, the error oscillates between two very close values.

4.1.2.3 Effects of Measurements Noise

In all previous tests, we considered the measurements to be free of noise. This is
not the real case. In fact, thermocouples measurements are notoriously noisy. Thus,
we analyze in this section the effects that the measurement noise has on the algo-
rithms performances. From the industrial point of view, this analysis is of particular
interest for our application.

We perform this analysis by adding to the measurements vector the Gaussian
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Figure 4.1.9: Behavior of the relative error norms (4.1.9) as a function of the grid refine-
ment using the parameterization method for Benchmark 1.

random noise wn

T̂w = T̂+wn, wn = N (µµµ,Σ), (4.1.11)

where, µµµ ∈ IRM is the mean vector and Σ ∈ IMM×M is the covariance matrix.
In particular, we choose wn to be an Independent and Identically Distributed (IID)
random variable with zero mean, i.e. wn = N (0,ω2I).

To study the effect of noise, we perform several solutions of the inverse problem
using T̂w as thermocouples’ measurements. For each test, we compute 200 samples.
All these computations are done on the 403 elements grid. Then, we analyze the
statistical and qualitative properties of the obtained results. In our first test, we ana-
lyze the behavior of the relative error (4.1.9) for different values of the noise standard
deviation ω.

Using Alifanov’s regularization for the minimization of J1, we must use a stop-
ping criterion that regularize the solution. In fact, the regularization parameter is the
iteration counter i. Here, we use the Discrepancy Principle (DP) as stopping criterion
(see e.g [7]). Thus, the iterations are stopped when

J1[g
i+1] <

�
ω2M

2

�2

, (4.1.12)

where M is the number of thermocouples.
Figure 4.1.10 illustrates the results of this first test. We notice that Alifanov’s

regularization is able to filter the noise only for ω < 0.02. On the other hand, we
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see that for the parameterization method with LU factorization the results are spread
around the mean value. It suggests that the noise is propagating from the measure-
ments into the solution. As anticipated at the end of Section 3.1.2, we require some
regularization technique in solving (3.1.42) to make it robust with respect to noise in
the measurements.
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(a) Alifanov’s regularization

0.02 0.04 0.06 0.08 0.10

Noise standard deviation

10−2

10−1

100

M
e
a
n
 o

f 
r
e
la

t
iv

e
 e

r
r
o
r
 n

o
r
m

s

LU

||ε||L2(Γsin)

||ε||L∞(Γsin)

(b) Parameterization method

Figure 4.1.10: Behavior of the relative error L2− and L∞−norm as a function of the
standard deviation of the noise in the measurements for Alifanov’s regularization (a) and
the parameterization method (b) in Benchmark 1 (90% quantile bars shown).

As described in Section 3.1.2, we use TSVD regularization in the parameteriza-
tion method. We opt for this technique because it is effective when we have jumps in
the singular values decay (see Figure 4.1.7). As already said, attention must be paid
when using regularization techniques in selecting the regularization parameter. In
our case, the regularization parameter, αTSV D is the number of singular values used
in the truncation. Different methodologies are available in the literature, e.g. Un-
biased Predictive Risk Estimator (UPRE), DP, L-curve, U-curve, Generalized Cross
Validation (GCV) (see [7]). However to show the dependency of the results on the
regularization parameter, we performed numerical tests.

Figure 4.1.11 shows the behavior of the L2- and L∞-norm of the relative error
with respect to regularization parameter αTSV D, for different values of the noise
standard deviation ω. As expected, the optimal value of the regularization parameter
depends on the noise variance. In fact, for low noise level we should use higher
values of αTSV D reducing it as the noise increases and vice versa.

Testing again the TSVD regularization fixing αTSV D and increasing the noise
standard deviations, we clearly see the regularizing effect of the TSVD. Figure 4.1.12
shows the obtained results. In the figure, we appreciate the importance of a right
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Figure 4.1.11: Effect of the regularization parameter αTSV D using the TSVD in parame-
terizing the heat flux to solve the inverse problem of Benchmark 1 (90% quantile bars).

choice of the regularizing parameter. In fact, if we have very low noise in the mea-
surements, we should opt for higher values of αTSV D and vice versa.
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Figure 4.1.12: Behavior of the relative error with respect to the standard deviation of the
noise in the measurements using the parameterization method with TSVD regularization
in Benchmark 1 (90% quantile bars shown).
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We conclude this noise analysis by looking at a realization of the computed heat
flux with the different methods. Figure 4.1.13 provides a qualitative example of the
performances of the inverse solvers for ω = 0.08. As expected, the noise is not well
filtered by the Alifanov’s regularization while the parameterized method with TSVD
provides a smooth solution in good agreement with the true value.

(a) Alifanov’s regularization (b) LU w. full pivoting (c) TSVD, αTSV D = 3

Figure 4.1.13: Comparison of the estimated heat flux for Alifanov’s regularization (a) and
parameterization method with (c) and without (b) regularization for for the analytical
benchmark case with noisy measurements (noise standard deviation ω = 0.08).
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4.1.2.4 Effects of Changing Measurement Points Positioning and Num-
ber

In this section, we test the influence of the thermocouples positioning and num-
ber on the estimation of the heat flux. Firstly, we analyze the effects of changing
the location of the thermocouples on the y-axis to investigate the importance of the
thermocouples distance form the boundary where we are estimating the heat flux.
Secondly, we study the behaviour of the proposed inverse solvers as we change the
number of measurement points in the thermocouples plane.

Figure 4.1.14 shows the values of the L2− and L∞− norms of the relative error
(4.1.9) as we move the thermocouples plane away from Γsin . We provide the results
for both inverse solvers.

��� ��� ��� ��� ��� ��� ��� ��� ���

������������� distance f om Γsin [m]
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100
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(a) Alifanov’s regularization
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)

||ε||L∞((sin
)

(b) Parameterization method

Figure 4.1.14: Behaviour of the relative error when changing the distance of the thermo-
couples form the boundary Γsin where the heat flux g is estimated.

The error norms show an interesting behaviour. For Alifanov’s regularization,
they have a fast decay until the thermocouples plane is 0.3 m away from Γsin . Then
after a small increase, the error reaches a plateau before jumping to higher values
when the thermocouples plane has y-coordinate higher than 0.7 m. On the other
hand, the parameterization method shows a different behaviour in Figure 4.1.14 (b).
This method shows little dependency on the thermocouples distance from the bound-
ary, providing similar solutions for the different thermocouples positions.

Now, we analyze the influence of the thermocouples number. We design the fol-
lowing test: fixed the thermocouples y-coordinate, we change the number of thermo-
couples on that plane. The thermocouples are located in a uniform lattice with equal
number of thermocouples on the x- and z-axis. Figure 4.1.15 shows the obtained
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results for this test using both inverse solvers.
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(a) Alifanov’s regularization
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Figure 4.1.15: Behaviour of the relative error when changing the number of thermocouples
on the plane y = 0.2 m. On the x-axis of the graph, we have the number of thermocouples
on each axis of the lattice. Then, the total number of thermocouples is the square of
the shown value. In the figure (b), the blue results are obtained by solving the inverse
problem and the black ones are the best possible approximation of the true heat flux in
the parameterized space (remember that by increasing the number of thermocouples we
increase the number of basis of the heat flux parameterization).

Also in this test, the behaviour of the two methods is very different. For Ali-
fanov’s regularization, we have a fast decay of the error before reaching a plateau.
On the other hand, the parameterization method has very little dependence on the
number of thermocouples for more than 9 thermocouples.

4.1.3 Inverse Problem with Temperature and Total Heat Flux Mea-
surements

In this section, we discuss the numerical solution of the inverse Problem 3.6
where Ts[g](xi) is the solution of Problem 4.1 at points xi, for all i = 1, 2, . . . ,M
and Ĝ =

�
Γsin

gandΓ, gan being defined by (4.1.7). All computations are performed

on the 403 elements grid and the basis in the parameterization method are as in the
previous section.

With respect to the previous section, we have one additional parameter: the total
heat weight, pg. Since, it is not possible to set it a priori, we analyze its effects on
the solution. Figure 4.1.16 (a) shows the behavior of the L2- and L∞-norm of the
relative error for different values of pg using Alifanov’s regularization for the solution
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of the inverse problem. On the other hand, Figure 4.1.16 (b) shows the same graph
for the parameterization method with LU decomposition with full pivoting. These
computations are performed without errors in the measurements.

(a) Alifanov’s regularization. (b) Parameterization method.

Figure 4.1.16: Behavior of the relative error with respect to the total heat measurement
weight, pg, using Alifanov’s regularization (a) and parameterization of the heat flux with
LU decomposition with full pivoting (b) in the analytical benchmark case.

Comparing the two figures (notice the different order of magnitude on the y-
axis), we see that adding the total heat measurement improves the boundary heat
flux estimation only for the parameterization method. In Alifanov’s regularization,
we have a very small decrease of the relative error for pg � 1e − 4K2

W 2 . For higher
values, the error jumps to a constant higher value. Moreover, in Figure 4.1.16 (a), we
appreciate an interesting jump in the error for 1.5K2

W 2 < pg < 3K2

W 2 . For these values,
we recast similar results to those obtained for pg � 1e− 4K2

W 2 .
Figure 4.1.17 provides further information on the effect of pg. In the parameteri-

zation method, pg does not have any effect on the solution for pg < 1. Then for higher
values of pg, the relative error decreases linearly. On the other hand, the figure con-
firms the interesting behavior of Alifanov’s regularization for 1.5K2

W 2 < pg < 4K2

W 2 .
However, it shows also for this method an almost linear decrease of the total heat
relative error for pg > 4K2

W 2 .
We now analyze the influence that the noise in the measurements has on the

estimation of the heat flux, g. We perform the following test: we select a noise level
for the thermocouples measurements and test the effect of different noise levels on
the total heat measurement, G. Figure 4.1.18 summarizes the results for Alifanov’s
regularization and parameterization method with full pivoting LU.

Notice that as expected for Alifanov’s regularization, we have an increase of the
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Figure 4.1.17: Behaviour of the relative error in computing the total heat flux on Γsin with
respect to pg.
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Figure 4.1.18: Effect of noise in the total heat flux measurement with 2% standard devi-
ation noise in the thermocouples (90% quantile bars).

error increasing the noise on G. On the other hand, the parameterization method is
not much influenced by this noise. However as in the previous section, we require
some regularization for this method to filter out the measurement noise.

Also in this setting, we use TSVD for the regularization of (3.2.16). Figure 4.1.11
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shows the behaviour of the L2- and L∞-norm of the relative error with respect to reg-
ularization parameter αTSV D, for ω = 0.04 and a 10% standard deviation noise on
the total heat flux measurement, G. We can see that also in this case, with αTSV D = 3
TSVD is able to reduce the error both in the mean and in the standard deviation. For
a lower number of singular values, we get a very smooth solution but too regularized
while for αTSV D > 3, we do not filter out the noise.
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αTSVD

0.0
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0.4
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||ε||L2(Γsin)

||ε||L2(Γsin)

Figure 4.1.19: Effect of the regularization parameter αTSV D using the TSVD in parameter-
izing the heat flux to solve the inverse problem of Benchmark 1 with 90% quantile (noise
standard deviation 0.04 in the thermocouples and 0.1 in the total heat measurement).

4.1.4 Conclusions

To draw conclusions on the performances of the tested inverse solvers, we com-
pare their computational cost. This is of particular interest in our research because we
want to achieve real-time performances. Table 4.3 illustrates the Central Processing
Unit (CPU) time required for the computations with no error in the measurements
and Jtol = 10−4 in the case of only temperature measurements available. Notice
that all the computations were performed in serial on a Intel® Core™ i7-8550U CPU
processor.

These results confirm that the offline-online decomposition makes the param-
eterized heat flux method eligible for real time applications. On the other hand,

76



CHAPTER 4. BENCHMARKS

Table 4.3: Inverse problem CPU time comparison for Benchmark 1.

Alifanov’s reg. Parameterized heat flux
offline online

CPU time 18.8 s 7.21 s 0.0056 s

Alifanov’s regularization requires several solutions of direct, adjoint and sensitivity
problems, so it cannot be employed in real time as it is.

With this final remark, we conclude that the parameterization method outclasses
Alifanov’s regularization both in the quality of the estimation provided and in the
robustness (with TSVD regularization) with respect to errors in the measurements.

Moreover, thanks to its offline-online decomposition, the parameterization method
has proved to be able to achieve real-time computation. In fact, it requires a compu-
tationally expensive offline computation in which we solve several direct problems.
In the online phase it is very fast since we only solve a linear system with dimension
equal to the number of basis used in the parameterization of the heat flux.

Finally, we considered the case of having as data for the inverse problem also
a total heat flux measurement. The parameterization method results are improved
under every aspect by introducing this additional data. On the other hand, Alifanov’s
regularization is only slightly affected by this additional data.

4.2 BENCHMARK 2
The benchmark case presented in this section is a numerical test case. This bench-
mark is designed to mimic the real industrial scenario of a CC mold. In particular,
the domain is a simplification of a mold plate and the physical quantities have typical
industrial values. Also the thermocouples number and positioning are those of a real
mold.

In this benchmark, the direct problem does not have an analytical solution. Then,
we assume that the direct problem is well solved and focus our attention on the so-
lution of the inverse problem. To test the inverse solvers, we choose a priori a mold-
steel heat flux, gtrue. By solving the direct problem for this heat flux, we obtain the
related temperature field. Then, we use its values at the thermocouples points as mea-
surements to input to the inverse solver. Table 4.4 summarizes the physical properties
for this test case and the chosen heat flux, gtrue.

As for the previous benchmark, the direct problem is a steady-state heat con-
duction problem in an homogeneous isotropic solid with a rectangular parallelepiped
domain. The domain Ωs is as in Figure 4.1.1 with Γsex = ΓI ∪ ΓII ∪ ΓIII ∪ ΓIV .
The mathematical formulation of the direct problem is that of Problem 2.6.
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Table 4.4: Parameters used for the simulation of Benchmark 2.

Parameter Value
Thermal conductivity, ks 300.0 W/(mK)
Heat transfer coefficient, h 5.66e4 W/(m2K)
Water temperature, Tf 303 + 8 · (1.2− z) K
Heat flux, gtrue 2e5(x− 1)2 − 2e5 · z − 5e5 W/m2

L 2 m
W 0.1 m
H 1.2 m

For the discretization of the domain, we use a structured orthogonal grid with
uniformly distributed elements along the three axes. We use 200, 50 and 100 elements
on the x-, y- and z-axis respectively. Thus, the grid size is 1e6 elements.

As in the real industrial case under study, we locate the virtual thermocouples in
the plane y = 0.02m. In this plane, they are equally distributed on the x- and z-axis
as shown in Figure 4.2.1.

(a) True heat flux.

x

z0.
11

m

0.182 m

(b) Thermocouples locations.

Figure 4.2.1: True heat flux (a) and position of the 100 thermocouples at the plane
y = 0.02 m (b) for Benchmark 2.

4.2.1 Inverse Problem with Temperature Measurements

In the present section, we analyze the performance of the proposed methods in
the solution of the inverse Problem 3.1 for the presented numerical test case. First, we
analyze the performances of Alifanov’s regularization (see Section 3.1.1). Table 4.5
shows the parameters used for the simulation.

Figure 4.2.2 illustrates the estimated heat flux, g, at different iterations of the
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Table 4.5: Parameters used in the Alifanov’s regularization algorithm.

Parameter Value
g0 0 W

m2

Jtol 1e2 K2

�Jn−Jn−1�
Jn 1e− 2

algorithm. We notice that the algorithm provides a solution not in agreement with
gtrue. In particular, it overestimates the heat flux close to the measurement points
while far from the measurements the initial estimate is not modified. Moreover, in-
creasing the number of iterations do not improve the results. Due to the inability of
estimating the heat flux also in the simplest case without measurement noise, we do
not perform further tests with this method.

We now consider the parameterization method of Section 3.1.2. As for the previ-
ous benchmark, we start by performing a numerical analysis on the influence of the
RBF shape parameter, η, on the invertibility of system (3.1.42) and on the estimated
heat flux. Figure 4.2.3 (a) shows the decay of the singular values of ΘTΘ for different
η. In general, we can see that to bigger values of the shape parameter, correspond a
slower decay of the singular values. Moreover, we see from this singular value decay
and in Figure 4.2.3 (b) that for η > 1 the condition number of the system decreases.
However, the relative error in the heat flux estimation increases significantly for these
values of η.

To conclude, there is no relationship between the condition number of the linear
system and the obtained results for this test. However according to Figure 4.2.3 (b),
we obtain the best results for η = 0.3. Figure 4.2.4 shows the results obtained for
this value of the RBF shape parameter. Then, we use this value in the following tests.

We now analyze the effect of noise in the measurement. Figure 4.2.5 shows the
effect of different noise levels on L2- and L∞-norms of the relative error (4.1.9)
using LU factorization with full pivoting for the solution of (3.1.42). The relative
error increases linearly with the noise level.

As for the previous benchmark, we test the regularization properties of TSVD on
this problem. Figure 4.2.6 shows the effect of the regularization parameter αTSV D on
the L2- and L∞-norms of the relative error for different values of the noise standard
deviation, ω. As expected, the optimal value of the regularizing parameter αTSV D

decreases as the noise increases. However, for all the considered cases, we are able
to achieve a relative error that in the L2-norm is below 2%.

To conclude, Figure 4.2.7 shows the behavior of the relative error increasing the
measurement noise for αTSV D = 5 and αTSV D = 7. Notice that also for severe
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(a) Iteration 1

(b) Iteration 80

Figure 4.2.2: Comparison of the computed heat flux by Alifanov’s regularization at different
iterations.

noise in the thermocouples measurements, we are able to obtain a valid reconstruction
of the boundary heat flux.

4.2.2 Inverse Problem with Temperature and Total Heat Flux Mea-
surements

In this section, we discuss the numerical solution of the inverse Problem 3.6
where Ts[g](xi) is the solution of Problem 2.6 at points xi, for all i = 1, 2, . . . ,M ,
gtrue as in Table 4.4 and Ĝ =

�
Γsin

gtruedΓ.
With respect to the previous section, we have one additional parameter: the total

heat weight, pg. Since, it is not possible to set it a priori, we analyze its effects
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Figure 4.2.3: Effect of the RBFs shape parameter on (a) the singular values of the matrix
ΘTΘ and on (b) the L2- and L∞-norms of the relative error (4.1.9) using LU with full
pivoting and on the condition number of (3.1.42).

Figure 4.2.4: Estimated heat flux (a) and the respective relative error (b) using the pa-
rameterization method with RBF shape parameter η = 0.3 in the industrial benchmark
case.

on the solution. Figure 4.2.8 shows the behavior of the L2- and L∞-norm of the
relative error for different values of pg using Alifanov’s regularization (a) and the
parameterization method with LU factorization (b) for the solution of the inverse
problem. All these computations are performed without noise in the measurements.

Analyzing Figure 4.2.8, we appreciate a different behavior for the two methods.
Alifanov’s regularization improves its results, reaching a minimum of the relative
error for pg ≈ 1e−8. Then, the error goes quickly to a plateau in which the estimated
heat flux is uniform. On the other hand, the parameterization method error increases
at jumps with pg.
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Figure 4.2.5: Effect of the measurements noise on the solution of the parameterization
method with LU factorization with full pivoting in Benchmark 2 (90% quantile bars shown).
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Figure 4.2.6: Effect of the regularization parameter αTSV D using the TSVD in parameter-
ization method for the industrial benchmark case (90% quantile bars shown).

Figure 4.2.9 shows the relative error on the total heat flux. It also provides in-
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Figure 4.2.7: Behavior of the relative error with respect to the standard deviation of the
noise in the measurements using the parameterization method with TSVD regularization
in the industrial benchmark case (90% quantile bars shown).
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(a) Alifanov’s regularization.
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Figure 4.2.8: Effect of the functional weight pg on the L2- and L∞-norms of the relative
error (4.1.9) for the Alifanov’s regularization (a) and the parameterization method with
LU factorization (b). The thermocouples’ measurements are free of noise.

teresting information. While both methods linearly improve their performance for
pg > 1e − 5, the parameterization method shows a very peculiar dependence on the
weight for lower values. However, the parameterization method has a relative error
two orders of magnitude smaller with respect to Alifanov’s regularization.

We now test the effect of noise in the total heat measure Ĝ for the parameteri-
zation method. Figure 4.2.10 shows the results obtained by fixing a the noise on the
thermocouples and varying the noise on Ĝ. As for Benchmark 1, the noise on Ĝ do
not affect significantly the estimated heat flux, g. Consequently, Figure 4.2.11 shows
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Figure 4.2.9: Effect on the total heat measurement weight pg on the relative error in the
total heat.

that the TSVD performs similarly to Section 4.2.1 with the optimum value for the
regularization parameter being αTSV D = 7.
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Figure 4.2.10: Effect of noise in the total heat flux measurement with 4% standard devi-
ation noise in the thermocouples (90% quantile bars).
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Figure 4.2.11: Effect of noise in the total heat flux measurement with 4% standard de-
viation noise in the thermocouples and 10% on the total heat measure (90% quantile
bars).

4.2.3 Conclusions

In this benchmark case, we tested the methods presented in Chapter 3 in an in-
dustrial setting. Alifanov’s regularization proved to perform very poorly. Due to the
thermocouples located very close to the boundary Γsin , this regularization method
overestimates the heat flux close to the measurement points, underestimating it away
from the measurements. Including the total heat flux measurement in the cost func-
tional improves the obtained results, but not to a satisfactory level.

Also in this test case, the parameterization method proved to perform very well
providing excellent estimation of the heat flux. In this case, introducing the total heat
measurement caused a degradation of the estimated heat flux. For this method, the
TSVD regularization was used to filter the measurement noise. It allowed to obtain
nice heat flux estimations also in the noisy scenario.

To conclude, Table 4.6 illustrates the CPU time required for the computations
with no error in the measurements and Jtol = 102 K2 in the case of only temperature
measurements available. Notice that all the computations were performed in serial
on a Intel® Core™ i7-8550U CPU processor. Recalling that in this application the
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thermocouples sample at 1 Hz, the parameterization method allows the real-time
estimation of the boundary heat flux.

Table 4.6: Inverse problem CPU time comparison for the industrial benchmark case.

Alifanov’s reg. Parameterized heat flux
offline online

CPU time 221 s 121.4 s 0.15 s
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5 CONCLUSIONS

We started this first part of the thesis by discussing the mold monitoring problem.
Analyzing the industrial setting, we identified as the quantity of interest to determine
the mold-steel heat flux. Moreover, since the objective is to monitor the mold during
CC, we highlighted that this heat flux should be estimated in real-time.

The CC molds are equipped with a system that measures the cooling water tem-
perature at the inlet and at the outlet of the cooling system, as well as the pointwise
mold plates temperature thanks to some thermocouples buried into the plates. These
are the data that we have available to estimate the mold heat flux.

Between all possible approaches, we used a data assimilation, optimal control
one to solve this problem. In this framework, we required a mold model that has the
mold-steel heat flux as parameter that we determine minimizing a distance between
the measured and the simulated data.

To set up the problem, our first objective was to develop a mold model. We
considered the mold plates as computational domain. Hence, the mold-steel interface
is a portion of the boundary of the domain and the sought heat flux is a Neumann
BC on this portion of the boundary. Notice that in this setting, the thermocouples
measurements are pointwise state measurements in the interior of the domain.

We developed a mold model hierarchy by adding subsequent simplifying assump-
tions. In particular, the most detailed model has a domain that includes the cooling
water system. It models the water flow by the Navier-Stokes equations and the heat
transfer in a multiphase, advection-diffusion setting. After a number of motivated
simplifying assumptions, the last model of the hierarchy is a steady-state heat con-
duction model in the solid portion of the mold plates with a Robin BC at the interface
with the cooling water.

In formulating the boundary heat flux estimation problem, we used this latter
model. Moreover, we considered two different measurement settings: having only the
thermocouples pointwise temperature measurements or having them together with
the total boundary heat flux. This latter measurement comes from an energy balance
in the cooling water using its measured temperature increase in the cooling system.
Finally, we used a deterministic least square approach in the definition of the inverse
problems.

In the literature, there are several possible methods for the solution of these in-
verse problems. However, they generally require several iterations to estimate the
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heat flux and a number of simulations of the mold model at each iteration. Due to
the computational cost of these simulations, these methods are not suitable for this
real-time monitoring task as they are.

To achieve our goal, we developed a novel methodology for the solution of this
inverse problem. It exploits a parameterization of the heat flux. This parameterization
allowed us to realize a direct method that features an offline-online decomposition.
In the offline phase, we perform several computationally expensive simulations of the
mold model while in the online phase we input the thermocouples measurements and
compute the boundary heat flux with extremely fast computations. The advantage is
that the offline phase is computed once and for all before the CC machine starts to
work. Then, when the casting stats, we only need to solve the computationally cheap
online phase.

Later, we compared this methodology with traditional Alifanov’s regularization.
We tested them in two different benchmark cases: an academic test and an industrial
one. First, we validated the numerical simulation of the mold model. Notice that
we used the FVM for the solution of the direct problem and all the coding was per-
formed using the C++ library ITHACA-FV. Then, we performed several tests on the
boundary heat flux reconstruction problem.

In particular, we tested the effects of the mesh refinement on the proposed method-
ologies, the influence of noise in the measurements, the impact of changing the ther-
mocouples positioning and number, and the advantages of including the total heat
flux in the input data. The results showed that the parameterization method outper-
forms Alifanov’s regularization in all the tests. In fact, this method is able to estimate
the boundary heat flux with much more accuracy for all the considered measurements
configurations. Moreover, it showed to provide good solutions also in presence of sig-
nificant noise in the measurements. Finally, it allows the real-time estimation of the
boundary heat flux while Alifanov’s regularization cannot be employed in real-time
as it is.

As a final remark, we notice that this novel methodology can also be applied in
other contexts. From the mathematical point of view, the presented industrial problem
is a Neumann boundary condition estimation problem in a steady linear setting with
pointwise state measurements in the interior of the domain. Then, we can employ the
proposed methodology to any problem sharing these features. An example can be
a boundary stress estimation problem in linear elasticity with pointwise deformation
measurements.
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6 UNSTEADY-STATE DIRECT
PROBLEM

We devote this second part of the thesis to the study of the mold-slab heat flux esti-
mation problem in the unsteady-state setting. First, we discuss in the present chapter
the mathematical formulation of the unsteady physical model (MU4) introduced in
Section 1.3.2 and its numerical discretization. Later, we present in Chapter 7 the
formulation of the boundary heat flux estimation problem and a novel methodology
for its solution. To achieve real-time performances in this setting, we require the
derivation of cutting-edge MOR techniques. This is the subject of Chapter 8. Finally,
we design in Chapter 9 some benchmarks that we use for the validation of the direct
problem solver and the testing of the proposed novel methodologies.

6.1 THREE-DIMENSIONAL UNSTEADY-STATE HEAT
CONDUCTION MODEL

In the present section, we propose mathematical formulation of the unsteady-state
heat conduction mold model (MU4). We derive it from model (MS4) by dropping
the steady-state assumption. Thus, we refer to Section 2.6 for all the details on the
domain, notation and assumptions on the data.

We shall assume all along the following assumptions on the data:

(HU4.1) The thermal conductivity is constant and strictly positive: ks ∈ IR+.

(HU4.2) There is no heat source inside the mold domain: fs = 0.

(HU4.3) The density and specific heat are constant and strictly positive: ρ ∈ IR+, Cp ∈
IR+.

(HU4.4) The heat transfer coefficient on Γsf is constant and strictly positive: h ∈ IR+.

(HU4.5) The cooling water temperature, Tf , is known, constant in time, and belongs to
Lq(Γsf ).

(HU4.6) The initial temperature, T0, is known and belongs to L2(Ωs).

(HU4.7) The steel-mold heat flux, g, belongs to Lr(0, tf ;L
q(Γsin)).
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In (HU4.5), (HU4.7) we assume that r, q ∈ (2,+∞) and

1

r
+

1

q
<

1

2
. (6.1.1)

Notice that it implies r, q > 2.
Under the assumptions (H1.1)-(H1.3), (H4.2), and (HU4.5)-(HU4.7), we propose

the following unsteady-state modification of Problem 2.6

Problem 6.1. Find Ts such that

ρsCps

∂Ts

∂t
− ksΔTs = 0, in Ωs × (0, tf ], (6.1.2)

with BCs and Initial Condition (IC)




−ks∇Ts · n = g on Γsin × (0, tf ], (6.1.3)

−ks∇Ts · n = 0 on Γsex × (0, tf ], (6.1.4)

−ks∇Ts · n = h(Ts − Tf ) on Γsf × (0, tf ], (6.1.5)

Ts(·, 0) = T0 in Ωs. (6.1.6)

A weak solution is now defined by testing against a smooth function and formally
integrating by parts.

Definition 6.1. We say that a function Ts ∈ C([0, tf ];L
2(Ωs)) ∩ L2(0, tf ;H

1(Ωs))
is a weak solution of Problem 6.1 on [0, tf ] for some tf > 0 if

− ρsCps

� tf

0

�

Ωs

Ts(x, t)
∂ψ(x, t)

∂t
dxdt+ ks

� tf

0

�

Ωs

∇Ts(x, t)∇ψ(x, t)dxdt+

� tf

0

�

Γsf

hTs(x, t)ψ(x, t)dΓdt = ρsCps

�

Ωs

Ts(x)ψ(x, 0)dx−
� tf

0

�

Γsin

g(x, t)ψ(x, t)dΓdt+

� tf

0

�

Γsf

hTf (x)ψ(x, t)dΓdt,

(6.1.7)
for all ψ ∈ H1(0, tf ;H

1(Ωs)) that satisfy ψ(tf ) = 0.

Thanks to Nittka [108] (its Theorem 2.11 and Corollary 2.13), we have

Theorem 6.2. Let assumptions (H1.1), (H1.2), (H4.2), (HU4.5)-(HU4.7) and (6.1.1)
hold. Then, there exists a unique weak solution of Problem 6.1 on [0, tf ].
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Finally, we recall Theorem 3.3 in [108]

Theorem 6.3. Let assumptions (H1.1), (H1.2), (H4.2), (HU4.5)-(HU4.7) and (6.1.1)
hold. Then, the weak solution Ts of Problem 6.1 is in C([0, tf ];C(Ωs)). So, in
particular, Ts(x, t) → T0(x) uniformly on Ωs as t → 0.

6.1.1 Numerical Discretization

Regarding the numerical solution of Problem 6.1, we use the FVM for the space
discretization while considering a first-order implicit Euler scheme for the time dis-
cretization.

We start by recalling some of the notation introduced in Section 2.6.1 for the
discretization of Problem 6.1. Given a tessellation T of the domain, Ωs, we denote by
E the set of faces of the control volumes. Given K ∈ T , let EK = {σ ∈ E|σ ⊂ ∂K}.
For each K ∈ T , m(K) denotes the three-dimensional Lebesgue measure of K and
xK its centroid. Analogously, for each σ ∈ E , m(σ) denotes the two-dimensional
measure of σ and xσ its centroid. For the finite volume schemes considered here, the
space discrete unknown temperature is denoted by TsK (t), K ∈ T . The value TsK (t)
is expected to be some approximation of Ts(x, t) in the cell K. Finally, we have

Tfσ =
1

m(σ)

�

σ
TfdΓ, ∀σ ⊂ Γsf , (6.1.8)

and, for each t ∈ (0, tf ], we define

gσ(t) :=
1

m(σ)

�

σ
g(t)dΓ, ∀σ ⊂ Γsin . (6.1.9)

Integrating (6.1.2) over each control volume, we have
�

K
ρsCps

∂Ts(x, t)

∂t
dx+

�

K
−ksΔTs(x, t)dx = 0, ∀K ∈ T , t ∈ (0, tf ].

(6.1.10)
Applying the divergence theorem on the second term, we have
�

K
−ksΔTs(x, t)dx =

�

∂K
−ks∇Ts(x, t) · n(x)dΓ, ∀K ∈ T , t ∈ (0, tf ].

(6.1.11)
Then, the mean value theorem allows us to write

�

∂K
−ks∇Ts(x, t) · n(x)dΓ ≈ −ks

�

σ∈EK
(∇Ts)σ(t) · sσ, (6.1.12)
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where (∇Ts)σ(t) is the gradient evaluated at the face centroid at time t, and sσ =
nσm(σ), nσ being the normal unitary vector, pointing to the outside of K, evaluated
at the face centroid.

Now, we consider the control volume KP in Figure 2.6.1 and its neighbor KN

with which it shares the σ face. Assuming an orthogonal grid and thanks to (2.6.8),
we have the following second-order approximation of the gradient evaluated at the
cell face

(∇Ts)σ(t) · sσ ≈ |sσ|
TsN (t)− TsP (t)

|dPN | . (6.1.13)

By (2.6.15) and the BC (6.1.5), we can write

− ks(∇Ts)σ(t) · sσ ≈ qKP ,σ(TsP (t)− Tfσ), ∀σ ⊂ (Γsf ∩ ∂KP ), t ∈ (0, tf ].
(6.1.14)

On Γsin thanks to (6.1.3), we have

− ks(∇Ts)σ(t) · sσ ≈ m(σ)gσ(t), ∀σ ⊂ (Γsin ∩ ∂KP ), t ∈ (0, tf ]. (6.1.15)

Then, for the Laplacian term in (6.1.10), we obtain

−ks

�

σ∈EKP
\Γ

m(σ)

|dPN | +
�

σ∈EKP
∩Γsf

qKP ,σ


TsP (t) =

ks
�

σ∈EKP
\Γ

m(σ)

|dPN |TsN (t) +
�

σ∈EKP
∩Γsf

qKP ,σTfσ −
�

σ∈EKP
∩Γsin

m(σ)gσ(t),

∀KP ∈ T , t ∈ (0, tf ].
(6.1.16)

Discretizing in space the first term of (6.1.10), we simply have
�

KP

ρCp
∂Ts(x, t)

∂t
dx ≈ ρsCpsm(KP )

dTsP (t)

dt
, ∀KP ∈ T , t ∈ (0, tf ]. (6.1.17)

To conclude the space discretization, if the tessellation T has Nh control volumes,
we introduce the time dependent vector of unknowns with dimension Nh:

(Ts)i(t) := Tsi(t), 1 ≤ i ≤ Nh, (6.1.18)

the source vector

(b)i(t) =
�

σ∈EKi
∩Γsf

qKi,σTfσ −
�

σ∈EKi
∩Γsin

m(σ)gσ(t), (6.1.19)
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the diagonal mass matrix M ∈ IMNh×Nh

Mii = m(Ki), (6.1.20)

and the stiffness matrix A ∈ IMNh×Nh , defined as

Aii =− ks
�

σ∈EKi
\Γ

m(σ)

|dPN | +
�

σ∈EKi
∩Γsf

qKi,σ,

Aij =− ks
m(σ)

|dij |
, if there exists σ ∈ ∂Ki ∩ ∂Kj

Aij =0, otherwise.
(6.1.21)

Notice that we consider all vectors to be column vectors.
So, after the space discretization, (6.1.10) is rewritten as

ρsCpsM
dTs(t)

dt
+ATs(t) = b(t), t ∈ (0, tf ]. (6.1.22)

To discretize (6.1.22) in time, we divide the time interval of interest into NT

regular steps

t0 = 0, tn+1 = tn +Δt, n = 0, . . . , NT − 1, Δt =
tf
NT

. (6.1.23)

From now on, we denote by f j an approximation of a given function f(t) at time
tj . For the time discretization, we consider the first-order, implicit Euler scheme.
Integrating (6.1.22) from tn to tn+1 = tn +Δt yields

ρsCpsM
�
Ts(t

n+1)−Ts(t
n)
�
=

� tn+1

tn
b(t)−ATs(t)dt. (6.1.24)

Now, approximating the integral on the right by the right-hand rectangle method, we
have

ρsCpsM
�
Ts(t

n+1)−Ts(t
n)
�
≈ Δtb(tn+1)−ΔtATs(t

n+1)dt. (6.1.25)

Finally, since Tn
s is an approximation of Ts(t

n+1) and rearranging the terms, we
obtain the implicit Euler scheme

(ρsCpsM +ΔtA)Tn+1
s = ρsCpsMTn

s +Δtbn+1, n = 0, . . . , NT − 1. (6.1.26)
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Notice that, thanks to hypotheses (HU4.1)-(HU4.7), matrices A and M are time in-
dependent.

This is a general overview on the finite volume discretization of Problem 6.1 as-
suming an orthogonal structured grid. The actual value of each element of A and b
depends on the mesh used and the possible correction terms due to non orthogonali-
ties in the mesh. Since our problem is a classic diffusion problem, we refer for further
details on this finite volume discretization to the Eymard’s monograph [52].
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7 UNSTEADY-STATE INVERSE
PROBLEM

We devote the present chapter to the formulation and solution of the mold-steel heat
flux estimation problem in the unsteady-state case. We start by discussing the mathe-
matical formulation of the problem in Section 7.1. Here we state two different inverse
problems. Thus, we devote Section 7.2 and 7.3 to the developement of some novel
methodologies for their solution.

7.1 INVERSE THREE-DIMENSIONAL UNSTEADY-STATE
HEAT CONDUCTION PROBLEM

Before proceeding with the mathematical formulation of the inverse problem, we do
some technical considerations that will guide us in the process. First, the thermocou-
ples measure the temperature at the sampling frequency fsamp. This sampling fre-
quency is typically of 1Hz and we will assume this value all along this investigation
(notice that different values of fsamp are compatible with the following discussion).
Second, every sampling period Tsamp = 1/fsamp = 1 s, the thermocouples provide
a new set of measurements, so we have a regular sequence of measurements in time.

That said, we consider the problem of estimating the heat flux, g, on Γsin , in
between the last acquired measurement instant and the previous one. In this way, we
follow the sequentiality of the measured data in our solution procedure according to
the real-time purpose of this research.

We introduce the following notation. Let Υ := {τ0, τ1, . . . , τPt} be a collection
of points in [0, tf ] such that τk = tkNt (see Figure 7.1.1). According to the intro-
duced sequential approach, we consider the following restriction of Problem 6.1 to
(τk−1, τk], 1 ≤ k ≤ Pt, as direct problem

Problem 7.1. Let 1 ≤ k ≤ Pt and gk(x, t) be a given heat flux on Γsin × (τk−1, τk].
Find T k

s such that

ρsCps

∂T k
s

∂t
− ksΔT k

s = 0, in Ωs × (τk−1, τk], (7.1.1)
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with BCs and IC




−ks∇T k
s · n = gk on Γsin × (τk−1, τk], (7.1.2)

−ks∇T k
s · n = 0 on Γsex × (τk−1, τk], (7.1.3)

−ks∇T k
s · n = h(T k

s − Tf ) on Γsf × (τk−1, τk], (7.1.4)

T k
s (·, τk−1) = T k−1

s (·, τk−1) in Ωs, (7.1.5)

where T 0
s (·, τ0) = T0, being T0 the initial temperature.

t0 t2t1

τk−1· · ·τ 1τ 0 τk

· · · · · ·tNt t(k−1)Nt tkNt

Figure 7.1.1: Time line for the inverse problem.

So basically, we are dividing the time domain into chunks going from one mea-
surement time to the next one in a way that facilitates the definition of the inverse
problems below. Before formulating it, we introduce some further notation. We de-
fine the application (xi, τ

k) ∈ Ψ×Υ → T̂ (xi, τ
k) ∈ IR+, 1 ≤ i ≤ P, 1 ≤ k ≤ Pt,

T̂ (xi, τ
k) being the experimentally measured temperature at (xi, τ

k) ∈ Ψ×Υ. More-
over, to simplify the notation, and if there is no room for error, we denote

T̂ k(xi) := T̂ (xi, τ
k), 1 ≤ i ≤ P, 1 ≤ k ≤ Pt, (7.1.6)

and we let T k
s [g] represent the solution of Problem 7.1 corresponding to heat flux g

on Γsin × (τk−1, τk].
At each measurement interval k, 1 ≤ k ≤ Pt, we propose an iterative procedure,

assuming that, for k ≥ 1, gl and T l
s[g

l], 0 ≤ l ≤ k − 1, have been computed. Using
a least square, deterministic approach, we state two different inverse problems for
Problem 7.1. In the first one, we consider as functional to be minimized a distance
between the measured and computed temperatures at the thermocouples. Then, we
state it as

Problem 7.2. (Inverse) Being gl and T l
s[g

l], 1 ≤ l ≤ k − 1, known, and given the
temperature measurements T̂ k(xi), 1 ≤ i ≤ P , find gk ∈ Lr(τk−1, τk;Lq(Γsin))
which minimizes the functional

Sk
1 [g

k] =
1

2

P�

i=1

[T k
s [g

k](xi, τ
k)− T̂ k(xi)]

2, (7.1.7)
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with r, q verifying (6.1.1). Here, we denote T 0
s [g

0] = T0.
The second inverse problem that we consider includes in the cost functional the

L2-norm of the heat flux. Thus, we write it as

Problem 7.3. (Inverse) Being gl and T l
s[g

l], 1 ≤ l ≤ k − 1, known, and given the
temperature measurements T̂ k(xi), 1 ≤ i ≤ P , find gk ∈ Lr(τk−1, τk;Lq(Γsin))
which minimizes the functional

Sk
2 [g

k] =
1

2

P�

i=1

[T k
s [g

k](xi, τ
k)− T̂ k(xi)]

2 + pg�gk(τk), gk(τk)�L2(Γsin )
, (7.1.8)

where pg

�
K2

W 2

�
is a weight applied to the heat flux norm.

7.2 INVERSE SOLVER FOR Sk
1

In this section, we discuss a novel methodology for solving Problem 7.2. In par-
ticular, we mimic the methodology developed for the steady case in Section 3.1.2,
expanding it to the unsteady case.

As in the steady case, we exploit a suitable parameterization of the heat flux, gk.
To properly parameterize it, we start by considering that we want to parameterize an
unknown function gk in Lr(τk−1, τk;Lq(Γsin)), 1 ≤ k ≤ Pt. We decide to split the
parameterization of the heat flux between time and space. For the parameterization
in space, we use the same RBF technique described in Section 3.1.2.

Thus, the parameterization of the boundary heat flux reads (see Prando’s ap-
pendix [120])

gk(x, t) ≈ gk(x, t) =
P�

i=1

gki (t)φi(x), for t ∈ (τk−1, τk], (7.2.1)

where the φi(x) are P known basis functions as defined in (3.1.24), and the gki (t)
are the respective time dependent unknown weights. Note that the methodology is
very well adapted to the application in use, because the number of base elements
that we consider matches the number of thermocouples. For a detailed discussion
on the space parameterization of the heat flux, we redirect the reader to our previous
discussion as the beginning of Section 3.1.2.

In this work, we investigate two different approaches for the parameterization of
gk. In the first one, we consider gki independent of time

gki (t) = wk
i , for t ∈ (τk−1, τk], 1 ≤ i ≤ P, (7.2.2)

99



UMBERTO EMIL MORELLI

being wk
i real numbers. In this way, the heat flux is assumed to be piecewise constant,

i.e. constant between consecutive measurement instants.
The second approach considers the heat flux to be continuous piecewise linear

in (0, tf ], being a polynomial of degree 1 between the sampling times. Then, we
assume the weights gki (t) to be linear in time in the interval (τk−1, τk]. Moreover, in
this second case, the following continuity is assumed

gki (t)|t↓τk−1 = gk−1
i (t)|t↑τk−1 . (7.2.3)

In turn, we characterize gki (t) as

gki (t) = wk−1
i + (t− τk−1)

wk
i − wk−1

i

τk − τk−1
, for t ∈ (τk−1, τk]. (7.2.4)

Notice that by doing these parameterizations, we change the problem from esti-
mating a function in an infinite dimensional space at each time interval (t(k−1)Nt , tkNt ]
= (τk−1, τk], to estimating the vector wk = (wk

1 , w
k
2 , . . . , w

k
P )

T in IRP , for each
1 ≤ k ≤ Pt.

Now, at each time interval (τk−1, τk], the objective of the inverse problem is to
determine wk which identifies gk once the elements of the basis φi, i = 1, 2, . . . , P
are fixed. We state the inverse problem as

Problem 7.4. (Inverse) Given the temperature measurements T̂ (Ψ, τk), find ŵk ∈
IRP , 1 ≤ k ≤ Pt, which minimizes the functional

Sk
1 [w

k] =
1

2

P�

i=1

[T k
s [w

k](xi, τ
k)− T̂ k(xi)]

2, (7.2.5)

where, if there is not room for confusion, T k
s [w

k] denotes the temperature T k
s [g

k],
with gk defined as in (7.2.1) and gki (t) given by (7.2.2) or (7.2.4).

For a later use, we define the general vector ak of IRP as the vector of the values
of a general field a(x, t) at the measurement points and at the measurement time τk,
such as

(ak)i = a(xi, τ
k). (7.2.6)

Moreover, given wk, we define the residual vector Rk[wk] ∈ IRP as

(Rk[wk])i := (Tk
s [w

k])i − (T̂k)i, i = 1, 2, . . . , P. (7.2.7)
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Thanks to (7.2.7), we rewrite the cost functional (7.2.5) as

Sk
1 [w

k] =
1

2
Rk[wk]TRk[wk]. (7.2.8)

To minimize it, we write the critical point equation

∂Sk
1 [ŵ

k]

∂wk
j

=
P�

i=1

(Rk[ŵk])i
∂(Tk

s [ŵ
k])i

∂wk
j

= 0, for j = 1, 2, . . . , P. (7.2.9)

Thus, for each k, 1 ≤ k ≤ Pt, the solution of this equation will provide the weights
vector ŵk corresponding to a critical point of Sk

1 .
To explicitly obtain from (7.2.9) an equation for the weights that minimizes our

functional Sk
1 , we exploit the linearity of Problem 7.1. To derive it, we consider first

the piecewise constant (7.2.2), and then the piecewise linear (7.2.4) cases.

7.2.1 Piecewise Constant Approximation of the Heat Flux

Suppose to have the solutions to the following auxiliary problems

Problem 7.5. For each i, 1 ≤ i ≤ P , find Tφi
such that

ρsCps

∂Tφi

∂t
− ksΔTφi

= 0, in Ωs × (τ0, τ1], (7.2.10)

with BCs and IC




−ks∇Tφi
· n = φi on Γsin × (τ0, τ1], (7.2.11)

−ks∇Tφi
· n = 0 on Γsex × (τ0, τ1], (7.2.12)

−ks∇Tφi
· n = hTφi

on Γsf × (τ0, τ1], (7.2.13)

Tφi
(·, τ0) = 0 in Ωs. (7.2.14)

Problem 7.6. For each k, 1 ≤ k ≤ Pt, find T k
IC such that

ρsCps

∂T k
IC

∂t
− ksΔT k

IC = 0, in Ωs × (τk−1, τk], (7.2.15)

with BCs and IC



−ks∇T k
IC · n = 0 on (Γsin ∪ Γsex)× (τk−1, τk],(7.2.16)

−ks∇T k
IC · n = h

�
T k
IC − Tf

�
on Γsf × (τk−1, τk], (7.2.17)

T k
IC(·, τk−1) = T k−1

s (·, τk−1) in Ωs, (7.2.18)
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with
T 1
IC(·, τ0) = T0. (7.2.19)

Notice that Problem 7.5 does not depend on the measurement instants index k. Then,
we define it only in the first interval (τ0, τ1] and, if needed, we translate it such as

T k
φi
(x, t) = Tφi

(x, t− τk−1), for t ∈ (τk−1, τk]. (7.2.20)

We can now state

Theorem 7.1. Given T k
IC and wk, 1 ≤ k ≤ Pt (and so gk defined as (7.2.1)) and

Tφi
, 1 ≤ i ≤ P , the function defined as

T k
s [g

k] =

P�

i=1

gki T
k
φi

+ T k
IC , (7.2.21)

is the solution to Problem 7.1 associated with the heat flux g(x, t) which in each mea-
surement subinterval (τk−1, τk] coincides with gk(x, t) given by (7.2.1) with gki (t) as
in (7.2.2).

Proof. Substituting (7.2.21) in (7.1.1) and considering (7.2.10) and (7.2.15), we have

ρsCps

∂
��P

i=1 g
k
i (t)T

k
φi

+ T k
IC

�

∂t
− ksΔ

�
P�

i=1

gki (t)T
k
φi

+ T k
IC

�
=

P�

i=1

gki (t)

�
ρsCps

∂T k
φi

∂t
− ksΔT k

φi

�
+ ρsCps

∂T k
IC

∂t
− ksΔT k

IC = 0

in Ωs × (τk−1, τk].

(7.2.22)

Similarly, for the BCs we have

−ks∇
�

P�

i=1

gki T
k
φi

+ T k
IC

�
· n =

P�

i=1

gki

�
−ks∇T k

φi
· n
�
=

P�

i=1

gki φi = gk, on Γsin × (τk−1, τk],

(7.2.23)

− ks∇
�

P�

i=1

gki T
k
φi

+ T k
IC

�
· n = 0, on Γsex × (τk−1, τk], (7.2.24)
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and

−ks∇
�

P�

i=1

gki T
k
φi

+ T k
IC

�
· n = h

�
P�

i=1

gki T
k
φi

+ T k
IC − Tf

�
=

h
�
T k
s [g

k]− Tf

�
, on Γsf × (τk−1, τk].

(7.2.25)

With respect to the IC, at each interval we must proceed by induction. For k = 1,

T 1
s [g

1](·, τ0) = T 0(·). (7.2.26)

For k > 1,

T k
s [g

k](·, τk−1) =

P�

i=1

gki (τ
k−1)T k

φi
(·, τk−1)+

T k
IC(·, τk−1) = T k−1

s (·, τk−1), in Ωs.

(7.2.27)

This ends the proof.

Thanks to (7.2.21), (7.2.9) can be written as

P�

i=1

(Rk[ŵk])i
∂
��P

l=1 g
k
l Tφl

+Tk
IC

�
i

∂wk
j

=

P�

i=1

(Rk[ŵk])i
∂
��P

l=1w
k
l Tφl

+Tk
IC

�
i

∂wk
j

=

Rk[ŵk]T
�
Tφj

�
= 0, for j = 1, 2, . . . , P,

(7.2.28)

where (Tφl
)j is the vector containing the values of the field Tφl

(xj , τ1) at the mea-
surement points. We recall that Tφl

is independent of k.
Let us define the matrix Θ in IMP×P such that

Θi,j = Tφj
(xi, τ

1). (7.2.29)

Equation (7.2.28) can now be written as

ΘTRk[ŵk] = 0. (7.2.30)

Using (7.2.21), the vector associated to the solution of the direct problem at the
measurement points, Tk

s [w
k] ∈ IRP , for each k, can be written as

Tk
s [w

k] =
P�

j=1

wk
jTφj

+Tk
IC = Θwk +Tk

IC . (7.2.31)
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Recalling the definition of Rk and (7.2.31), we have

ΘTRk[ŵk] = ΘT (Θŵk +Tk
IC − T̂k) = 0. (7.2.32)

Therefore, for each k, 1 ≤ k ≤ Pt, a solution of the inverse problem, ŵk, is obtained
by solving the linear system

ΘTΘŵk = ΘT (T̂k −Tk
IC). (7.2.33)

It is important to notice that the system matrix, ΘTΘ, is k-independent.
Equation (7.2.33) is generally called the normal equation. By solving this linear

system, we obtain the weights, ŵk, that correspond to a critical point of the functional
(7.2.5). As mentioned, Θ is constant. So it can be computed once and for all in an
offline phase.

The proposed methodology for the solution of the inverse Problem 7.2 is summa-
rized in Algorithm 3. It is important to notice that, for each time interval (τk−1, τk],
Tφi

and the related vector do not change but T k
IC does because its initial condition

depends on the temperature field at time τk−1. So, it has to be computed during the
online phase.

Notice that, in this setting, (7.2.33) is an affine map from the observations, T̂k, to
the heat flux weights, ŵk. Consequently, we have that the existence and uniqueness
of the solution of the inverse problem depends on the invertibility of the matrix ΘTΘ.
We can easily see that the matrix is symmetric and positive semi-definite. In general,
however, we cannot ensure that it is invertible. In fact, the invertibility depends on
the choice of the basis functions, the computational domain and the BCs.

Before moving to the piecewise linear case, we highlight that we divided Algo-
rithm 3 into an offline (expensive) phase and an online (cheap) phase. In the offline
phase, we compute Tφi

for i = 1, 2, . . . , P by solving Problem 7.5 and assemble
the related matrix Θ. Then, in the online phase, we input the measurements T̂, solve
Problem 7.6 and the linear system (7.2.33). Moreover, to further reduce the computa-
tional cost of the online phase, we can perform during the offline phase a factorization
(e.g. LU, QR, etc.) of the matrix of the linear system (7.2.33) so that, in the online
phase, the solution of the linear system is much faster.

For the choice made when selecting the basis functions, this linear system has
the dimensions of the number of thermocouples (quite small, in general). However,
solution of Problem 7.6 involves the solution of a Full Order Model (FOM). As a
consequence, this method is not suitable for real-time as it is. To achieve real-time
performances, we apply MOR techniques. This is the subject of Chapter 8.

As a final remark, we notice that for the application of this method linearity of
the direct problem is essential. In fact, it is a necessary condition for Theorem 7.1.
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Algorithm 3 Inverse solver for the solution of Problem 7.2 with piecewise constant
parameterization in time of the heat flux, g.

OFFLINE
Input RBF shape parameter, η; thermocouples measurement points and times,

Ψ,Υ

1: Setup RBF parameterization by (3.1.24)
2: Compute Tφi

for i = 1, 2, . . . , P by solving Problem 7.5
3: Assemble matrix Θ by (7.2.29)

ONLINE
Input Initial condition, T0

1: Set k = 1
2: while k ≤ Pt do
3: Read the thermocouples measurements, T̂k

4: Compute T k
IC by solving Problem 7.6

5: Assemble Tk
IC

6: Compute ŵk by solving (7.2.33)
7: Compute gki (t) by (7.2.2)
8: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1) and (7.2.2)
9: Use (7.2.21) to compute T k

s [g
k]

10: k = k + 1
11: end while

7.2.2 Piecewise Linear Heat Flux

Suppose to have the solution to

Problem 7.7. For each i, 1 ≤ i ≤ P , find Tdi such that

ρsCps

∂Tdi

∂t
− ksΔTdi = −ρsCpsTφi

, in Ωs × (τ0, τ1], (7.2.34)

with BCs and IC




−ks∇Tdi · n = 0 on (Γsin ∪ Γsex)× (τ0, τ1], (7.2.35)

−ks∇Tdi · n = hTdi on Γsf × (τ0, τ1], (7.2.36)

Tdi(·, τ0) = 0 in Ωs. (7.2.37)
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From the solution of this problem, we define

T k
di
(x, t) = Tdi(x, t− τk−1), for t ∈ (τk−1, τk]. (7.2.38)

Then, we state

Theorem 7.2. Given T k
IC and wk, 1 ≤ k ≤ Pt (and so gk defined as (7.2.1)), Tdi

and Tφi
, 1 ≤ i ≤ P , then the function defined as

T k
s [g

k] =

P�

i=1

�
gki T

k
φi

+ gki
�
T k
di

�
+ T k

IC , (7.2.39)

is the solution to Problem 7.1 associated with the heat flux g(x, t) which in each
measurement subinterval (τk−1, τk] coincides with gk(x, t) given by (7.2.1), with
gki (t) as in (7.2.4).

Proof. Substituting (7.2.39) in (7.1.1) and considering (7.2.10) and (7.2.15), we have

ρsCps

∂
��P

i=1

�
gki (t)T

k
φi

+ gki
�
T k
di

�
+ T k

IC

�

∂t
− ksΔ

�
P�

i=1

�
gki (t)T

k
φi

+ gki
�
T k
di

�
+

T k
IC

�
= ρsCps

�
P�

i=1

gki
�
T k
φi

+

P�

i=1

gki (t)

�
∂T k

φi

∂t
− ksΔT k

φi

��
+

P�

i=1

gki
�
�
ρsCps

∂T k
di

∂t
− ksΔT k

di

�
+ ρsCps

∂T k
IC

∂t
− ksΔT k

IC =

ρsCps

P�

i=1

gki
�
T k
φi

+
P�

i=1

gki
�
�
ρsCps

∂T k
di

∂t
− ksΔT k

di

�
= 0,

in Ωs × (τk−1, τk].
(7.2.40)

Similarly, for the BCs we have

− ks∇
�

P�

i=1

�
gki T

k
φi

+ gki
�
T k
di

�
+ T k

IC

�
· n =

P�

i=1

gki

�
−ks∇T k

φi
· n
�
=

P�

i=1

gki φi = gk, on Γsin × (τk−1, τk],

(7.2.41)
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− ks∇
�

P�

i=1

�
gki T

k
φi

+ gki
�
T k
di

�
+ T k

IC

�
· n = 0 on Γsex × (τk−1, τk], (7.2.42)

and

− ks∇
�

P�

i=1

�
gki T

k
φi

+ gki
�
T k
di

�
+ T k

IC

�
· n =

h

�
P�

i=1

�
gki T

k
φi

+ gki
�
T k
di

�
+ T k

IC − Tf

�
= h

�
T k[gk]− Tf

�
,

on Γsf × (τk−1, τk].

(7.2.43)

With respect to the IC, at each interval we must proceed by induction. For k = 1,

T 1
s [g

1](·, τ0) = T 0(·). (7.2.44)

For k > 1,

T k
s [g

k](·, τk−1) =

P�

i=1

�
gki (τ

k−1)T k
φi
(·, τk−1) + gki

�
T k
di
(·, τk−1)

�
+

T k
IC(·, τk−1) = T k−1

s (·, τk−1), in Ωs.

(7.2.45)

Thanks to Theorem 7.2, we have

∂Tk
s [w

k]

∂wk
j

=
∂
��P

l=1

�
gkl (τ

k)Tk
φl
(τk) + gkl

�
Tk

dl
(τk)

�
+Tk

IC(τ
k)
�

∂wk
j

=

∂
��P

l=1

�
wk
l T

k
φl
(τk) + (wk

l − wk−1
l )fsampT

k
dl
(τk)

�
+Tk

IC(τ
k)
�

∂wk
j

=

Tk
φj
(τk) + fsampT

k
dj
(τk) = Tφj

(τ1) + fsampTdj (τ
1).

(7.2.46)
Thanks to (7.2.46), (7.2.9) in the linear case is rewritten as

Rk[ŵk]T (Tφj
+ fsampTdj ) = 0, for all j = 1, 2, . . . , P. (7.2.47)

Let us define the matrices Θ̃,Θd in IMP×P such that

(Θd)i,j := fsampTdj (xi, τ
1),

�
Θ̃
�
i,j

:= (Θ)i,j + (Θd)i,j , (7.2.48)
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independent of the index k.
Using (7.2.48) and (7.2.39), we have

Tk
s [ŵ

k](τk) =

P�

l=1

�
gkl (τ

k)Tφl
+ gkl

�
Tdl

�
+Tk

IC(τ
k) =

P�

l=1

�
wk
l Tφl

+ (wk
l − wk−1

l )fsampTdl

�
+Tk

IC(τ
k) =

Θ̃ŵk −Θdŵ
k−1 +Tk

IC(τ
k).

(7.2.49)

Recalling the definition of Rk, taking into account (7.2.48) and (7.2.49), system
(7.2.47) can be written as

(Θ̃)
T
Rk[ŵk] = (Θ̃)

T
�
Θ̃ŵk −Θdŵ

k−1 +Tk
IC(τ

k)− T̂k
�
= 0. (7.2.50)

Therefore, a solution of the inverse problem is obtained by solving the linear system

(Θ̃)
T
Θ̃ŵk = (Θ̃)

T
�
T̂k +Θdŵ

k−1 −Tk
IC(τ

k)
�
. (7.2.51)

As in the piecewise constant case, the system matrix, (Θ̃)T Θ̃, is k-independent.
The proposed methodology for the solution of the Inverse Problem 7.2 is summa-

rized in Algorithm 4. Similarly to the piecewise constant case, for each time interval
(τk−1, τk], Tφi

, Tdi and the related vectors do not change but T k
IC does because its

initial condition depends on the temperature field at time τk−1.
Also in this setting, (7.2.51) is an affine map from the observations, T̂k, to the

heat flux weights, ŵk. Consequently, we have that the existence and uniqueness of
the solution of the inverse problem depends on the invertibility of the matrix (Θ̃)

T
Θ̃.

It is symmetric and positive semi-definite. However, we cannot ensure that it is in-
vertible. In fact, the invertibility depends on the choice of the basis functions, the
computational domain and the BCs.

We notice that, also in the piecewise linear case, the offline-online decomposition
holds. Moreover, the linear system dimensions are the same of the piecewise constant
case and the linearity of the direct problem is still a necessary condition also for
Theorem 7.2.

7.3 INVERSE SOLVER FOR Sk
2

In this section, we discuss the solution of the inverse Problem 7.3. In particular, we
extend the previously developed methodologies adapting them to the cost function
Sk
2 as defined in (7.1.8).
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Algorithm 4 Inverse solver for the solution of Problem 7.2 with piecewise linear
parameterization in time of the heat flux, g.

OFFLINE
Input RBF shape parameter, η; thermocouples measurement points and times,

Ψ,Υ

1: Setup RBF parameterization by (3.1.24)
2: Compute Tφi

for i = 1, 2, . . . , P by solving Problem 7.5
3: Compute Tdi for i = 1, 2, . . . , P by solving Problem 7.7
4: Assemble matrices Θ̃ and Θd

ONLINE
Input Initial condition, T0

1: Set k = 1
2: while k ≤ Pt do
3: Read the thermocouples measurements, T̂k

4: Compute T k
IC by solving Problem 7.6

5: Assemble Tk
IC

6: Compute ŵk by solving (7.2.51)
7: Compute gki (t) by (7.2.4)
8: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1) and (7.2.4)
9: Use (7.2.39) to compute T k

s [g
k]

10: k = k + 1
11: end while

As shown in detail in Section 9.2, the piecewise linear inverse solver of Sec-
tion 7.2.2 presents instability issues, under certain conditions. Then, we stated this
second inverse problem with the purpose of stabilizing the solution. To do this, we
designed Problem 7.3 from Problem 7.2 by adding to the cost function (7.1.8) a term
that penalize the heat flux norm �gk(τk), gk(τk)�L2(Γsin )

.

Also in this case, we exploit the parameterization of the heat flux (7.2.1). As a
consequence, we introduce the inverse problem in terms of wk as

Problem 7.8. (Inverse) Given the temperature measurements T̂ (Ψ,Υ), find ŵk ∈
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IRP , 1 ≤ k ≤ Pt, which minimizes the functional

Sk
2 [w

k] =
1

2

P�

i=1

[T k
s [w

k](xi, τ
k)− T̂ k(xi)]

2+

pg

�

Γsin




P�

j=1

wk
j φj(x)






P�

q=1

wk
qφq(x)


 dΓ.

(7.3.1)

Notice that (7.3.1) holds true for both the piecewise constant and linear parameteri-
zation of the heat flux since

gki (τ
k) = wk

i , (7.3.2)

for (7.2.2) as well as for (7.2.4).
Considering the second term of the right hand side of (7.3.1), we can write

�

Γsin




P�

j=1

wk
j φj(x)






P�

q=1

wk
qφq(x)


 dΓ =

�

Γsin

P�

j=1


wk

j φj(x)




P�

q=1

wk
qφq(x)




 dΓ =

P�

j=1

P�

q=1

�

Γsin

wk
j φj(x)w

k
qφq(x)dΓ =

P�

j=1

P�

q=1

wk
jw

k
q

�

Γsin

φj(x)φq(x)dΓ.

(7.3.3)

Let us define the vectors of IRP 2

φφφφ =
��

Γsin
φ1(x)φ1(x)dΓ

�
Γsin

φ1(x)φ2(x)dΓ · · ·
�
Γsin

φP (x)φP (x)dΓ
�T

,

(7.3.4)
and

akw =
�
wk
1
2

wk
1w

k
2 · · · wk

P
2
�T

. (7.3.5)

We can now rewrite (7.3.3) as

P�

j=1

P�

q=1

wk
jw

k
q

�

Γsin

φj(x)φq(x)dΓ = φφφT
φa

k
w. (7.3.6)
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Furthermore, deriving (7.3.6) with respect to the weights, we obtain

∂
��

Γsin

��P
j=1w

k
j φj(x)

���P
q=1w

k
qφq(x)

�
dΓ
�

∂wk
j

=

∂φφφT
φa

k
w

∂wk
j

= φφφT
φ

∂akw
∂wk

j

, for j = 1, 2, . . . , P.

(7.3.7)

Considering the case j = 1, we have

φφφT
φ

∂akw
∂wk

1

= φφφT
φ




2wk
1

wk
2
...

wk
P

wk
2

0
...
0
wk
3

0
...
0
wk
P

0
...




, (7.3.8)

that we can rewrite as

φφφT
φ

∂akw
∂wk

1

=2φφφφ1w
k
1 + φφφφ2w

k
2 + φφφφ3w

k
3 + · · ·+φφφφP

wk
P + φφφφP+1

wk
2+

φφφφ2P+1
wk
3 + · · ·+φφφφ(P−1)P+1

wk
P .

(7.3.9)

Now, by noticing that

φφφφ(r−1)P+s
=

�

Γsin

φr(x)φs(x)dΓ = φφφφ(s−1)P+r
, 1 ≤ r, s ≤ P, (7.3.10)

we obtain

φφφT
φ

∂akw
∂wk

1

= 2φφφφ1w
k
1 + 2φφφφ2w

k
2 + 2φφφφ3w

k
3 + · · ·+ 2φφφφP

wk
P = 2φφφT

φ1:P
wk. (7.3.11)
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Similarly, if we consider the general case, we have

φφφT
φ

∂akw
∂wk

j

= 2φφφφ(j−1)P+1
wk
1 + 2φφφφ(j−1)P+2

wk
2+

2φφφφ(j−1)P+3
wk
3 + · · ·+ 2φφφφ(j−1)P+P

wk
P =

2φφφT
φ(j−1)P+1:(j−1)P+P

wk, for j = 1, 2, . . . , P.

(7.3.12)

Therefore, thanks to (7.3.7) and (7.3.12), we can write

∂
��

Γsin

��P
j=1w

k
j φj(x)

���P
q=1w

k
qφq(x)

�
dΓ
�

∂wk
j

=

φφφT
φ

∂akw
∂wk

j

= 2φφφT
φ(j−1)P+1:(j−1)P+P

wk, for j = 1, 2, . . . , P.

(7.3.13)

Let us define the matrix Φ ∈ IMP×P such that

Φrs :=

�

Γsin

φr(x)φs(x)dΓ. (7.3.14)

If we now consider the minimization of Sk
2 with respect to the weights, wk, as in

(7.2.9), we have

∂Sk
2 [ŵ

k]

∂wk
j

=
P�

i=1

(Rk[ŵk])i
∂(Tk

s [ŵ
k])i

∂wk
j

+

2pgφφφ
T
φ(j−1)P+1:(j−1)P+P

wk = 0, for j = 1, 2, . . . , P.

(7.3.15)

Considering the piecewise constant case, thanks to (7.2.31) and (7.3.7), we rewrite
(7.3.15) as

ΘT (Θŵk +Tk
IC − T̂k) + 2pgΦŵ

k = 0, (7.3.16)

being Θ the matrix defined in (7.2.29). Therefore, for each k, 1 ≤ k ≤ Pt, the
solution of the inverse problem, ŵk, is obtained by solving the linear system

�
ΘTΘ+ 2pgΦ

�
ŵk = ΘT (T̂k −Tk

IC). (7.3.17)

Similarly, for the piecewise linear case, thanks to (7.2.49) and (7.3.7), we rewrite
(7.3.15) as

(Θ̃)
T
�
Θ̃ŵk −Θdŵ

k−1 +Tk
IC − T̂k

�
+ 2pgΦŵ

k = 0, (7.3.18)
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being Θ̃ and Θd the matrices defined in (7.2.48). Therefore, for each k, 1 ≤ k ≤ Pt,
a solution of the inverse problem, ŵk, is obtained by solving the linear system

�
Θ̃T Θ̃+ 2pgΦ

�
ŵk = Θ̃T (T̂k +Θdŵ

k−1 −Tk
IC). (7.3.19)

The resulting inverse solvers are straightforward modifications of Algorithm 3
and 4. Then, we show them in the following Algorithm 5 and 6.

Algorithm 5 Inverse solver for the solution of Problem 7.3 with piecewise constant
parameterization in time of the heat flux, g.

OFFLINE
Input RBF shape parameter, η; thermocouples measurement points and times,

Ψ,Υ; cost functional parameter, pg
1: Setup RBF parameterization by (3.1.24)
2: Compute Tφi

for i = 1, 2, . . . , P by solving Problem 7.5
3: Assemble matrix Θ by (7.2.29)
4: Assemble matrix Φ by (7.3.14)

ONLINE
Input Initial condition, T0

1: Set k = 1
2: while k ≤ Pt do
3: Read the thermocouples measurements, T̂k

4: Compute T k
IC by solving Problem 7.6

5: Assemble Tk
IC

6: Compute ŵk by solving (7.3.17)
7: Compute gki (t) by (7.2.2)
8: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1) and (7.2.2)
9: Use (7.2.21) to compute T k

s [g
k]

10: k = k + 1
11: end while

As a final remark, notice that for pg = 0K2

W 2 , we end up with the same solution as
for Sk

1 .

7.4 REGULARIZATION
After the development of novel inverse solvers, we provide a brief discussion about
regularization. It is well known that inverse problems as the ones here considered are
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Algorithm 6 Inverse solver for the solution of Problem 7.3 with piecewise linear
parameterization in time of the heat flux, g.

OFFLINE
Input RBF shape parameter, η; thermocouples measurement points and times,

Ψ,Υ; cost functional parameter, pg
1: Setup RBF parameterization by (3.1.24)
2: Compute Tφi

for i = 1, 2, . . . , P by solving Problem 7.5
3: Compute Tdi for i = 1, 2, . . . , P by solving Problem 7.7
4: Assemble matrices Θ̃ and Θd

5: Assemble matrix Φ by (7.3.14)

ONLINE
Input Initial condition, T0

1: Set k = 1
2: while k ≤ Pt do
3: Read the thermocouples measurements, T̂k

4: Compute T k
IC by solving Problem 7.6

5: Assemble Tk
IC

6: Compute ŵk by solving (7.3.19)
7: Compute gki (t) by (7.2.4)
8: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1) and (7.2.4)
9: Use (7.2.39) to compute T k

s [g
k]

10: k = k + 1
11: end while

ill-posed. This means that for our problem at least one of the following properties
does not hold: for all admissible data, a solution exists; for all admissible data, the
solution is unique; the solution depends continuously on the data [49]. In our dis-
cussion, we turned the infinite dimensional inverse Problem 7.2 into the solution of
the discrete linear systems (7.2.33) and (7.2.51) by making some assumptions on the
heat flux (i.e. parameterizing it). In this new setting, if the matrices ΘTΘ and Θ̃T Θ̃
are invertible, we have the existence of a unique solution for our inverse problem.

As we will see in the numerical tests section, it turns out that these matrices
are very ill-conditioned. This can cause the matrix to be numerically rank deficient,
loosing the uniqueness of a solution. However, this is not the only concern. We
still have the problem of a continuous dependence of the solution on the data. The

114



CHAPTER 7. UNSTEADY-STATE INVERSE PROBLEM

ill-conditioning of the linear system causes that, if we have some noise in the data
vector (as usual in an industrial measurement equipment), the solution of the linear
system diverges from the correct value.

To address both these problems, we require regularization. There are several tech-
niques available for regularizing a discrete ill-posed problem as the present one. In
general, they are divided into direct methods like TSVD and Tikhonov regularization,
and iterative methods such as the CGM. For a deep discussion of all regularization
methods, we refer the interested reader to Hansen’s monograph on the subject [65].

In the present investigation, we use again the TSVD as described in Section 3.1.2.
Together with the classical aforementioned regularization method, we investigate also
the regularization by discretization [4, 80]. Using this method, we exploit the regu-
larizing properties of coarsening the time and/or space discretization to improve the
heat flux estimation. In Chapter 9, we will test the performance of these regulariza-
tion methods also by adding noise to the thermocouples measurements.

7.5 DISCRETIZATION SELECTION ALGORITHM
To conclude this chapter, we propose an algorithm for the automated selection of
some of the parameters required by Algorithm 6. As shown in Chapter 9, the numeri-
cal tests highlight that this algorithm is very sensitive to the mesh and time discretiza-
tion refinement as well as to the parameter pg. We anticipate here that this inverse
solver shows severe instabilities for fine discretizations. However, these instabilities
are effectively eliminated for values of pg that are above a threshold that depends on
the discretization refinement. In for these values of pg, we notice a drastic decrease
of the dependency of the algorithm from the discretization.

However, the uncontrolled increase in pg does not lead to a monotonic improve-
ment of the inverse solver performances. As can be observed in the numerical results
of Chapter 9 (see Figures 9.2.7, 9.2.8, 9.2.9, 9.3.7, 9.3.8), the dependency of the al-
gorithm from pg is such that it is unstable for low values of pg then, increasing further
pg, it sharply achieves an optimum of performance before reaching a plateau at which
the algorithm is stable but the term �gk(τk), gk(τk)�L2(Γsin )

in (7.1.8) overcomes the
measurements distance one, Sk

1 defined in (7.1.7). Thus, for too high values of pg, we
have a stable algorithm that is almost independent from the discretization refinement
but that provides poor heat flux estimations.

To allow an industrial use of the proposed inverse solver, the objective of this
section is to develop a method for automatically selecting the Δt, the mesh and the
value of pg such that the algorithm is stable and accurately estimates the mold-steel
heat flux.
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In developing such method, we assume to have available a reliable dataset of ther-
mocouples measurements, T̂train(Ψ,Υtrain), that we can use to perform this tuning
offline. Moreover, we assume that, independently from the mold physical parameters
and the heat flux values, this inverse solver always shows the previously described
behaviour with respect to pg. In particular, we assume that, for values of pg higher
than a problem specific threshold, the algorithm is stable for all the discretizations
and independent from them (i.e. we obtain similar solutions for any given mesh and
Δt).

We recall, that in the real industrial case, we do not have any information about
the true heat flux that we want to estimate. Thus, this selection methodology cannot
be based on the heat flux estimation error. However, Figures 9.2.10 and 9.3.9 show
that the measurement discrepancy functional Sk

1 and the heat flux estimation error
have a similar behaviour as functions of pg and we will use this quantity to determine
the quality of the heat flux estimation.

All that said, we begin by selecting an ordered set of meshes (Δx1, Δx2, . . . ,
ΔxnM ) and an ordered set of timestep sizes (Δt1,Δt2,. . . ,Δtnt). We order them
from the finest to the coarsest discretization (i.e. Δx1 < Δx2 < · · · < ΔxnM and
Δt1 < Δt2 < · · · < Δtnt). Then, our first objective is to identity a p0g within the
aforementioned stability region.

To do it, we start with a tentative p0g. For this value of the parameter, we solve
the inverse problem on the training measurement dataset for all Δx and Δt. Let us
denote by T [Δx,Δt] the corresponding solution. Having done so, we compute

ΔT := max
i,j,q,p

�T [Δxi,Δtj ]− T [Δxq,Δtp]�L∞((0,tf ];L2(Ωs)). (7.5.1)

If we have
ΔT > ΔxnM +Δtnt , (7.5.2)

we consider that the solution is too dependent on the discretization refinement. Then,
we increase the value of p0g and redo the calculations until

ΔT ≤ ΔxnM +Δtnt , (7.5.3)

is satisfied.
Once we find a value of p0g within the stability region, we choose the discretization

setup (Δx1, Δt1) that corresponds to the minimum for p0g of

mS [Δx,Δt, pg] := meank

�
Sk
1 [Δx,Δt, pg]

�
. (7.5.4)
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Once we select Δx1 and Δt1, we choose p1g as the value of pg that minimizes
mS [Δx1,Δt1, pg]. Then, we fix pg = p1g and we solve again the inverse problem
for all the considered discretization setups. If the previously selected discretization
is the one that corresponds to the lowest value of mS [Δx,Δt, p1g], we choose Δx1,
Δt1, and pg = p1g, and we stop the process. Otherwise, we continue iterating by se-
lecting Δx2 and Δt2 as the ones corresponding to the smallest mS [Δx,Δt, p1g] and
looking for the p2g that minimizes mS [Δx2,Δt2, pg], and so on. We summarize all
this process in Algorithm 7.

This method allows a data-driven, automated selection of the discretization re-
finement and the pg parameter. This result comes to the cost of computing nM · nt

solutions to the inverse problem at each iteration. If the available memory allows it,
we can keep in the memory the results of the offline computations related to each
discretization. Otherwise, we have the recompute every time these offline phases.
However, we designed this algorithm to be used offline. Then, even if it is computa-
tionally expensive, we can run it before the caster starts to work and it only requires
the dataset of thermocouples measurements T̂train.
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Algorithm 7 Offline selection of the mesh, the timestep size and pg for the inverse
solver in Algorithm 6.

Input Ordered set of meshes, (Δx1,Δx2,. . . ,ΔxnM ); ordered set of timestep
sizes, (Δt1,Δt2,. . . ,Δtnt); p

0
g; training set, T̂train(Ψ,Υtrain)

1: while ΔT > ΔxnM +Δtnt do � Identify stability region
2: for i = 1 to nM do
3: for j = 1 to nt do
4: Solve the inverse problem on the training set, T̂train, by using Algo-

rithm 6 with Δxi, Δtj and pg = p0g
5: Compute mS [Δxi,Δtj , p

0
g] by (7.5.4)

6: end for
7: end for
8: Compute ΔT by (7.5.3)
9: if ΔT > ΔxnM +Δtnt then

10: p0g = 10p0g
11: end if
12: end while
13: Choose Δx0 and Δt0 corresponding to mini,j mS [Δxi,Δtj , p

0
g] for 1 ≤ i ≤

nM , 1 ≤ j ≤ nt

14: l = 1, f = 0
15: while f = 0 do
16: Find plg = argminpg(mS [Δxl−1,Δtl−1, pg])
17: for i = 1 to nM do
18: for j = 1 to nt do
19: Solve the inverse problem on the training set, T̂train, by using Algo-

rithm 6 with Δxi, Δtj and pg = plg
20: Compute mS [Δxi,Δtj , p

l
g] by (7.5.4)

21: end for
22: end for
23: Choose Δxl and Δtl corresponding to mini,j mS [Δxi,Δtj , p

l
g] for 1 ≤ i ≤

nM , 1 ≤ j ≤ nt

24: if Δxl = Δxl−1 & Δtl = Δtl−1 then
25: f = 1
26: end if
27: l = l + 1
28: end while
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8 MODEL ORDER REDUCTION
FOR THE SPEED-UP OF

INVERSE SOLVERS

In the present chapter, we exploit MOR techniques to reduce the computational cost
of the inverse solvers that we developed in the previous chapter. After a brief intro-
duction and a literature survey on MOR, we discuss in Section 8.2 the methodology
that we use for the creation of the Reduced Order Model (ROM) that is required for
the real-time solution of the considered inverse problems. Then, Section 8.3 intro-
duces the incremental approach that we exploit to develop an automated algorithm
for the construction of the surrogate model. Finally, we conclude this chapter with
Section 8.4 where we implement these MOR techniques in a novel inverse solver.

8.1 STATE OF THE ART
In many fields of application, we have a parameterized model that implicitly connects
some input parameters to a quantity of interest. Examples of input parameters can
be the angle of attack of a wing or the thermal conductivity of a medium with the
possible output being the wing drag and the temperature field, respectively.

The accurate computation of the solutions to these problems is clearly of broad
interest. However, MOR focuses on the efficiency of this computation for problems
in which the solution is sought for a large number of different parameter values, with
a limited computational power or in a small CPU time (e.g. real-time).

If we focus on continuous mechanics only, we are usually dealing with Parameter-
ized Partial Differential Equation (PPDE) models. In this framework, several MOR
techniques have been studied in the literature (Reduced Basis (RB) [68], NN [19] or
Krylov subspace projection [22], just to name a few). Due to the vastness of the field,
we consider in the further course of this chapter the RB MOR only.

This technique is well established for the reduction of PPDEs models (see e.g.
[12, 13, 40, 68, 126]). As such, it has been applied into several fields, ranging from
fluid dynamics (see [86,105,144]), heat transfer (see [21,41,75]), structural dynamics
(see [55, 106]), electromagnetism (see [135]) or neuroscience (see [40]).

Once these ROMs have been developed and tested, researchers start to exploit
them to explore the parameter space of the PPDEs in multi query problems with a
limited computational cost. In this regard, MOR literally opened the doors to solve
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efficiently these problems that require several simulations to obtain a solution. In
fact, we find in the recent literature several application of RB MOR to, e.g., opti-
mization (see e.g. [14,15,57,132,136,173]), bifurcation (see [116–118]), uncertainty
quantification (see [16, 53, 59]), but also multiphysics and multiscale problems such
as fluid-structure interaction (see [109, 167]), aereoacustic (see [71, 140]) or bone
structural analysis (see [66, 171]), just to name a few.

Between these previous attempts, it is interesting for the present research to men-
tion those that are related to optimal control and inverse problems. In particular,
Negri et al. [103] proposed a certified RB for the rapid and reliable solution of pa-
rameterized optimal control problems governed by elliptic Partial Differential Equa-
tion (PDE). Using this framework, Strazzullo et al. [148–150] moved a step forward
by developing RB MOR for the solution of nonlinear and time-dependent parametric
optimal flow control problems. We also mention the work of Bernreuther et al. [18]
who investigated the use of RB for the optimal control of non-smooth semilinear
elliptic PDEs.

If we now consider the present problem, we have that the proposed Algorithms 3
and 4 require, for the solution of the inverse problem, the computation of the FOM
Problem 7.6 for each measurement instant k. Being this a FOM, the computational
cost of its solution depends on the size of the space and time discretization. Hence, we
cannot ensure the real-time performance of the inverse solvers. Then, our objective
is to develop a ROM of Problem 7.6 to reduce the computational cost of its solution.

Among all available techniques to develop a ROM for Problem 7.6, we apply the
RB Proper Orthogonal Decomposition (POD)-Galerkin method (see [143]). As we
discuss in detail in Section 8.2, it consists in sampling the parameter space, com-
puting the related snapshots, and, eventually, perform a POD on these snapshots to
obtain the RB. Finally, we obtain the ROM by performing a Galerkin projection of
the FOM equations onto the RB space.

In our setting, we cannot apply this technique straightforwardly. In fact, since our
parameter (the IC T k−1

s (·, τk−1)) can be any of the possible solutions to Problem 7.1,
we are not able to sample a priori the parameter space as usual with these MOR tech-
niques. For this reason, in Section 8.3, we combine the classical RB POD-Galerkin
with the incremental POD technique presented in [54] to create a data-driven sam-
pling algorithm that progressively enrich the RB space. Consequently, the creation
of the RB space requires a second offline phase in which we input a dataset of ther-
mocouples measurements to setup the RB space.

We begin this chapter by describing the RB POD-Galerkin MOR method that we
use to develop a surrogate model of Problem 7.6. Then, in Section 8.3, we develop an
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incremental approach for the automated creation of the surrogate model. To conclude,
we present in Section 8.4 the novel inverse solvers that implement the aforementioned
MOR techniques.

8.2 RB POD-GALERKIN REDUCED ORDER MODEL
Considering Problem 7.6, its input parameter is the IC, T k−1

s (·, τk−1). Then, the
required surrogate model should be such that, given T k−1

s (·, τk−1), it provides an
approached solution, T̃ k

IC , to Problem 7.6 in (τk−1, τk]. To simplify the notation, we
denote here the IC, T k−1

s (·, τk−1), by T k
0 .

In the present section, we introduce the general methodology for the creation of
the aforementioned surrogate model. Firstly, we discuss the typical procedure for the
computation of the POD RB space. Secondly, we perform a Galerkin projection of
the FOM discrete equations on this space to obtain the ROM.

8.2.1 Reduced Basis Space

We now discuss the general approach for the computation of the RB. Notice that
we present it to provide the reader with a complete discussion on the subject even if
in this work we use the incremental POD technique described in Section 8.3 for the
computation of the RB.

To simplify the notation and just in this subsection, we drop the index k and
consider the interval (τ0, τ1] only. This simplification does not reduce the generality
of the discussion since the only dependence on k of Problem 7.6 is in the IC. Then,
we can think of solving the problem in (τ0, τ1] for a general T 1

0 , and translate it to
the k-th interval as we did for Problem 7.5 in (7.2.20).

Assuming for now to be able to select a set K = {T01 , . . . , T0Np
} ⊂ H1(Ω) of

Np samples for the parameter T0 that properly samples the parameter space H1(Ω),
we start by solving Problem 7.6 for each T0p ∈ K in (τ0, τ1]. Then, for each 1 ≤ p ≤
Np, we obtain the solutions, TIC [T0p ](t

n), for 1 ≤ n ≤ Nt, where TIC [T0p ](t
n) ∈

IRNh is the FOM discrete solution to Problem 7.6 in the interval (τ0, τ1] with IC
T0 = T0p , at time tn, Nh being the cardinality of the mesh. As usual in the MOR
community, we call these solutions “snapshots”. We denote their number by Ns =
Np ×Nt and collect them into the matrix S ∈ IMNh×Ns , such that

Si,n+Nt(p−1) := (TIC)i[T0p ](t
n), for 1 ≤ i ≤ Nh, 1 ≤ p ≤ Np, 1 ≤ n ≤ Nt.

(8.2.1)
To generate the RB space from the snapshots, several techniques have been con-
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sidered in literature (such as POD, Proper Generalized Decomposition (PGD) or the
greedy sampling strategy, for more details the reader may see [34, 125, 131]). In this
work, we exploit a POD approach applying the POD onto the full snapshots matrix
that includes both the time and parameter dependency. In time dependent problems,
other approaches were also considered in the literature. For example, one can use the
POD-Greedy approach [64] or the nested POD approach where the POD is applied
before in the time domain and then on the parameter space [60].

Given the function TIC(t
n) : (τ0, τ1] → IRNh , with the realizations TIC1 ,

TIC2 , . . . ,TICNs
, the objective of the POD problem is to find the coefficients a(1,1),

. . . , a(1,Ns), . . . , a(Ns,1), . . . , a(Ns,Ns) and the functions ϕϕϕ1, . . . ,ϕϕϕNs ∈ IRNh that
minimize the quantity

Eq :=

Ns�

l=1

������
TICl

−
q�

p=1

a(l,p)ϕϕϕp

������
, for q = 1, . . . , Ns, (8.2.2)

with ϕϕϕT
l Mϕϕϕm = δlm for all l,m = 1, . . . , Ns, where M is the diagonal mass matrix

defined in (6.1.20), and TICl
= TIC [T0p ](t

n), being p − 1 the integer quotient of
l/Nt and n its remainder.

In [84] it is shown that this minimization problem is equivalent to solving the
eigenvalue problem

CQ = Qλλλ, (8.2.3)

where Clm := TT
ICl

MTICm for l,m = 1, . . . , Ns is the snapshots correlation ma-
trix, Q is a square matrix with the eigenvectors as columns and λλλ is a vector of
eigenvalues. Then, the basis functions can be obtained by (see [143])

ϕϕϕl =
1

Nsλl

Ns�

m=1

QlmTICm , for 1 ≤ l ≤ Ns. (8.2.4)

This is the so called method of snapshots introduced by Sirovich [141] in 1987.
However, the basis (8.2.4) can also be found by performing a SVD of the matrix
(see [58])

SM := M1/2S = UΣW T , (8.2.5)

where M1/2 is the coefficient-wise square root of the mass matrix, U ∈ IMNh×Nh

and W ∈ IMNs×Ns are orthogonal matrices, and Σ ∈ IMNh×Ns is the diagonal matrix
with the singular values of SM on the diagonal in a decreasing order. The matrices
U and W contain on the columns the orthogonal vectors to the SMST

M and ST
MSM

matrices, respectively. In this setting, the POD basis are the columns of U .
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In POD applications, it is typical to only need information about singular vectors
corresponding to nonzero singular values. Let rS = rank(SM ) ≤ min(Ns, Nh), i.e.
SM has exactly rS positive singular values, σ1 ≥ σ2 ≥ · · · ≥ σrS . Then, defining

Û := (Ulm)1≤l≤Nh
1≤m≤rS

∈ IMNh×NrS , (8.2.6)

and the diagonal matrix M ‡ ∈ IMNh×Nh , such that

M ‡
ii :=

1√
Mii

, (8.2.7)

the POD modes matrix is given by

M ‡Û = [ϕϕϕ1, . . . ,ϕϕϕrS ]. (8.2.8)

To conclude, we define the RB space as span(ϕϕϕ1, . . . ,ϕϕϕNr) where we only keep
the first Nr ≤ rS dominant modes. Then, we define the RB matrix as

L := [ϕϕϕ1, . . . ,ϕϕϕNr ]. (8.2.9)

8.2.2 Reduced Order Model

In this section, we discuss the creation of the ROM for Problem 7.6 by performing
a Galerkin projection of its discrete equation onto the RB space, given the RB POD
space and the related matrix L, defined in (8.2.9).

We have that the Tk
IC temperature field can be approximated in the RB space

with

Tk
IC [T

k
0 ](t̂

n) ≈
Nr�

l=1

(T̃k
IC)l(t̂

n, T k
0 )ϕϕϕl(x) = LT̃k

IC(t̂
n, T k

0 ), (8.2.10)

where t̂n := t(k−1)Nt+n and the reduced coefficients column vector, T̃k
IC ∈ IRNr ,

depend on the time and initial field only, while the basis functions ϕϕϕ depend on the
physical space. To derive an equation for the unknown vector of coefficients T̃k

IC ,
we discretize Problem 7.6 as for (6.1.26), obtaining

(ρCpM +ΔtA)Tk
IC(t̂

n+1) = ρCpMTk
IC(t̂

n) +Δtb̃, n = 0, 1, . . . , Nt − 1.
(8.2.11)
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with
(b̃)i =

�

σ∈EKi
∩Γsf

qKi,σTfσ . (8.2.12)

Then, by performing a Galerkin projection of (8.2.11) onto the POD RB space and
thanks to (8.2.10), we have

(ρCpL
TML+ΔtLTAL)T̃k

IC(t̂
n+1) =

ρCpL
TMLT̃k

IC(t̂
n) +ΔtLT b̃, n = 0, 1, . . . , Nt − 1.

(8.2.13)

Defining
Mr := LTML, Ar := LTAL, b̃r := LT b̃, (8.2.14)

we rewrite (8.2.13) as

(ρCpMr +ΔtAr)T̃
k
IC(t̂

n+1) = ρCpMrT̃
k
IC(t̂

n) +Δtb̃r, n = 0, 1, . . . , Nt − 1,
(8.2.15)

obtaining the ROM for Problem 7.6, where the IC is

T̃k
IC(t̂

0) = L−1Tk
0 = LTTk

0, (8.2.16)

thanks to the orthogonality of L.
So in summary, to compute the ROM of Problem 7.6, we start by generating

a set of snapshots of the solution. Then, we perform a POD on the snapshots to
compute the RB space. Selecting the number of POD modes to use, we assemble
the RB matrix L in (8.2.9). Once this matrix is available, we compute the reduced
matrices Mr and Ar, and the reduced vector b̃r. All this computations give us the
ROM (8.2.15).

Notice that, if we can generate the snapshots a priori, all these computation can
be done in an offline phase. Then, during the online phase, we solve the ROM linear
system (8.2.15) and, if necessary, we reconstruct the FOM field by (8.2.10). More-
over, we notice that in general we choose Nr << Nh (in the order of tens) according
to the singular values decay. Thus, the size of (8.2.15) is such that the ROM online
phase is dramatically faster than computing a solution of the FOM.

8.3 INCREMENTAL CONSTRUCTION OF THE REDUCED
BASIS SPACE

As previously mentioned, to sample a priori the parameter space during a single
offline phase is not possible in the present application because T k

0 can be any function
of H1(Ω). However, we can assume to have available during the offline phase a set

124



CHAPTER 8. MODEL ORDER REDUCTION FOR THE SPEED-UP OF
INVERSE SOLVERS

of thermocouples measurements coming from previous runs of the CC mold (we will
call it the “training set”). With this set of measurements, we can run the inverse
solvers that we designed in Chapter 7. Each iteration of these algorithms would
provide a T k

0 . Thus, we can think of using them as proper samples of the parameter
of Problem 7.6.

This is a possible procedure for the generation of the required snapshots. How-
ever, it would require us to store in the memory all the FOM solution of Problem 7.6
and, at the end, to perform the POD of a huge snapshots matrix. Moreover, we could
not ensure that the resulting RB space is a good representation of all the T k

0 that could
appear during the online phase.

To overcome these issues, we propose a novel methodology for the construction
of the RB space. In particular, we want to exploit the incremental SVD algorithm
developed by Fareed et al [54] to create an automated methodology for the generation
of the ROM POD basis. It should be such that it does not requires the storage of all
the snapshots and it can quickly decide whether an enrichment of the RB space is
needed or we can perform a ROM computation. Moreover, it should ensure, in the
latter case, that the incoming IC is properly represented by the POD basis.

To derive this novel incremental methodology, we first present in Section 8.3.1 the
incremental POD algorithm to progressively expand our RB space without requiring
the storage of all the snapshots. Then, in Section 8.3.2, we derive a projection error
estimator that can quickly estimate the error that we commit when we project the
incoming IC, T k

0 , into the RB space. This error estimator is necessary to determine
whether to enrich the POD space by performing a FOM solution of Problem 7.6
obtaining the related snapshot, or to use the ROM. Finally, we present in Section 8.3.3
a novel algorithm for the data-driven, automated, incremental construction of the RB
space.

8.3.1 Incremental Proper Orthogonal Decomposition Algorithm

Incremental POD algorithms have been proposed in the literature by several au-
thors (see e.g. [20, 113, 115, 172]). In general, the idea is to obtain the SVD of a
matrix at which we add a column knowing its previous SVD and the new column
vector. Here, the matrix is the snapshots matrix SM and the new column vector is
a new snapshot TICNs+1

. In the present work, we propose a modification of the
algorithm developed by Fareed et al [54] and we consider it in the context of our
application.

Let us assume to have the SVD of the snapshots matrix SM = UΣW T of dimen-
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sion Nh × Ns. Now, we consider to add a new snapshot TICNs+1
. Our goal is to

obtain the SVD of the matrix
�
SM TICNs+1

�
without forming the matrices SM or�

SM TICNs+1

�
.

Let us define

T̃ICNs+1
= UTMTICNs+1

, T
�
ICNs+1

:= UT̃ICNs+1
,

T⊥
ICNs+1

:= TICNs+1
−T

�
ICNs+1

,
(8.3.1)

the projection error
�⊥ :=

���T⊥
ICNs+1

���
L2(Ω)

, (8.3.2)

T�
ICNs+1

:=
T⊥

ICNs+1

�⊥
, (8.3.3)

and the relative projection error

�⊥rel :=
�⊥��TICNs+1

��
L2(Ω)

. (8.3.4)

If �⊥ > 0, we have the identity (see [54])
�
SM TICNs+1

�
=
�
UΣW T TICNs+1

�
=

�
U T�

ICNs+1

� �
Σ T̃ICNs+1

0 �⊥

� �
W 0
0 1

�T
.

(8.3.5)

We can find the SVD of
�
SM TICNs+1

�
by computing the SVD of the matrix

S̃M :=

�
Σ T̃ICNs+1

0 �⊥

�
= Ũ Σ̃W̃ T . (8.3.6)

Then, the SVD of
�
SM TICNs+1

�
is given by

�
SM TICNs+1

�
=
��

U T�
ICNs+1

�
Ũ
�
Σ̃

��
W 0
0 1

�
W̃

�T

. (8.3.7)

In practice, we perform truncation when �⊥rel
is below a threshold value �SV D.

Moreover, since the orthogonality of the matrix U can be lost in this process, we
compute the orthogonality parameter,

o = UT
(:,Ns+1)MU(:,1). (8.3.8)
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In case it is above the threshold value �ortho, we perform a weighted Gram Schmidt
orthogonalization as suggested by Fareed et al [54].

Algorithm 8 summarizes the incremental POD procedure. Thanks to it, we are
now able to progressively enrich the RB space without recomputing every time all
the POD modes and without keeping in memory all the snapshots.

8.3.2 Projection Error Estimator

As anticipated, we now discuss the development of an online error estimator for
the projection of an IC, T0, onto the RB space.

In general, given the orthogonal component of the projected field

T⊥
0 := T0 − LLTMT0, (8.3.9)

the projection error can be computed as

�proj :=

��T⊥
0

��
L2(Ω)

�T0�L2(Ω)

. (8.3.10)

However, this is a FOM computation that cannot be done in real-time. Hence, we
propose to estimate this quantity by computing it on some accurately selected discrete
points only. Then, if the number of such points is reasonably small, this estimation
would be computationally cheap.

Let as consider as such estimation points a set A := {α1, . . . ,αNMP
} in the

interior of the domain, with NMP < Nr. Then, an estimation of the projection error
(8.3.10) at these points reads

�proj ≈
��T⊥

0

��
L2(A)

�T0�L2(A)

. (8.3.11)

To select the points A that provide a meaningful approximation of �proj , we ex-
ploit the procedure typically used in the Discrete Empirical Interpolation Method
(DEIM) (see e.g. [28, 29]) for the selection of the “magic points”. The selection
process of DEIM algorithm essentially involves minimizing the error of the approxi-
mation via the selected index in each iteration.

To describe the process, we introduce the following quantities. We define the
matrix Ll ∈ IMNh×l as the matrix containing the first l columns of the POD matrix
L, i.e.

Ll := [ϕϕϕ1,ϕϕϕ2, . . . ,ϕϕϕl]. (8.3.12)
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Algorithm 8 Incremental POD
Input Snapshot, TICNs+1

∈ IRNh ; SVD tolerance, �SV D; Orthogonality toler-
ance, �ortho

1: if Ns = 0 then � Initialize the POD space
2: Σ =

��
TT

IC1
MTIC1

�

3: U = TIC1/
�

TT
IC1

MTIC1

4: Ns = 1
5: else
6: Compute T̃ICNs+1

, T�
ICNs+1

, and T⊥
ICNs+1

, by (8.3.1)
7: Compute the projection error, �⊥, by (8.3.2)
8: Compute the relative projection error, �⊥rel

, by (8.3.4)
9: Compute S̃ by (8.3.6)

10: if �⊥rel
< �SV D then

11: Set S̃(Ns + 1, Ns + 1) = 0
12: end if
13: [Ũ , Σ̃, W̃ ] = SV D(S̃)
14: if �⊥rel

< �SV D or Ns ≥ Nh then
15: U = UŨ(1:Ns,1:Ns)

16: else
17: Compute T�

ICNs+1
by (8.3.3)

18: U =
�
U T�

ICNs+1

�
Ũ

19: Ns = Ns + 1
20: end if
21: Σ = Σ̃(1:Ns,1:Ns)

22: Compute orthogonality parameter, o, by (8.3.8)
23: if |o| > min(�SV D, �ortho ·Nh) then � Check orthogonality
24: weightedGramSchmidt(U, M)
25: end if
26: if Σ(Ns,Ns) < �SV D then
27: Σ = Σ(1:Ns−1,1:Ns−1), U = U(:,1:Ns−1)

28: Ns = Ns − 1
29: end if
30: end if
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Moreover, let eαm ∈ IRNh be the characteristic vector of point αm, Pm ∈ IMNh×m

be the matrix such that
Pm := [eα1 , eα2 , . . . , eαm ], (8.3.13)

cl be the solution of the linear system

(P T
l−1Ll−1)cl = P T

l−1ϕϕϕl, (8.3.14)

and
rl = ϕϕϕl − Lcl. (8.3.15)

The procedure constructs a set of indices inductively on the input basis {ϕϕϕ1, . . . ,
ϕϕϕl}. The ordering of the input basis according to the dominant singular values is im-
portant and hence the POD basis is a suitable choice for this algorithm. The process
starts from selecting the first interpolation index α1 corresponding to the entry of the
first input basis ϕϕϕ1 with largest magnitude. We select the remaining interpolation in-
dices, αl, for l = 2, . . . , NMP , such that each of them corresponds to the entry with
largest magnitude of the residual (8.3.15). The term rl can be viewed as the residual
or the error between the input basis ϕϕϕl and its approximation Lcl from interpolating
the basis {ϕϕϕ1, . . . ,ϕϕϕl−1} at the indices α1, . . . ,αl−1. The linear independence of
the input basis can be used to show that the DEIM procedure is indeed well-defined,
i.e. P T

l Ll is nonsingular for all iterations. Moreover, the selected magic points are
hierarchical and non-repeating.

Using this methodology, we select the cardinality of A, NMP , only. Then, Algo-
rithm 9 automatically selects the magic points for the error estimator.

Algorithm 9 Error estimation points selection

Input POD modes, {ϕϕϕl}Nr
l=1; number of magic points, NMP ≤ Nr

1: α1 = argmaxi∈T |ϕϕϕ1|
2: l = 2
3: while l < NMP do
4: Assemble Ll−1 by (8.3.12)
5: Assemble Pl−1 by (8.3.13)
6: Compute cl by solving (8.3.14)
7: Compute the residual (8.3.15)
8: Select the new point αl = argmaxi∈T |ri|.
9: l = l + 1

10: end while
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Notice that the computational cost of computing the error estimator (8.3.11) de-
pends on the number of magic points, NMP , that we select. However, this number is
bounded by the number of RB, Nr. Then, since Nr is generally in the order of few
dozens, there is no risk to exceed with the number of magic points.

8.3.3 Incremental Algorithm for the Computation of the Reduced
Basis

Until now, in the present section, we derived a methodology for the incremental
computation of the POD modes and an error estimator for the projection of a new IC,
T k
0 , onto the POD basis. Now, we are ready to implement them in an algorithm to

perform a new offline phase for the inverse solvers that we studied in Chapter 7.

In this new offline phase, we assume to have available a dataset of thermocouples
measurements, T̂train(Ψ,Υtrain), with Υtrain := {τ0, τ1, . . . , τPtrain}, that comes
from a previous run of the CC mold. Moreover, we select a projection tolerance,
tolproj , the number of RB, Nr, and the number of magic points, NMP .

The novel algorithm starts by performing all the offline computations required to
set up the FOM inverse solver. Later, we iterate over the measurements training set,
T̂train(Ψ,Υtrain), to perform a tranche of solutions of the inverse solver.

At the beginning of this training phase, we have an empty RB space. Then,
we perform a first FOM iteration to generate snapshots and compute the first POD
modes. In the following iterations, we start by computing the projection error, �proj ,
by (8.3.11). If �proj is above the user-defined tolerance, tolproj , the RB space is not
rich enough to represent the incoming IC, T k

0 , and we perform a new FOM iteration
improving the POD space by Algorithm 8, computing the new magic points and
assembling the ROM matrices (8.2.14). Otherwise, we use the ROM (8.2.15) and
move to the next iteration.

We summarize this procedure in Algorithm 10 creating a single offline algorithm
for all the inverse solvers of Chapter 7. As mentioned, this data-driven incremental
procedure can be performed during a single offline phase that is computationally
expensive and involves several full order computations. However, it is done once and
for all before the machinery starts to work. In the next section, we use it to propose a
novel inverse solver that exploits the ROM constructed in Algorithm 10 to speed up
the heat flux estimation.
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Algorithm 10 Offline phase for the creation of the RB space.
Input RBF shape parameter, η; thermocouples measurement points, Ψ; pro-

jection tolerance, tolproj ; training set, T̂train(Ψ,Υtrain); maximum number of POD
basis, Nr; IC, T0;

1: Perform the offline phase of Algorithm 3, 4, 5 or 6
2: Set k = 1
3: while k ≤ Ptrain do � ROM training
4: if Ns > 0 then
5: Compute projection error, �proj by (8.3.11)
6: end if
7: if �proj > tolproj orNs = 0 then � RB space enrichment
8: Compute Tk

IC [w
k] by solving the FOM of Problem 7.6

9: Use the computed solutions to enrich the POD space by Algorithm 8
10: Compute the magic points using Algorithm 9
11: Compute Mr, Ar and b̃r by (8.2.14)
12: else � Use reduced-order model
13: Compute T̃k

IC by solving the ROM of Problem 7.6, (8.2.15)
14: Assemble Tk

IC by (8.2.10)
15: end if
16: if piecewise constant heat flux then
17: Compute ŵk by solving (7.3.17)
18: Compute gki (t) by (7.2.2)
19: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1)
20: Use (7.2.21) to compute T k[gk]
21: else if piecewise linear heat flux then
22: Compute ŵk by solving (7.3.19)
23: Compute gki (t) by (7.2.4)
24: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1)
25: Use (7.2.39) to compute T k[gk]
26: end if
27: k = k + 1
28: end while

8.4 REDUCED ORDER INVERSE SOLVERS
In the previous sections, we developed a technique for the data-based, automated
construction of a POD-Galerkin ROM of Problem 7.6. First, we described the gen-
eration of a general ROM by standard POD-Galerkin. Then, due to the impossibility
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of properly sampling a priori the parameter space, we proposed a methodology for
the incremental construction of the RB space exploiting the sequentiality of our in-
verse problem. To make this technique more powerful and automated, we equipped
it with an error estimator that can automatically and quickly determine whether the
RB space is rich enough for the present iteration of the inverse solver.

Thanks to the developed methodologies, we are now ready to assemble a new
version of Algorithms 3 and 4 that exploits MOR to speed up the computations in the
online phases. The novel inverse solver starts by running the previously developed
offline phase that we summarized in Algorithm 10. Later, in each iteration of the
online phase, we read a new set of measurements coming from the thermocouples.
Then, we compute the projection error estimator, �proj , by (8.3.11). If the training set
was rich enough, the value of this error estimator will be below the defined tolerance
and we can use the ROM of Problem 7.6. Otherwise, if the error estimator is above
the tolerance, or the training dataset was not chosen accurately or an unusual event is
happening. In this case, the algorithm requires the computation of a FOM solution for
Problem 7.6 to further enrich the RB space. Once we have a solution to Problem 7.6,
we proceed as in the full order inverse solvers. We summarize this novel inverse
solver in Algorithms 11.

132



CHAPTER 8. MODEL ORDER REDUCTION FOR THE SPEED-UP OF
INVERSE SOLVERS

Algorithm 11 Reduced order inverse solver for the solution of Problem 7.2.
OFFLINE
Input RBF shape parameter, η; thermocouples measurement points, Ψ,Υ; pro-

jection tolerance, tolproj ; training set, T̂train(Ψ,Υtrain); maximum number of POD
basis, Nr; IC, T0;

1: Run Algorithm 10

ONLINE
Input IC, T0

1: Set k = 1
2: while k ≤ Pt do
3: Read the thermocouples measurements, T̂k

4: Compute projection error, �proj by (8.3.11)
5: if �proj > tolproj then � Perform full-order solution
6: Compute Tk

IC [w
k] by solving the FOM of Problem 7.6

7: Use the computed solutions to enrich the POD space by Algorithm 8
8: Compute the magic points using Algorithm 9
9: Compute Mr, Ar and b̃r by (8.2.14)

10: else � Use reduced-order model
11: Compute T̃k

IC by solving (8.2.15)
12: Assemble Tk

IC by (8.2.10)
13: end if
14: if piecewise constant heat flux then
15: Compute ŵk by solving (7.3.17)
16: Compute gki (t) by (7.2.2)
17: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1)
18: Use (7.2.21) to compute T k[gk]
19: else if piecewise linear heat flux then
20: Compute ŵk by solving (7.3.19)
21: Compute gki (t) by (7.2.4)
22: Compute the heat flux g(x, t) for t ∈ (τk−1, τk] by (7.2.1)
23: Use (7.2.39) to compute T k[gk]
24: end if
25: k = k + 1
26: end while
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9 BENCHMARKS

To test the previously developed metodologies, we design different benchmark cases.
Through these tests, we validate and analyze the performances of the direct and in-
verse solvers that we proposed in the previous chapters.

First, we consider in Section 9.1 the numerical solution of the direct Problem 6.1
on an academic benchmark case. Then, we design two benchmarks to perform dif-
ferent tests for the inverse problem solvers proposed in Chapters 7 and 8.

9.1 BENCHMARK 1
The benchmark presented in this section is an academic case. It is a unsteady-state
heat conduction problem in a homogeneous isotropic solid occupying a rectangular
parallelepiped domain. By carefully selecting the BCs on the faces of the paral-
lelepiped and the IC, we are able to compute the analytical solution of the heat con-
duction problem. Our objetive is to use this academic test to validate the numerical
solution of the direct problem.

We consider the domain Ωs of Figure 9.1.1. To have an analytical solution Tan

in Ωs × (0, tf ], we consider the following modification of Problem 6.1.

Problem 9.1. Find Ts such that

ρsCps

∂Ts

∂t
− ksΔTs = 0, in Ωs × (0, tf ], (9.1.1)

with BCs and IC




−ks∇Ts · n = gan on Γsin × (0, tf ], (9.1.2)

−ks∇Ts · n = qL on ΓL × (0, tf ], (9.1.3)

L ∈ {I, II, III, IV }, (9.1.4)

−ks∇Ts · n = h(Ts − Tf ) on Γsf × (0, tf ], (9.1.5)

Ts(·, 0) = T0 in Ωs. (9.1.6)

Now, let a, b, c, d be real constants. To have an analytical solution in Ωs, we
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Figure 9.1.1: Schematic of the domain used for the unsteady benchmarks tests.

consider the following data as BCs for Problem 9.1,

qI(x, t) = −ks(bxe
(t+y/

√
υs) + 2cH),

qIII(x, t) = ks(bxe
(t+y/

√
υs) + 2cH),

qII(x, t) = −ks(2aL+ bze(t+y/
√
υs)),

qIV (x, t) = ks(2aL+ bze(t+y/
√
υs)),

(9.1.7)

with

Tf (x, t) =
ksb

h
√
υs

xze(t+W/
√
υs)+

�
ax2 + bxze(t+W/

√
υs) + cz2 + d+ 2υs(a+ c)t

�
,

T0(x) =ax2 + bxzey/
√
υs + cz2 + d,

gan(x, t) =ks

�
b√
υs

xze(t+y/
√
υs)

�
,

(9.1.8)
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where υs := ks/(ρsCps).
With these BCs, the solution to Problem 9.1 is

Tan(x, t) = ax2 + bxze(t+y/
√
υs) + cz2 + d+ 2υs(a+ c)t. (9.1.9)

We now perform numerical tests to compare the performances of different meshes
and time discretization in solving Problem 9.1. Table 9.1 summarizes the parameters
used for the computations.

Table 9.1: Parameters used to test of the numerical solution of the direct Problem 9.1.

Parameter Value
Thermal conductivity, ks 2.0 W/(m K)
Density, ρs 3.0 kg/m3

Specific heat capacity, Cps 20.0 J/(kg K)
Heat transfer coefficient, h 7.0 W/(m2 K)
a 5 K/m2

b 10 K/m2

c 15 K/m2

d 20 K/m2

L 1 m
W 1 m
H 1 m
Final time, tf 1 s

Notice that this is a very challenging test because we have an exponential solution
both in time and in the y-direction. Moreover, the exponential dependence in space
is scaled by 1/

√
υs. So, small values of υs would lead to very strong gradients in the

y-direction. However, high values of υs would require very fine time discretization
to avoid prohibitive Courant number values, where the Courant number is given by

Co = υsΔt

�
1

Δx
+

1

Δy
+

1

Δz

�
. (9.1.10)

We test the accuracy of the numerical schemes for the direct Problem 9.1 refin-
ing both the time and space discretization. Figure 9.1.2 (a) summarizes the relative
errors, between computed and analytical temperature, obtained refining the mesh,
and keeping the same number of elements on each parallelepiped side. Figure 9.1.2
(b) shows the performances of the time discretization scheme for different time-step
sizes.

By looking at the results, we appreciate that, for high values of the Courant num-
ber, the gain of increasing space discretization is reduced, and the error remains al-
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Figure 9.1.2: Behavior of the L2- and L∞-norm relative errors between the computed and
analytical solution of Problem 9.1, with the refinement of space and time discretization.

most constant. Similarly, coarsening the time discretization causing high values of
the Co leads to a steep increase of the error.

9.2 BENCHMARK 2
In this section, we test the performances of the inverse solvers proposed in Chapter 7
in the reconstruction of a linear in time heat flux, which is non-linear in space.

9.2.1 Setup of the Test Case

To design a numerical test case for the inverse problem, we proceed as follows:
we arbitrarily define a boundary heat flux, gt(x, t), and the thermocouples positions,
Ψ, and sampling frequency, fsamp. Then, we solve the direct Problem 6.1 associ-
ated with gt(x, t) in the time domain (0, tf ], obtaining the related temperature field.
Finally, we use its values at the thermocouples points and sampling times as input
measurements to the inverse problem, T̂. Using this approach, we are able to ana-
lyze the inverse problem performance in the reconstruction of the boundary heat flux,
gt(x, t).

Table 9.2 shows the geometrical and physical parameters selected for the present
benchmark case. In the attempt to mimic the real industrial situation of estimating the
boundary heat flux in a plate of a CC mold, these parameters and the thermocouple
locations (see Figure 9.2.1) are close to real industrial values. Similarly, we use the
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Table 9.2: Geometrical and physical parameters used for the inverse unsteady test cases,
Benchmark 2 and 3.

Parameter Value
Thermal conductivity, ks 383 W/(mK)
Density, ρs 8940 kg/m3

Specific heat capacity, Cps 390 J/(kg K)
Heat transfer coefficient, h 5.66e4 W/(m2K)
Water temperature, Tf 350 K
Initial condition, T0 350 K
L 2 m
W 0.1 m
H 1.2 m
Sampling frequency, fsamp 1 Hz
a 1100
b 1200
c 3000
Final time, tf 50 s

computational domain in Figure 9.1.1 where L, W and H are set as in a real mold
plate.

x

z0.
11

m

0.182 m

Figure 9.2.1: Position of the 100 thermocouples at the plane y = 0.02 m for the inverse
solver tests.

To test the effect of the regularization by discretization, we use different space
and time discretizations. For the time discretization, we use homogeneous time dis-
cretization with Δt = 0.1s, 0.2s, 0.25s and 0.5s. For the space discretization, we
use the uniform, structured, orthogonal, hexahedral meshes presented in Table 9.3.

For this test case, we select the heat flux gt to be linear in time and quadratic in
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Table 9.3: Summary of the different meshes used in the unsteady Benchmark 2.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5
Number of elements 1.7e5 4.5e4 2.1e4 7.5e3 1.5e3

space as shown in Table 9.4. Moreover, to analyze the performance of the inverse
solvers, we introduce the relative error

erel(x, t) :=
gt(x, t)− g(x, t)

gt(x, t)
. (9.2.1)

Table 9.4: Details of the true heat flux used in the unsteady Benchmark 2.

Heat flux Value
g(x) bz2 + c
gt(x, t) −ks (0.5tg(x) + g(x)) W/m2

9.2.2 Effect of Time and Space Discretization Refinement

Now, provided all the details for the benchmark setup, we can proceed presenting
the results. At first, we show the effects of mesh and time discretization refinement.
To do it, we do not add any noise to the temperature measurements and do not ap-
ply any regularization in the solution of the linear systems solving them by a LU
factorization with full pivoting.

We start by analyzing the case in which we minimize the functional Sk
1 (i.e. pg =

0). First, we show in Figure 9.2.2 the maximum and mean value of the L2- and
L∞-norm of the relative error, erel, in the interval (0, tf ], as the time and space
discretization changes for Algorithm 3 (i.e. piecewise constant approximation in
time of the heat flux).

From the figures, we appreciate on one side that the time discretization coars-
ening has very little effects on Algorithm 3 with as small decrease of the error as
Δt increases. On the other, the space discretization does not have any effect on this
inverse solver.

We now perform the same test for the piecewise linear time approximation of
Algorithm 4. Similarly, Figure 9.2.3 shows the maximum and mean value of the L2-
and L∞-norm of the relative error, erel, in the interval (0, tf ], as the time and space
discretization changes.
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Figure 9.2.2: Maximum and mean values of the L2- and L∞-norm of the relative error,
erel, in the interval (0, tf ], for Benchmark 2 as the time and space discretization changes
for Algorithm 3 (piecewise constant time approximation of the heat flux and pg = 0 K2

W2 ).

In this setting, the obtained results are very different from the previous case. First
of all, we notice a massive influence of both the space and time discretization re-
finement on the performances of the inverse solver. As anticipated in Section 7.4,
the regularization by discretization plays an important role as the algorithm perfor-
mances are improved by several orders of magnitude by the coarsening of the dis-
cretization. Moreover, when comparing the results for Algorithm 3 and 4, we notice
that the piecewise linear solver is able to outperform the constant one by three orders
of magnitude but is also very unstable depending on the discretization.

To better understand the behaviour of this inverse solver, Figure 9.2.4 illustrates
the L2-norm of the relative error, erel, as a function of time for mesh 3 with different
Δt. From these results, we see that the high errors shown in Figure 9.2.3 are caused
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Figure 9.2.3: Maximum (circles) and mean (squares) values of the L2- and L∞-norm of
the relative error, erel, in the interval (0, tf ], for Benchmark 2 as the time and space
discretization changes for Algorithm 4 (piecewise linear time approximation of the heat
flux and pg = 0 K2

W2 ).

by diverging oscillations in the algorithm. However, we also notice from the figure
that, coarsening the time discretization, monotonically reduces such instability until
achieving a stable solution, eventually.

9.2.3 Effect of Cost Functional Parameter, pg

In this section, we analyze the role that the cost functional parameter, pg, in
(7.1.8), has on the performance of the proposed inverse solvers. To do it, we solve
several times this benchmark case using the different meshes of Table 9.3 and dif-
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Figure 9.2.4: L2-norm of the relative error, erel, in Benchmark 2 for Algorithm 4 (piecewise
linear time approximation of the heat flux and pg = 0 K2

W2 ). The presented results are
obtained with Mesh 3.

ferent timestep sizes. Then, we plot the maximum and mean value of the L2-norm
of the relative error, erel, over the entire interval t = (0, tf ] as a function of the cost
functional parameter, pg.

We start with Algorithm 5 (i.e. piecewise constant approximation in time of the
heat flux). Figure 9.2.5 shows the obtained results for different timestep sizes and a
fixed space discretization.

From the results, we notice that increasing the value of pg monotonically de-
creases the quality of the reconstruction. Moreover, it is true for all considered Δt
with a slight improvement of the performances as the time discretization gets coarser.

Now, we perform a similar test but this time we keep Δt = 0.25 s and test the
different meshes of Table 9.3. We illustrate in Figure 9.2.6 the obtained results.

This figure confirms that Algorithm 5 is badly affected by the implementation of
the second term of (7.1.8). In fact, its performance dramatically deteriorates as soon
as this term begins to play a role (i.e. pg � 10−12K2/W 2). Moreover, the results
are almost independent from the discretization refinement. This further confirms the
insensibility of this algorithm from the used discretization.

We continue by performing the same kind of tests on Algorithm 5 (i.e. piecewise
linear approximation of the heat flux in time). We start by testing different timestep
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Figure 9.2.5: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 2 as the value of the cost function parameter, pg, changes
for Algorithm 5 (piecewise constant time approximation of the heat flux). We show the
results for Mesh 3 and different Δt.
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Figure 9.2.6: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 2 as the value of the cost function parameter, pg, changes
for Algorithm 5 (piecewise constant time approximation of the heat flux). We show the
results for Δt = 0.25 s and different meshes.

sizes while using Mesh 3 for the space discretization. We present the results in Fig-
ure 9.2.7.

At first, we notice that this algorithm has a very different behaviour with respect
to the piecewise constant case. In this case, the timestep size dramatically affects the
results. We can depict two different behaviors as pg changes for a chosen Δt. In the
first one (i.e. Δt = 0.1 s, 0.2 s and 0.25 s), the inverse solver is very unstable and
provides completely useless solutions for low values of pg (i.e. pg � 10−12K2/W 2).
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Figure 9.2.7: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 2 as the value of the cost function parameter, pg, changes
for Algorithm 6 (piecewise linear time approximation of the heat flux). We show the results
for Mesh 3 and different Δt.

As pg increases, the quality of the approximation rapidly rises up until the error
reaches a minimum. Here, we have stable solutions and a good approximation of the
heat flux. For higher values of pg, the error monotonically increases until it reaches a
plateau at 100%.

On the other hand, we have a different behaviour for Δt = 0.5 s. In this case,
the inverse solver performs similarly to the piecewise constant case, but the quality
of the estimation is by almost two orders of magnitude better. Then, we have stable
and accurate solutions for low values of pg. For pg � 10−12K2/W 2 we have a
monotonic degradation of the heat flux estimation until we reach the 100% plateau.

It is interesting to notice that the second term in the functional Sk
2 can make the

solver insensible to the discretization refinement. In fact, after a certain value of pg
the relative error norm for the different Δt are almost coincident.

We can see a similar behaviour in Figure 9.2.8 where we show the results ob-
tained refining the mesh and keeping Δt = 0.25 s. Also in this case, we notice the
two previously described behaviors with the coarsest mesh being always stable and
providing the best results for the lowest values of pg.

These statements are remarked by the results shown in Figure 9.2.9, where we
show the results of the same test as in Figure 9.2.3 but for pg = 5e − 11K2

W 2 . The
obtained results confirm that for some values of pg we can obtain a stable solver with
a moderate dependency on the discretization refinement.

To conclude this analysis, we test the discretization and pg selection method of
Algorithm 7 in this benchmark case. We use the virtual thermocouples measurements
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Figure 9.2.8: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 2 as the value of the cost function parameter, pg, changes
for Algorithm 6 (piecewise linear time approximation of the heat flux). We show the results
for Δt = 0.25s and different meshes.

as input training dataset for the algorithm, T̂train. In the test, the algorithm has to
select a combination of mesh, timestep size and pg that provides stable and accurate
solutions to this inverse problem. Before presenting the results of Algorithm 7, we
show in Figure 9.2.10 the mean value of the temperature discrepancy functional Sk

1 ,
defined in (7.1.7), as function of pg for different meshes and Δt.

These results show that mS in (7.5.4) behaves similarly to the relative error
(9.2.1) as function of pg. Notice that it presents the same two behaviors that we
previously described for the relative error depending on the used discretization setup.
Moreover, the mS minima are close to those of the relative error. For these reasons,
in Section 7.5, we used this result in the creation of the selection criteria for the pg as
well as for the mesh and the Δt.

That said, we are now ready to test Algorithm 7. With respect to its implementa-
tion, in step 16 of the algorithm, we use the Nelder-Mead method to find the pg that
minimizes Sk

1 (see [110]). To start the algorithm, we set p0g = 1e− 7 K2

W 2 . Table 9.5
summarizes the algorithm behaviour.

Table 9.5: Test of Algorithm 7 in the unsteady Benchmark 2.

Iteration Mesh Δt [s] pg
�

K2

W2

�
meank

�
Sk
1

� �
K2

�

0 5 0.5 1e− 7 6.9e3
1 5 0.5 3.2e− 21 3.9e− 1

From the results in the table, we appreciate that the algorithm chooses the coars-
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Figure 9.2.9: Maximum (circles) and mean (squares) values of the L2- and L∞-norm of
the relative error, erel, in the interval (0, tf ], for Benchmark 2 as the time and space
discretization changes for Algorithm 6 (piecewise linear time approximation of the heat
flux and pg = 5e− 11 K2

W2 ).

est discretization since the first iteration. Then, it looks for the pg that minimizes Sk
1

for this discretization and, not finding a better discretization setup for this value of
pg, exits the process. Comparing the obtained results to the relative error plots of Fig-
ures 9.2.7 and 9.2.8, we confirm that the algorithm is selecting the best configuration
in between all the available.

9.3 BENCHMARK 3
In this section, we present a benchmark case which is designed to test the perfor-
mances of the ROM inverse solver Algorithm 11 of Chapter 8.

For this reason, we require more complexity and time-space evolution in the heat
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Figure 9.2.10: Mean values of Sk
1 for 1 ≤ k ≤ Pt, for Benchmark 2 as the value of the cost

function parameter, pg, changes. The results are obtained using Algorithm 6 (piecewise
linear time approximation of the heat flux). We show the results for Mesh 3 and different
Δt in (a), and for Δt = 0.25 and different meshes in (b).

flux with respect to the previous benchmark case. In particular, we use the same
geometrical an physical parameters as in the previous Benchmark 2 but we choose a
very non linear in time true heat flux, gt, as in Table 9.6. In fact, by choosing such
heat flux, we mean to design a test case that allows us to study the performances of
the incremental POD algorithm and the related ROM in Algorithm 11. Then, a level
of complexity in the space and time evolution of the heat flux is necessary to avoid
the trivial case in which very few POD basis are sufficient to represent all the input
parameters of Problem 7.6. Finally, we test in Section 9.3.2 the effect that adding
noise to the thermocouples measurements has on the estimation of the heat flux.

Table 9.6: Parameters used for the unsteady Benchmark 3.

Parameter Value
g1(x) bz2 + c
g2(x)

10c
1+(x−1)2+z2

Heat flux, gt(x, t) −ks
�
g1 +

g1
2
sin

�
2πfmax

t2

tf

�
+ g2e

−0.1t
�
W/m2

Maximum frequency, fmax 0.1 Hz

9.3.1 Comparison Between Full and Reduced Order Inverse Solvers

The reduced order Algorithm 11 requires some additional user defined input pa-
rameters with respect to the full order ones (i.e. Algorithms 3 and 4). Their selection
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is problem dependent and they have to be tuned on the specific problem. For the
present test case, we use the values summarized in Table 9.7.

Table 9.7: Input parameters for the reduced inverse solver, Algorithm 11 used in the
solution of the unsteady Benchmark 3.

Parameter Value
SVD tolerance, �SV D 1e− 8
Orthogonality tolerance, �ortho 1e− 16
Number of magic points, NMP 18

T̃IC projection tolerance, tolproj 1e− 9
Mesh Mesh 3
Δt 0.5 s

Figure 9.3.1 and 9.3.2 show the obtained results for the piecewise constant and
linear time approximation of the heat flux respectively. To understand the behaviour
of the different solvers, we plot in Figure 9.3.1(a) and 9.3.2(a) the value of the L2-
and L∞-norm of the relative error (9.2.1) in (0, tf ]. Moreover, we choose a point on
Γsin , x = (1, 0.02, 0.6), and we plot in Figure 9.3.1(b) and 9.3.2(b) the value of the
true and reconstructed heat fluxes at this point along time.
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Figure 9.3.1: Comparison between FOM (Algorithm 3) and ROM (Algorithm 11) inverse
solvers in the piecewise constant time approximation case for Benchmark 3. The red bars
indicate the full order solution steps to enrich the POD space (�proj > tolproj).

If we look at Figure 9.3.1 and 9.3.2, we notice very similar results. First of all, the
reduced order inverse solvers provides almost identical performances as the full order
one. Moreover, we can appreciate that both for the piecewise constant and linear
approximation, Algorithm 11 performs all the full order, RB space enriching, runs
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Figure 9.3.2: Comparison between FOM (Algorithm 4) and ROM (Algorithm 11) inverse
solvers in the piecewise linear time approximation case for Benchmark 3. The red bars
indicate the full order solution steps to enrich the POD space (�proj > tolproj).

at the beginning of the simulation (red rectangles in the figures) and then continues
with the ROM. These are very promising results indicating that the incremental POD
enrichment is properly working providing a reliable ROM for Problem 7.6.

To conclude this analysis, Table 9.8 illustrates the average CPU time required
for the computation of one step of the inverse solver at full and reduced order in the
solution of Benchmark 3. We can see from the table that the speed up is of almost
12 times for this test case. Moreover, while the full order CPU requirement could
increase significantly in the true industrial setting overcoming the real-time threshold
of 1 s, the ROM online phase is independent from the mesh size. Thus, it will provide
real-time solutions also for more demanding meshes.

Table 9.8: Average CPU time required for the computation of one step of the inverse solver
at full and reduced order in the solution of Benchmark 3 using Mesh 3 and the piecewise
linear approximation in time of the heat flux. All computations are performed in serial on
a Intel® Core™ i7-8550U CPU processor.

FOM ROM
Arg. CPU time 1613 ms 135 ms

9.3.2 Effects of Measurements Noise and Regularization

In this last numerical tests section, we test the effect that adding noise to the
measurements vector, T̂, has in the performances of Algorithm 3 and 4. From the
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industrial point of view, this analysis is of particular interest for our application since
in the real case, thermocouples measurements are affected by noise.

We perform this analysis by adding to the measurements vector the Gaussian
random noise ηηη = N (µµµ,Σ), where µµµ ∈ IRM is the mean vector and Σ ∈ IMM×M is
the covariance matrix. Then, we have

T̂k
η = T̂k + ηηη. (9.3.1)

In particular, we choose ηηη to be an IID random variable with zero mean, i.e. ηηη =
N (0,ω2I) , where ω denotes the noise standard deviation. To study the effect of
noise, we perform several solutions of the inverse problem using T̂k

η as thermocou-
ples’ measurements. For each test, we compute 200 samples.

We show in Figures 9.3.3 and 9.3.4 the obtained results for the piecewise constant
and linear algorithm, respectively. In particular, we illustrate for each of them the
mean values over the samples of the mean and maximum of the relative error (9.2.1)
in (0, tf ] (with 90% quantile bars) for different values of the noise standard deviation,
ω. The figure compares the results obtained using LU with full pivoting and TSVD
with different values for the regularization parameter αTSV D.
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Figure 9.3.3: Effect of the noise in the temperature measurements for the piecewise
constant case. In the figures, we show the mean (a) and maximum (b) values of the
relative error (9.2.1) in (0, tf ] for different values of the noise standard deviation and using
both LU with full pivoting and TSVD for the solution of inverse problem linear system
(7.2.33). For each case, we performed 200 runs. The markers show the mean values while
the bars are the 90% quantiles. In these computations, we considered pg = 0 K2

W2 .

The results show a very different dependency from the measurement noise in
the two algorithm. The piecewise constant Algorithm 3 shows in Figure 9.3.3 to be
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Figure 9.3.4: Effect of the noise in the temperature measurements for the piecewise linear
case. In the figures, we show the mean (a) and maximum (b) values of the relative error
(9.2.1) in (0, tf ] for different values of the noise standard deviation and using both LU with
full pivoting and TSVD for the solution of inverse problem linear system (7.2.51). For each
case, we performed 200 runs. The markers show the mean values while the bars are the
90% quantiles. In these computations, we considered pg = 0 K2

W2 .

quite robust with respect to these levels of noise. Moreover, the TSVD is effective in
reducing the noise propagation and we are able to keep a reasonable level of accuracy.

On the other hand, the piecewise linear Algorithm 4 is much more affected by
the noise. By using the TSVD regularization, we have an improvement of the noise
robustness. However, the error rate of increase is much higher than for the piecewise
constant solver.

9.3.3 Effect of Cost Functional Parameter, pg

Also for this benchmark case, we test the effects that the parameter pg in (7.1.8)
has on the inverse solvers performances. We do it by performing the same tests of
Section 9.2.3 but for the present test case. In particular, we solve this inverse problem
using all the meshes in Table 9.3 and Δt = 0.1, 0.2, 0.25 and 0.5 s, for 1e − 16 ≤
pg ≤ 1e− 6K2

W 2 . We use both the piecewise constant and linear approximation of the
heat flux in Algorithm 5 and 6, respectively. Notice that in these tests, we use the full
order algorithms.

First, we present in Figures 9.3.5 and 9.3.6 the results obtained using the piece-
wise constant approximation algorithm. These plots show the mean and maximum
values of the L2-norm of the relative error, erel, in the interval (0, tf ] as functions of
pg changing the mesh and the Δt, respectively.
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Figure 9.3.5: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 3 as the value of the cost function parameter, pg, changes
for Algorithm 5 (piecewise constant time approximation of the heat flux). We show the
results for Mesh 3 and different Δt.
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Figure 9.3.6: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 3 as the value of the cost function parameter, pg, changes
for Algorithm 5 (piecewise constant time approximation of the heat flux). We show the
results for Δt = 0.25s and different meshes.

From the presented results, we notice that Algorithm 5 has the same behaviour
shown in the previous benchmark case. In particular, this inverse solver confirms to
be badly affected by pg > 0K2

W 2 . The effect of pg on its performance is very non
linear with a first region of no effects for pg � 1e − 11K2

W 2 followed by a steep
degradation and a plateau at 100% relative error for pg � 1e − 7K2

W 2 . Moreover, the
different meshes and Δt have the same behaviour and similar values of the relative
error. These results confirm once more the almost insensibility of this inverse solver
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to the discretization refinement.
Now, we consider the piecewise linear approximation of Algorithm 6. For this

inverse solver, Figures 9.3.7 and 9.3.8 show the mean and maximum values of the
L2-norm of the relative error, erel, in the interval (0, tf ] as functions of pg changing
the mesh and the Δt, respectively.
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Figure 9.3.7: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 3 as the value of the cost function parameter, pg, changes
for Algorithm 6 (piecewise linear time approximation of the heat flux). We show the results
for Mesh 3 and different Δt.
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Figure 9.3.8: Mean and maximum values of the L2-norm of the relative error, erel, in the
interval (0, tf ], for Benchmark 3 as the value of the cost function parameter, pg, changes.
The results are obtained using Algorithm 6 (piecewise linear time approximation of the
heat flux). We show the results for Δt = 0.25s and different meshes.

Again, the results are very similar to those of the previous benchmark. On one
hand, the coarsest discretizations show a similar behaviour to the piecewise constant
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approximation case with a monotonic degradation of the performance as pg increases.
On the other hand, we have unstable solutions for small pg that are stabilized by
pg � 5e − 11K2

W 2 . However, the accuracy of these solution rapidly decreases as we
further increase pg until we reach the 100% relative error plateau.

To conclude, we test the mesh, Δt and pg selection method of Algorithm 7. In
this test, we input to the algorithm the virtual thermocouples measurements that we
compute for this benchmark case. Before presenting the results of this algorithm, we
show in Figure 9.3.9 the mean value of Sk

1 , mS , as function of pg for different meshes
and Δt.
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Figure 9.3.9: Mean values of Sk
1 for 1 ≤ k ≤ Pt, for Benchmark 3 as the value of the cost

function parameter, pg, changes. The results are obtained using Algorithm 6 (piecewise
linear time approximation of the heat flux). We show the results for Mesh 3 and different
Δt in (a), and for Δt = 0.25 and different meshes in (b).

Notice that mS has a behaviour that is very similar to the relative error norm
shown in Figures 9.3.7 and 9.3.8. Moreover, its minima are almost correspondent to
the relative error ones. As already mentioned, we used these results as a guideline in
developing Algorithm 7. We present its behaviour for the present benchmark case in
Table 9.9.

Table 9.9: Test of Algorithm 7 in the unsteady Benchmark 3.

Iteration Mesh Δt [s] pg
�

K2

W2

�
meank

�
Sk
1

� �
K2

�

0 4 0.1 8e− 7 8.46e2
1 5 0.5 3.6e− 11 6.2e0
2 5 0.5 3.2e− 13 5.5e− 1

In this case, the algorithm does not select since the beginning the coarsest dis-
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cretization. In the first iteration, it finds the pg that minimizes mS for this setup.
Then, when comparing it to the other discretizations in step 23, it selects again the
coarsest one. Also in this benchmark case, this algorithm showed to be able to select
the discretization setup and the value of pg corresponding to the best performance of
the inverse solver.
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10 CONCLUSIONS AND FUTURE
PROSPECTIVE

The goal of the present investigation was to develop mathematical tools to monitor the
mold behaviour in CC machineries. At industrial experts’ suggestion, we identified
the mold-steel heat flux as the quantity of interest for the mold monitoring. Then,
our objective has been to investigate a methodology for the estimation of this heat
flux having as data the physical properties of the mold, its geometry, the cooling
water temperature and some pointwise temperature measurements in the interior of
the mold’s plates.

We opted for stating the problem in a data assimilation, optimal control setting in
which we look for the heat flux that minimizes a functional that includes a measure
of the distance between the computed and measured temperature at the measurement
points. However, given a mold-steel heat flux, we required a mold model to compute
the temperature at these points.

In deriving the mold model, we had to take into account the real-time require-
ment of this mold monitoring task. Then, we avoided to model all the mold region,
including the steel pool. In fact, it would require us to model several complex and
coupled physical phenomena (heat transfer, steel solidification, steel and cooling wa-
ter fluid flows, etc.) happening on different time and space scales. With this level
of complexity, the computational cost of such simulation would have been unsus-
tainable for real-time computations. Thus, in modeling the mold, we considered as
computational domain the mold plates solid region and the cooling water passing
through them. Hence, our first task was to develop a hierarchy of models by adding
simplifying assumptions to a first general model.

Once the mold models hierarchy has been established, we focused on the mold-
steel heat flux estimation. Notice that, in this setting, this flux is a Neumann BC
on a portion of the boundary of our domain. Then, we can generalize this mathe-
matical inverse problem as the estimation of a Neumann BC given pointwise state
measurements in the interior of the domain.

Coming back to our application, when dealing with the inverse problem, we em-
ployed two of the developed mold models. In particular, we used a three-dimensional
steady-state heat conduction model in Part I and its unsteady-state version in Part II
of this thesis.
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In the steady-state case, we proposed two different inverse problems and two
methodologies for their solutions. The two inverse problems differ in the available
measured data. Firstly, we considered to have available the pointwise temperature
measurements only. Then, we assumed to measure also the total boundary heat flux.
In fact, under the steady-state assumption, we can estimate the heat flux extracted
from the steel by the mold by knowing the cooling water temperature increase.

As mentioned, we proposed two methodologies for the solution of these inverse
problems. The first one is Alifanov’s regularization which is a classic technique to
solve IHTPs based on the CG method. The second method exploits a parameteri-
zation of the heat flux with RBFs. Thanks to this parameterization, we developed a
direct (non-iterative) method to estimate the mold-steel heat flux.

While Alifanov’s regularization is an iterative method that requires the solution
of three direct problems at each iteration, the parameterization method turned out
to benefit from an offline-online decomposition. Thanks to this decomposition, we
have a first computationally expensive offline phase, in which we solve several direct
problems. This offline phase is computed once and for all and does not requires
any measurements. Then, when the caster starts to work, we only have to collect
the thermocouples measurements and run the online phase which is computationally
much cheaper and its cost does not depend on the refinement of the used mesh.

To test the performance and the CPU requirements of these methods, we designed
different numerical benchmark cases. In these tests, the parameterization method
outperformed Alifanov’s regularization in the quality of the heat flux reconstruction.
Even more, in the tests where we reproduced the industrial setting, Alifanov’s reg-
ularization had very poor performance. In fact, in CC molds the measurements are
very close to the boundary where we want to reconstruct the heat flux and this badly
affects Alifanov’s regularization behaviour. With respect to the CPU requirements of
these methods, while Alifanov’s regularization cannot be applied in real-time as it is,
the novel parameterization method proved to meet the real-time requirement of this
application.

We also tested the robustness of these inverse solvers to the presence of noise in
the measurements and their ability to filter it out. Both showed to be effective under
mild noise with the parameterization method (thanks to the TSVD regularization) be-
ing able to handle also cases with severe noise. Then, the proposed parameterization
method proved to meet all the requirements of this application on the quality of the
heat flux estimation, the real-time performance and the robustness to errors in the
measurements.

After addressing the mold modeling and the estimation of the mold-steel heat
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flux with a 3D steady-state heat conduction model, in Part II of this thesis, we moved
a step forward considering an unsteady-state mold model. In this new setting, we
used a sequential approach to the inverse problem. In fact, to provide a real-time
solution in an unsteady setting means to stay always at the front of the time line
as it stretches. Then, since our measurements come equally spaced in time by one
second, we considered the problem of estimating the heat flux only in between the
last measurement and the previous one, assuming to have already the solution for
older times.

In this framework, we stated two different inverse problems. One looking for the
heat flux that minimizes a measure of the distance between computed and measured
temperature only. While, in the other, we want to minimize this distance plus an heat
flux norm.

For both these inverse problem, we developed novel methodologies for their so-
lution that, mimicking the one created for the steady case, extends it to the unsteady
one. In particular, these novel methods exploit the same RBFs parameterization in
space of the steady-state one, but use time dependent coefficients. With respect to
these coefficients, we considered both the piecewise constant and the piecewise lin-
ear case. It means that the estimated heat flux is constant or linear in between two
contiguous measurement instants.

Even if this novel methodology can still exploit an offline-online decomposition,
it has the drawback of requiring in the online phase the solution of one direct problem.
As a consequence, this method is not suitable for real-time computation as it is. Then,
we addressed the problem of developing a ROM for this direct problem to speed up
its solution and meet the real-time requirement.

To construct such ROM, we used the RB POD-Galerkin method. The novelty
on this regard is the methodology used for sampling the parameter space and create
the POD RB. In fact, we developed a data-driven incremental algorithm that auto-
matically enrich the RB space. It as been derived by combining incremental SVD
techniques with a novel projection error estimator. Then, we proposed a novel in-
verse solver that includes the creation of this ROM in the offline phase and uses it in
the online phase. It allowed us to have a mesh independent, real-time online phase.

To conclude, we tested the proposed inverse solvers on some benchmark cases.
First, we validated our FVM simulation of the direct problem. Then, we designed
two benchmark cases for the inverse problem. To design an inverse problem test, we
arbitrarily selected a mold-steel heat flux. We solved the direct problem for this heat
flux obtaining the corresponding temperature field in the mold. Finally, we located
some virtual thermocouples and used the computed temperature at this points as input
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data for the inverse solvers. Then, we tested their ability to reconstruct the previously
selected heat flux.

The two benchmark cases share the same domain and physical parameters which
were chosen to resemble the industrial setting. The difference is in the selected heat
fluxes.

In the results, we noticed a great difference in the behaviour of the piecewise
constant and linear inverse solvers. The former showed a very stable behaviour and
indifference to the time and space discretization used. The latter, rather, is very much
influenced by the discretization used. In particular, it can be very unstable when using
fine discretizations but this instability is reduced by coarsening the time and/or space
discretization. In fact, for some discretizations, we achieved very stable and accurate
solutions, eventually.

We also tested the effects that adding the heat flux norm to the minimization func-
tional has on these inverse solvers. We implemented this new term multiplying it by
a parameter. Then, we tested the effect that its value has on the solvers performance.

We noticed that the piecewise constant algorithm performance monotonically de-
teriorates as this parameter increases. The same goes for the piecewise linear solver
when using the coarsest, stable discretizations. However, the unstable configurations
showed to be positively affected by the addition of this new term and, for some val-
ues of this parameter, we were able to obtain stable and accurate solutions for all
the tested discretizations. While, for too high values of the parameter, the solution
is stable but inaccurate for all the meshes and timestep sizes. Moreover, we showed
that, for values of the parameter above a threshold, the inverse solver performance
are almost independent from the discretization.

Finally, due to the great importance played by the mesh refinement, the timestep
size and the heat flux norm parameter, we developed an algorithm for their automated
selection. We tested it on the designed benchmark cases and it shown to be able to
select stable and accurate setups. This proposed algorithm is important in the lack
of theoretical results that can ensure a priori the stability and accuracy of this inverse
solver.

This is surely a possible future work on this subject that would increase the poten-
tial of the propose methodology and increase its reliability. In particular, it would be
useful for the final user to know a priori the time and space discretization to select as
well as the minimization functional parameter. Notice that it is needed for the piece-
wise linear inverse solver because the piecewise constant one is almost insensible to
the discretization refinement.

In the future, it would also be interesting to investigate the application of the more
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sophisticated mold models that are in our models heirarchy, and to study the solution
of the related inverse problems. Since they are coupled multiphase models, we expect
their solution to require the developement of novel techniques. Moreover, to meet the
real-time requirement of this application will probably require the derivation of new
MOR techniques.

Another possible future investigation on this subject could be to use a completely
different approach in the solution of this inverse problem. In particular, thinking
about a more proper handling of the measurement noise, we could think of using a
Bayesian approach. Techniques such as ensemble Kalman filter could be suitable for
this problem given the sequentiality of the measurements. Moreover, considering the
real-time requirement of the application, it would probably require an effective use
of MOR technique to reduce the well known computational limit of these techniques.
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In continuous casting machineries, monitoring the mold is 
essential for the safety and quality of the process. Then, the 
objective of this thesis is to develop mathematical tools for the 
real-time estimation of the mold-steel heat flux which is the 
quantity of interest when controlling the mold behaviour. To 
achieve this goal, we first address the mold modelling by 
developing a hierarchy of models. Then, we investigate the 
mold-steel heat flux estimation problem in a data assimilation, 
optimal control framework. For its solution, we study novel 
methodologies that exploit the heat flux parametrization and 
benefit from an offline-online decomposition. To conclude, we 
develop cutting-edge model order reduction techniques to meet 
the real-time requirement of this application. 
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