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a b s t r a c t 

Object detection accuracy on small objects, i.e., objects under 32 × 32 pixels, lags behind that of large 

ones. To address this issue, innovative architectures have been designed and new datasets have been re- 

leased. Still, the number of small objects in many datasets does not suffice for training. The advent of 

the generative adversarial networks (GANs) opens up a new data augmentation possibility for training 

architectures without the costly task of annotating huge datasets for small objects. In this paper, we pro- 

pose a full pipeline for data augmentation for small object detection which combines a GAN-based object 

generator with techniques of object segmentation, image inpainting, and image blending to achieve high- 

quality synthetic data. The main component of our pipeline is DS-GAN, a novel GAN-based architecture 

that generates realistic small objects from larger ones. Experimental results show that our overall data 

augmentation method improves the performance of state-of-the-art models up to 11.9% AP @ . 5 s on UAVDT 

and by 4.7% AP @ . 5 s on iSAID, both for the small objects subset and for a scenario where the number of 

training instances is limited. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The accuracy of object detectors has experienced a lot of 

rogress year on year with the release of large training datasets 

nd the continuous improvement of CNNs architectures [1,2] , 

hich goes along with the ever increasing computing power of 

PUs. 1 

In this line, small object detection stands out as a field of 

ts own with increasing interest [3–5] . This is mainly because 

any downstream tasks demand early detections of objects to act 

uickly: self-driving cars or applications like sense and avoid on 

AVs need to detect as far an object as possible, or satellite image 

nalysis, where almost all objects are just a few pixels in size. That 

s, all the previous applications require objects to be identified as 

oon as possible, i.e, when they are barely visible in the images. 
∗ Corresponding author. 

E-mail address: manuel.mucientes@usc.es (M. Mucientes) . 
1 Abbreviations list: unmanned aerial vehicle (UAV); convolutional neural net- 

ork (CNN); generative adversarial network (GAN); downsampling GAN (DS-GAN); 

eature pyramid network (FPN); high resolution (HR); low-resolution (LR); synthetic 

ow resolution (SLR); intersection over union (IoU); Frechet inception distance (FID). 
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ecent CNN-based object detectors, like the work in [3] , provide 

igh accuracy over a wide range of scales, from less than 32 × 32 

ixels up to the image size. Despite these improvements, existing 

olutions often underperform with small objects [6] . 

The problems of detecting such small objects are twofold: (i) 

n deep CNNs architectures commonly the deeper the feature map, 

he lower the resolution, which is counterproductive when the ob- 

ect is so small that it may be lost along the way, and (ii) the most

opular datasets such as MS COCO [7] or ImageNet [8] focus their 

ttention on larger objects. While to deal with the first problem 

ew solutions are being proposed year by year [3,4,9,10] , the sec- 

nd is being tackled mostly with the tedious task of generating 

ew datasets [4,11–13] . 

We have noticed some reasons that call for a superior num- 

er of small objects in public datasets to train a small object de- 

ector. First, the relatively fewer images that contain small objects 

ill potentially bias any detection model to focus more on medium 

nd large objects. In addition, the scarce features in small objects 

inder the model generalization, lacking a great deal of variability. 

inally, the smaller the object the more places it can appear, in- 

reasing the object background diversity, demanding more context 

ariability at training. 
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Fig. 1. We describe a pipeline for small object data augmentation able to populate an original frame (left) with new generated small objects (right), highlighted in red. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Moreover, pieces of evidence [14] have shown that good data 

ugmentation can boost deep models to achieve state-of-the-art 

erformance without changing the network architecture. Although 

ata augmentation has shown to significantly improve image clas- 

ification, its potential has not been thoroughly investigated for ob- 

ect detection. So, given the additional cost for annotating images 

or object detection, data augmentation may play an essential role 

n boosting performance of generic object detection. 

The advent of the GANs [15] has led to a new approach in the

eld of data augmentation. This kind of models are trained in an 

dversarial manner, where one network (the generator) tries to 

heat another network (the discriminator) by generating new im- 

ges. The generator attempts to provide examples that are increas- 

ngly similar to those in the real world. 

Data augmentation for object detection presents two major 

hallenges: (i) the generation of new objects and (ii) the integra- 

ion of those objects to adapt them to the new scenarios. The for- 

er is mostly tackled by reusing already existing objects in differ- 

nt positions [5] or by adjusting their scale by re-scaling functions 

16] . However, it has been proven that common re-scaling func- 

ions cause artefacts that significantly distort the re-scaled object 

f compared to real-world objects [17,18] . The latter could be ap- 

roached by object segmentation methods [2] to clear the orig- 

nal background and then insert the objects into plausible posi- 

ions while tuning for color consistencies. In the case of small ob- 

ects, there is the added issue that the performance of the seg- 

entation methods decreases dramatically. In addition, many pop- 

lar datasets [4,11,12] do not contain segmentation ground truth to 

rain the segmentation models properly. 

For all these reasons, in this paper we propose a full pipeline 

or small object data augmentation. Our pipeline takes a video 

ataset as input 2 and returns the same dataset but with new syn- 

hetic small objects ( Fig. 1 ). The hypothesis is that, starting from 

he visual features of larger objects—which can be found in many 

atasets in a large number—high quality synthetic small objects 

an be generated and placed into an existing image. To do so, the 

ipeline has the following stages: (i) to generate small objects from 

arge ones through a GAN; (ii) to seek a logical position within 

he image through optical flow; (iii) to integrate small object via 

npainting and blending techniques. The main contributions de- 

cribed in this paper are: 

• A full pipeline for small object data augmentation which is able 

to automatically generate small objects using larger ones and 

place them into an existing background in a congruent fashion. 
• Downsampling GAN (DS-GAN), a generative adversarial network 

architecture that converts large size objects into high quality 

small objects. 
2 The input to the pipeline can also be an image dataset. That only requires minor 

odifications to the pipeline, as explained in Section 3.2.1 . 

p

p

j

v

i

2 
• An extensive experimentation on the video dataset UAVDT 

[11] and the image dataset iSAID [19] , where the base results 

of state-of-the-art approaches are improved. 

. Related work 

The small object data augmentation approach we present in 

his paper is based on several computer vision tasks. The execu- 

ion flow starts with a GAN that generates synthetic small objects 

rom larger ones. This process can be seen as solving the opposite 

f image super-resolution. Then, a segmentation network obtains 

he pixels of the input object and this mask is adapted to the new 

enerated small object. In parallel, the new position in the image is 

btained exploiting optical flow. The synthetic object may or may 

ot replace an existing small object in the image. If so, the real one 

s removed from the scenario via inpainting. Finally, the object is 

laced into the selected position and tuned by image blending to 

t the new background. 

Small object detection. Small object detection refers to im- 

roving the detection of those objects with small size and poor 

isual features, typically defined as the detection of objects with 

 size below 32 × 32 pixels [7] . The actual trend for common ob- 

ect detection is to go deeper to recognise more complex semantics 

1] , but small objects, that do not contain detailed visual features, 

ay be lost in the deep network. More sophisticated architectures, 

uch as the FPN [3] or the Region Context Network [4,20] , partially 

lleviate this problem. 

Furthermore, another restriction is the fact that popular 

atasets have focused on larger objects, with small objects under- 

epresented [7,8] . To some extent, this restriction has been reduced 

y the advent of video datasets like UAVDT [11] , VisDrone2019-VID 

12] and, especially, USC-GRAD-STDdb [4] , which are video datasets 

ith a large percentage of small objects. 

Adversarial learning attempts to fool models through malicious 

nput or adversarial attacking through two —or more— networks 

ith contrasting objectives. So that, these samples could be added 

o the training set to improve weak spots in the learned deci- 

ion boundary. The principles of adversarial training have led to 

he popular GANs. The model consists of two networks that are 

rained in an adversarial process where, iteratively, one network 

the generator) generates fake images and the other network (the 

iscriminator) discriminates between real and fake images. So that 

he adversarial loss forces the generated images to be, in principle, 

ndistinguishable from real ones. 

A way to increase small object detection accuracy is to improve 

bject resolution, for example with a Perceptual GAN [21] or an 

OD-MTGAN [22] . A similar technique based on GANs has been 

roposed to improve the detection of tiny faces [23] or small-scale 

edestrians [24] . Our approach is different as it downsamples ob- 

ects for data augmentation in the training set, and it has the ad- 

antage that the GAN only has to be executed during the train- 

ng process. The previous proposals require the execution of the 
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AN generator also during the inference —detection of the small 

bjects—, as their detector needs super-resolved images. 

Data augmentation . Data augmentation strategies are widely 

sed for training vision models to minimize the bias between the 

raining and the testing subsets, i.e., leading to more generalized 

odels. There are two main types of data augmentation: basic im- 

ge manipulations and generative synthetic approaches. Basic ma- 

ipulations are simple operations, so deep learning designs usually 

ombine many of them. For object detection, image mirroring and 

bject-centric cropping are the most widely used [25] . 

One straightforward solution to generate synthetic objects is to 

ugment the number of small object instances by randomly copy- 

asting them [5,26] . The problem of this approach is twofold: (i) 

he features of the object remain the same, and (ii) the position 

nd scale of the object may not fit the context —e.g., a car in the

ky. The second issue is addressed in [16] by an adaptive aug- 

entation strategy called AdaResampling that logically augments 

he instances. AdaResampling generates a prior context map us- 

ng a segmentation CNN and then places the objects in accor- 

ance with the scale and position. Yet, [17,18] show that the object 

eatures produced by conventional resizing functions are far from 

eal-world object features. 

In [27] they increase the number of person instances in a given 

ataset through two modules: shape-guided deformation and the 

nvironment adaptation. The former one produces data augmen- 

ation by changing the shape of a given entry person. The latter 

dapts the person to the background through blending. However, 

hey keep the resolution of the objects, thus not addressing the 

esolution mismatch problem. 

Another solution is to learn the space of possible augmenta- 

ions with adversarial training. In [28] , authors introduce PTGAN 

o transfer persons between datasets to tackle the classical domain 

ap issue. However, sizes of objects in the pair of datasets match, 

o that solutions like CycleGAN [29] with additional constraints can 

e used without downsampling. Moreover, in their setting, peo- 

le are large enough objects to be segmented accurately, making 

t possible to feed PTGAN with such segmentations. Also, PTGAN 

oes not deal with the object positioning, i.e, where to include the 

ew person in the image of the dataset where the transfer is made. 

DetectorGAN [30] is based on CycleGAN, which performs image- 

o-image translation, transforming object free images to images 

ith objects and viceversa. Nevertheless, DetectorGAN does not 

lace objects in a coherent location in the image, and it has not 

een tested with small objects. 

Image super-resolution . Image super-resolution comprises the 

ask of estimating an HR image from its LR counterpart. The tech- 

iques to achieve the final image can use a series of consecutive 

rames of a video or a single image. Multiple image-based (or clas- 

ical) solutions are mostly reconstruction-based algorithms that try 

o address aliasing artefacts by simulating the image formation 

odel. These models are highly dependent on the motion estima- 

ion between the LR images, so they are more unstable in real- 

orld applications [31] . Henceforth, we will describe only single 

mage super-resolution approaches. 

Before the emergence of convolutional neural networks, single 

mage super-resolution techniques ranged from simple prediction- 

ased methods, which yield solutions with overly smooth textures, 

oing through methods that attempt to address these shortcom- 

ngs by exploiting different priors. With the remarkable CNN suc- 

ess, all effort s were turned in this direction. Within this scope, 

ong et al. [32] used bicubic interpolation to upscale an input im- 

ge and feed a three layer deep fully convolutional network to 

chieve state-of-the-art SR performance. The definition of a per- 

eptual loss [33] , instead of low-level pixel-wise error measures, 

epresented a significant improvement. The perceptual loss func- 

ion applies an L 2 loss over calculated feature maps using another 
3 
re-trained CNN —such as VGG— to increase the perceptual sim- 

larity, which leads to recover visually more convincing HR im- 

ges. More recently, GANs boosted even more the image super- 

esolution results. In [34] , authors introduce a GAN trained with 

he perceptual loss in cooperation with the adversarial loss to in- 

er photo-realistic natural images for 4 × upscaling factors. 

In spite of the progress obtained with GANs, to train these net- 

orks it is necessary to have pairs of LR and HR images. Most of 

he approaches use bilinear interpolation to obtain the LR images, 

hich is shown in [17,18] , but they cannot produce good results 

or real-world low-resolution images. To address this, Bulat et al. 

17] defined two consecutive GANs, where the first GAN learns 

ow to degrade HR images to LR images, and the second GAN uses 

hese LR images to learn the standard image super-resolution. 

Image Inpainting. Image inpainting is a conservation process 

here damaged, deteriorated, or missing parts are filled in to 

resent a complete image. In the same way as in image super- 

esolution, the establishment of the GANs has lead to better in- 

ainting results, as the discriminator forces the generator to fill 

ith coherent data within the dataset. Specifically, Pathak et al. 

35] introduced a Context Encoder trained with both L2 pixel-wise 

econstruction loss and generative adversarial loss as the objective 

unction to complete large center regions of fixed size. More re- 

ently, Yu et al. [36] propose a novel contextual attention layer to 

orrow features from distant spatial locations during training to 

mprove the final performance. 

Image blending. The goal of image blending is to create a com- 

osite image from the superposition —partial or full— of one or 

ore source images, optimizing the spatial and color consistencies 

n order to make the composite image look as natural as possi- 

le. A specific instance of image blending is when a foreground 

egion from a source image is pasted into the target background 

t a specified location. The default way is to copy pixels from the 

ource image and paste them onto the target image, but this would 

enerate obvious artefacts because of the abrupt intensity change 

n the compositing boundaries. 

Burt and Adelson [37] introduced Laplacian pyramid, a mul- 

iresolution representation of the images of interest. The source 

mages are decomposed into a set of band-pass filtered component 

mages, then joined within each resolution band independently 

nd, finally, adding up the different levels. So that, when coarse 

eatures occur near borders, these are blended gradually over a rel- 

tively large distance without blurring or otherwise degrading finer 

mage details in the neighborhood of the border. 

. Small object data augmentation 

Figure 2 shows the architecture of the pipeline for data aug- 

entation for small object detection. The purpose of this architec- 

ure is to increase the number of small objects in a video dataset. 

ur system consists of two procedures: the small object generation , 

hich involves object downsampling and object segmentation, and 

he small object integration into the image, which involves position 

election, object inpainting and object blending. 

Through these components the system is able to generate SLR 

bjects from real HR objects; these SLR objects will have similar 

eatures to real LR objects. Then, they are inserted in plausible po- 

itions within the image without enforcing any temporal consis- 

ency between frames. The following are the steps performed by 

he pipeline applied to an input video dataset ( Fig. 2 ): 

• The small object generation procedure produces SLR objects and 

their corresponding masks from HR objects. 

1. The object downsampling generates an SLR object from an 

HR object with its context. 
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Fig. 2. The proposed pipeline for data augmentation for small object detection. It takes a video dataset and produces the same frames but populated with synthetic small 

objects. The system comprises two main steps: small object generation and integration. This is repeated for each position/HR object pair. 
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2. The object segmentation calculates the input HR object 

segmentation mask and transforms it to fit the SLR object. 
• The small object integration procedure selects the optimal posi- 

tions for the SLR object and inserts it into the image. 

1. The position selector selects the possible positions where 

some real LR objects exist —or existed in previous or suc- 

cessive frames— and optimizes the position and SLR object 

matching by comparing the direction and shape of both LR 

and HR objects through optical flow and overlap. 

2. The object inpainting deletes the objects that will be re- 

placed. 

3. The object blending makes a copy-paste of each SLR object 

in the matched position and performs a blending operation 

to alleviate the abrupt boundary change and color intensity 

on the scene. 

The final result provided by our system is a new dataset cre- 

ted with the same video images but populated with an increased 

umber of SLR objects that replace the fixed number of LR objects. 

.1. Small object generation 

.1.1. Downsampling GAN (DS-GAN) 

We have designed a Downsampling GAN (DS-GAN) to overcome 

he poor performance from well-known methods like bilinear in- 

erpolation or nearest neighbor to obtain SLR objects. DS-GAN is 

 generative adversarial network that learns to correctly degrade 

R objects into SLR objects to increase the training set for object 

etection. 

In this downsampling problem the aim is to estimate an SLR 

bject from an input HR object with a downsampling factor r. The 

roblem to solve is an unpaired problem where HR objects do not 

ave a corresponding LR pair, but the network would have to learn 

he distribution of the features of the whole LR subset while keep- 

ng similar visual appearance of the original HR object. For an im- 

ge with C color channels, HR has size W × H × C while both LR 

nd SLR are described by W 

r × H 
r × C. So, for training the proposed 

AN, two different image sets are required: (i) the HR subset com- 

osed of real large objects (HR objects) and (ii) the LR subset com- 

osed of real small objects (LR objects). Both the LR and HR sub- 

ets can be taken from the same dataset or from any additional 

ne if more samples are needed. 

Our DS-GAN architecture is shown in Fig. 3 . The generator net- 

ork ( G ) takes as input an HR image concatenated with a noise

ector ( z) and produces an SLR image 4 × smaller than the input 

 r = 4 ). For example, a 128 × 128 object will lead to a 32 × 32 ob-

ect. The noise vector is randomly sampled from a normal distri- 

ution and it is attached to the input image. This allows to pro- 

uce numerous SLR objects from a single HR object, thus model- 

ng the fact that the HR image will be affected by multiple types 

f LR noise. Following the methodology of [15] we further define 
4

 discriminator network ( D ) which we optimize in an alternating 

anner along with the generator ( G ). 

The generator is an encoder-decoder network —see Fig. 3 —

omposed of six groups of residual blocks [1] . Each group has two 

ame-dimension residual blocks with pre-activation and batch nor- 

alization as defined in [38] . To achieve a 4 × downscaling, four 

 × down-sample steps performed by pooling layers are placed at 

he end of each of the first four groups and two 2 × up-sample 

teps performed by deconvolution layers at the end of each of the 

ast two groups. 

The discriminator —see Fig. 3 — follows the same residual block 

tructure (without batch normalization) followed by a fully con- 

ected layer and a sigmoid function. The discriminator comprises 

ix residual blocks with two 2 × down-sample steps. The details of 

he composition of both architectures are better shown in Fig. 3 . 

With this architecture, our goal is to train G to generate an SLR 

ample conditioned on an HR sample. To achieve this, the objective 

unction chosen for the adversarial loss is the hinge loss [39] : 

 

D 
adv = E s ∼P LR 

[ min (0 , 1 − D (s ))] + E ˆ s ∼P G 
[ min (0 , 1 + D ( ̂  s ))] (1)

here P LR is the LR subset distribution and P G is the generator 

istribution to be learned through the alternative optimization. P G 

s defined by ˆ s = G (b, z) | b ∈ P HR , where P HR is the HR subset. The

eneral idea behind this formulation is that it allows to train G 

ith the goal of fooling D , that is trained to distinguish SLR from 

R images. With this approach our generator can learn to create 

LR samples that are highly similar to real LR images, and thus 

ifficult to classify by D . 

Correspondingly, we train G by optimizing a loss function L , de- 

ned as: 

 = l pixel + λl G adv , (2) 

here l G 
adv is the adversarial loss, l pixel is the L 2 pixel loss, and λ is

 parameter that balances the weight of both components. 

The adversarial loss l G 
adv is defined based on the probabilities of 

he discriminator as: 

 

G 
adv = −E b∼P HR 

[ D (G (b, z))] , (3) 

here P HR is the HR subset and z is the noise vector. The adver- 

arial loss is computed in an unpaired way, using the LR subset to 

ake the SLR objects to be contaminated with real-world artefacts. 

The l pixel minimizes the L 2 distance between the input HR and 

he output SLR: 

 pixel = 

r 2 

W H 

W 
r ∑ 

i =1 

H 
r ∑ 

j=1 

(A v gP (b) i, j − G (b, z) i, j ) | b ∈ P HR , (4)

here W and H denote the input HR size, r is the downsampling 

actor and A v gP is an average pooling function that maps the HR 

nput to the output G (b, z) resolution. The l pixel is computed in a 

aired way between the SLR object and the HR object downsam- 

led to the output SLR resolution using an average pooling layer. 
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Fig. 3. Downsampling Generative Adversarial Network (DS-GAN) architecture. The generator is trained with HR objects to synthesize small objects. A discriminator between 

real and fake small objects forces the generator to produce synthetic objects that are increasingly similar to real-world small objects. 

Fig. 4. HR object segmentation using the Mask R-CNN framework [2] (right), and DS-GAN outputs for different noise vectors ( z i ) with the masks fitted to the SLR objects 

(left). 
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his component aims to keep the appearance of the synthetic ob- 

ects similar to the original HR objects. 

In addition, to solve the stabilization of the discriminator train- 

ng we normalize its weights by the spectral normalization tech- 

ique [39] . 

.1.2. Object segmentation 

To integrate the SLR object in a new scenario, it is manda- 

ory to extract the foreground object from its background. The ap- 

roach chosen for object segmentation is to adapt the Mask R-CNN 

ramework 3 [2] trained on the public dataset MS COCO to obtain 

he mask from HR objects ( Fig. 4 ). As the segmentation results 

or small objects have a poor performance, we propose to get the 

ask from the large objects and fit it to the small objects. This 

s done just by resizing by factor r. This is possible because the 

ixel loss ( Eq. (4) ) forces the generator to keep the visual object

ppearance, i.e., pose, orientation, size, etc. Fig. 4 shows the masks 

daptability from HR to SLR objects. 

Adding this process solves three issues: (i) the pipeline does 

ot limit its performance to the existence of objects with a 

ask ground truth, which is missing in many popular datasets 

4,11,12] as the annotation is very costly; (ii) the small object seg- 

entation is optimized, as the performance of segmentation meth- 

ds declines dramatically for small objects; and (iii) there is no 
3 Mask R-CNN extends Faster R-CNN by adding a branch for predicting an ob- 

ect mask in parallel with the existing branches of classification and bounding box 

egression. 

t

o

t

p

5 
eed to use the SLR objects to generate the segmentation mask —

LR objects do not contain enough context to get a proper mask 

 Fig. 4 ). 

.2. Small object integration 

.2.1. Position selector 

The selection of a position within the image is a key issue when 

erforming data augmentation for object detection. If this posi- 

ion is randomly selected, the new context surrounding the objects 

ould be counterproductive, i.e., background mismatch may lead to 

ore false positives. The reason is that the detector learns on not 

nly the object features but also the context features, using the 

ackground prior knowledge to assist itself [16] . 

In order to sample a suitable position according to the image 

ackground, three premises must be fulfilled: (i) to have a plau- 

ible background —e.g., a car must be placed into the road—; (ii) 

he orientation has to fit the scene —e.g., a car’s orientation has 

o match the direction of the road—; and (iii) the scale has to 

e according to the vanishing point of the frame —p.e. small ob- 

ects cannot be placed in the foreground. As pointed out above, 

o temporal consistency for objects between frames is demanded; 

e only require objects to have a sensible spatial location within 

he frame. Using temporal consistency would limit the number of 

bject-background pairs, resulting in a less effective data augmen- 

ation system. 

Therefore, to cover these requirements, our proposed position 

rocedure is also based on three techniques: spatial memory of 
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Fig. 5. Angle of motion direction using optical flow for two frames f t (right) and f t+1 (left). First, the feature points are computed using FAST (red dots). Second, f t+1 is 

stabilized with f t by perspective transformation to remove camera motion. Then, the feature points are matched between frames (colored lines). Finally, the motion lines 

are summarized into a motion vector for each object (colored arrows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Algorithm 1: Position selector. 

Input : GT = { GT t = { g t 
1 
, . . . , g t n t } ∀ t = 1 , . . . , T } 

Input : LR = { LR t = { s t 
1 
, . . . , s t m t 

} ∀ t = 1 , . . . , T } | LR ⊂ GT 

Input : HR = { b 1 , . . . , b l } | HR ⊂ GT 

Input : SLR = { ̂ s 1 , . . . , ̂  s l } | ˆ s i = G (b i , z) ∀ i = 1 , . . . , l 

Input : Search range τ
Output : A = { A 

t = { (e t 
i 
, ̂  s k (i ) ) . . . (e t n , ̂  s k (n ) ) } ∀ t = 1 , . . . , T , e t 

i 
∈ 

E t } 
1 A ← ∅ for t = 1 , . . . , T do 

2 E t ← ∅ for t ′ = max (0 , t − τ ) , . . . , min (T , t + τ ) do 

3 if t = t ′ then 

4 E t ← E t ∪ s t 
i 

5 else 

6 for i = 1 , . . . , m t ′ do 

7 v alid _ spot = 1 for j = 1 , . . . , n t do 

8 if IoU (s t 
′ 

i 
, g t 

j 
) > 0 then 

9 v alid _ spot = 0 

10 for j = 1 , . . . , size (E t ) do 

11 if IoU (s t 
′ 

i 
, e t 

j 
) > 0 then 

12 v alid _ spot = 0 

13 if v alid _ spot = 1 then 

14 E t ← E t ∪ s t 
′ 

i 

15 for i = 1 , . . . , size (E t ) do 

16 max v = max j = 0 αt 
i 

= OpticalFlow (e t 
i 
) for j = 1 , . . . , l 

do 

17 α j = OpticalFlow (b j )�i, j = 

1 − normalize (| αt 
i 
− α j | ) iou i, j = IoU (e t 

i 
, ̂  s j ) if 

�i, j + iou i, j > max v then 

18 max v = �i, j + iou i, j max j = j 

19 A 

t ← A 

t ∪ (e t 
i 
, ̂  s max j ) 

20 A ← A ∪ A 

t 
he objects to obtain a plausible background, optical flow to match 

rientations, and overlap to match scales. The spatial memory of 

he objects aims to collect plausible positions where to place an 

LR object in the current frame. All locations of LR objects in the 

urrent frame are valid candidate positions. Also, LR object posi- 

ions in previous and subsequent frames are candidates to place 

LR objects as long as there is no overlap with objects in the cur- 

ent frame —this does not apply to image datasets. Optical flow 

nd overlap aim to pair each candidate position with the SLR ob- 

ect that most closely resembles the orientation and size —for im- 

ge datasets only overlap is taken into account. We exploit optical 

ow to compute the apparent motion of objects within two frames 

 Fig. 5 ): (i) we detect FAST keypoints [40] ; (ii) stabilize camera

otion by perspective transformation; (iii) link feature points be- 

ween f t−1 and f t within each bounding box by optical flow; (iv) 

ompute the motion angle for each object in f t by averaging all 

ts points into a motion vector. The overlap between two objects is 

omputed via IoU. 

Given the angle of motion direction and the sizes associated to 

he HR and LR objects, each possible position gets this information 

rom the LR object from which it has given rise and each SLR ob- 

ect from its original HR object. Then, each position and SLR object 

airing will be given by maximizing the overlap and angle of mo- 

ion direction similarity between them. Algorithm shows the posi- 

ion selector method for each video: 

• Input : The algorithm takes as input the total set of objects in 

the dataset (GT) within each frame f at time t ( f t ) —which 

includes the LR and HR subsets—, the total set of SLR objects 

obtained by the DS-GAN generator G from HR objects and the 

search range τ . 
• Ouput : The algorithm returns the association ( A ) of an SLR ob-

ject ( ̂ s i ) for each empty space ( e j ) —ˆ s i can be linked to more

than one e j . 
• Spatial memory (lines 4–17): Given frame f at time t , the pos- 

sible empty spots ( E t ) to place an SLR object ( ̂ s i ) will be those

where an LR object ( s j ) existed in the frames from f t−τ to f t+ τ
(line 4)—s t 

i 
is always valid (line 6). For each frame f t ′ of the in-

terval ( f t−τ , f t+ τ ) the algorithm checks if the LR t 
′ 

objects over-

lap with any of the objects of the current frame ( GT t ) or with

any space already selected ( E t ) (lines 9–15). Otherwise, s t 
′ 

i 
is 

added as new empty spot to E t (line 17). Thus, each possible 

empty spot e t 
j 

corresponds to a position of an LR object ( s t 
′ 

i 
). 

The value of τ will be influenced by the video dataset and, 

more specifically, by the camera motion. The more the camera 

moves, the less the value of τ will be to avoid background mis- 

match. If the camera motion is too quick, the positions of the 

objects in previous or subsequent frames may correspond to an 

erroneous position in the image –e.g., a car on a sidewalk. 
6 
• Object association (lines 18–28): The best ˆ s i is calculated for 

each of the empty spots e t 
j 

by maximizing the motion direction 

and overlap. 
• Optical flow : For each ground truth LR and HR objects 

in the video dataset, an angle ( α) associated with its mo- 

tion vector is pre-calculated through optical flow ( Fig. 5 ) —

lines (20 and 22). As in the segmentation step, the ˆ s i mo- 

tion vector can be derived from its original HR object b i 
( OpticalFlow ( ̂ s i ) = OpticalFlow (b i ) ). Considering the SLR and 

the LR subsets, motion similarity ( �) associated with each 

pair ˆ s i , s j is given by: 

�i, j = 1 − norm (| OpticalFlow (b i ) − OpticalFlow (s j ) | ) 
(5) 
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Algorithm 2: Insertion and blending algorithm. 

Input : A 

t = { (e t 
i 
, ̂  s k (i ) ) . . . (e t n , ̂  s k (n ) ) } ∀ t = 1 , . . . , T , e t 

i 
∈ E t 

Input : Inpainted image: f ′ t 

Input : Pyramid levels: p 

Output : Final synthetic image: f ∗t 
1 f ′′ t ← f ′ t ; m 

′ 
t ← ∅ for i = 1 , . . . , n do 

2 f ′′ t [ e 
t 
i 
] = ˆ s t 

k (i ) 
m 

′ 
t [ ̂ s k (i ) ] = 1 

3 F ′ t ← { f ′ t } ; F ′′ t ← { f ′′ t } ; M 

′′ 
t ← { m 

′ 
t } for i = 1 , . . . , p do 

4 F ′ t ← F ′ t ∪ PyramidDown (F ′ t [ i ]) F 
′′ 

t ← 

F ′′ t ∪ PyramidDown (F ′ t [ i ]) M 

′ 
t ← M 

′ 
t ∪ PyramidDown (F ′ t [ i ]) 

5 L ′ t ← { F ′ t [ p] } ; L ′′ t ← { F ′′ t [ p] } for i = p, . . . , 2 do 

6 L ′ t ← L ′ t ∪ (F ′ t [ i − 1] − PyramidUp (F ′ t [ i ])) L 
′′ 
t ← 

L ′′ t ∪ (F ′′ t [ i − 1] − PyramidUp (F ′′ t [ i ])) 

7 B t ← ∅ ; M 

′′ 
t ← Reverse (M 

′′ 
t ) for i = 1 , . . . , p do 

8 b = L ′ t [ i ] × M 

′ 
t [ i ] + L ′′ t × (1 − M 

′ 
t [ i ]) B t ← B t ∪ b 

9 b ← B t [1] for i = 2 , . . . , p do 

10 b = PyramidUp (b) + B t [ i ] 

11 f ∗t ← b

4

i

4

G

s

l

F

t

D

c

h

v

i

s

s

s

o

o

d

t

e

a

W

f

a

T

t

• Overlap : Likewise, the ˆ s i size can be derived from its origi- 

nal HR object b i ( w ( ̂ s i ) = 

w (b i ) 
r ; h ( ̂ s i ) = 

h (b i ) 
r ). Then, the over-

lap between ˆ s i and s j is computed using IoU. 

Finally, the i th SLR object selected to fill the position e t 
j 

will be

given by: 

i = max (�i, j + IoU ( ̂  s k ( j) , e 
t 
j )) ∀ t = 1 , . . . , T , e t j ∈ E t , (6)

.2.2. Inpainting 

The position selector procedure considers each s t 
j 

in f t as an 

mpty spot e t 
j 

for filling with ˆ s i . In these situations, it is manda- 

ory to remove s t 
j 

associated to e t 
j 

via inpainting before inserting its 

air. This ensures that the newly generated object is then blended 

ith a uniform background which is the result of the inpainting. To 

his end we perform image inpainting using DeepFill [36] . DeepFill 

s a generative model-based approach which can synthesize novel 

mage structures using surrounding image features. 

Deepfill takes as input the frame f t and a mask m t and returns 

he same image f ′ t but with the empty regions filled. For generat- 

ng the mask m t associated with the frame f t , the bounding boxes 

f the selected LR objects s t 
i 
∈ E t will be considered, so that those

ixels contained in them will be flagged ( m t = 1 ). 

The generator comprises two encoder-decoder networks for two 

ifferent purposes. The first one —coarse network— aims to make 

n initial coarse prediction and, the second network —refinement 

etwork— takes the coarse prediction as inputs and predicts the 

nal result f ′ t . The reason for these two networks is intuitive: the 

efinement network sees a more complete scene than the original 

mage with missing regions, so its encoder can better learn feature 

epresentation than the coarse network. 

As LR t may be surrounded by other objects, it is interesting to 

orrow distant image features within the image without objects. 

his is addressed by DeepFill with two parallel refinement network 

ncoders concatenated at the end into a single decoder. The stan- 

ard encoder specifically focuses on refining local contents with 

ayer-by-layer (dilated) convolution, while the attention encoder 

ries to capture background interest features. 

.2.3. Insertion and blending 

As a final stage, the pipeline blends the corresponding SLR ob- 

ect ˆ s i obtained by Eq. (6) over an f ′ t inpainted image obtained in 

he previous step in each of the spots e t 
j 

to generate f ∗t . First, the

egmented object ˆ s i is placed in the selected position e t 
j 
. Then, the 

lending step is required to improve color consistencies and to soft 

he object edges in order to make the composite image look as 

atural as possible. We have adopted the Laplacian pyramid intro- 

uced by Burt and Adelson [37] to blend the SLR objects into the 

ideo frames. 

This blending method takes as input an inpainted video frame 

f ′ t , the copy-pasted image f ′′ t and the mask image m 

′ 
t that points 

ut where to blend. In the inpainting stage, the flagged pixels in 

 t are those inside the bounding box ground truth, but in m 

′ 
t the 

agged pixels are those from the SLR segmented pixels. Algorithm 

etails the procedure to obtain the final synthetic video frame: 

1. Create the temporal image f ′′ t by copy-pasting each ˆ s t 
k (i ) 

object 

in e t 
i 

on f ′ t (line 3). Generate the mask m 

′ 
t by flagging those 

pixels that belong to ˆ s t 
k (i ) 

(line 4). 

2. Compute p levels of Gaussian pyramids for f ′ t , f ′′ t and m 

′ 
t (lines 

5–9). Each Gaussian pyramid level is the result of blurring and 

downsampling the previous one. 

3. From the Gaussian pyramids, calculate the Laplacian pyramid 

for f ′ t and f ′′ t (lines 10–13). Each Laplacian pyramid level is 

the result of subtracting each Gaussian pyramid level with the 

up-sampled and blurred previous one. The smaller level in the 
7 
Laplacian pyramid is the same as the smaller in Gaussian pyra- 

mid. 

4. Next, each level of the Laplacian pyramid is blended accord- 

ing to m 

′ 
t of the corresponding Gaussian level (line 16). The set 

of masks ( M 

′ 
t ) is previously reversed to match the dimensions 

(line 14). 

5. Finally, from this blended pyramid, the output image ( f ∗t ) is re- 

constructed by up-sampling and blurring each level and adding 

it to the next one (line 18–21). 

. Experiments 

In this section we address the datasets, evaluation metrics and 

mplementation details to validate our approach. 

.1. DS-GAN 

For this experimentation, the SLR objects generated by the DS- 

AN are compared with the LR objects —aiming for the greatest 

imilarity— as well as with the resizing functions: linear interpo- 

ation, bicubic interpolation, nearest neighbours and Lanczos [41] . 

or this purpose, two metrics will be used to validate the quality of 

he synthetic objects generated by DS-GAN: the Frechet Inception 

istance (FID) [42] and object classification. 

FID is a popular metric for comparing the feature vectors cal- 

ulated for real and generated images. The FID score summarizes 

ow similar the two groups are in terms of statistics on computer 

ision features of the raw images calculated using a pre-trained 

mage classification model. The lower the scores the greater the 

imilarity of the two groups, meaning that they have more similar 

tatistics, which is the purpose of our DS-GAN. 

To support the above metrics, we also train an LR object clas- 

ifier which differentiates between background (negative) and LR 

bject (positive). We resort to this metric since it is closer to the 

bjective of the full pipeline, i.e., the improvement of small object 

etection. On the one hand, the classifier is trained with the LR 

raining set as positive examples and a background set as negative 

xamples. On the other hand, the SLR set is used for positive ex- 

mples and keeping the same backgrounds as negative examples. 

e have generated different SLR sets, one for each of the resizing 

unctions, and another one for the DS-GAN. All the learned models 

re evaluated with the LR testing subset and different backgrounds. 

he higher the accuracy, the better the quality of the objects syn- 

hetically generated. 
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Fig. 6. Real HR samples (left), and real LR samples (right). 
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The DS-GAN generator architecture has a final stride 4 × smaller 

han the fixed size input image ( r = 4 ). Most of the popular

atasets —MS COCO [7] , UAVDT [11] , VisDrone [12] — consider as 

mall objects those smaller than 32 × 32 pixels. Therefore, we will 

rain the DS-GAN to learn how to reduce HR objects to that range. 

We validate our data augmentation for small object detection 

pproach with the car category on the UAVDT dataset [11] . This 

ataset was selected because the whole set of objects are vehi- 

les, which allows us to isolate the results for a specific category, 

nd also provides a large number of small instances in the test- 

ng set. Quantitatively, UAVDT comprises 23,829 frames of training 

ata and 16,580 frames of test data, belonging to 30 and 20 videos 

f ≈ 1024 × 540 resolution, respectively. The videos are recorded 

ith an UAV platform over different urban areas. UAVDT includes a 

otal of 394,633 car instances for training, where 107,091 are con- 

idered within the small subset (52.38%), and a total of 361,055 

ar instances for testing, where 274,438 are considered within the 

mall subset (76.01%). 

Considering that the camera motion in UAVDT slightly modifies 

he appearance of consecutive frames, in this section, only 10% of 

he video frames are selected for training to avoid overfitting. The 

etails on the datasets for evaluating DS-GAN are given below: 

• Real HR subset : To obtain the HR objects we select those ob- 

jects from 48 × 48 to 128 × 128 pixels, and we add context to 

have an area of 128 × 128 pixels in objects with a smaller area. 

These conditions result in a total number of 517 HR objects in 

the UAVDT dataset. To have a larger number, we also select the 

cars in the VisDrone dataset with the same restrictions. Vis- 

Drone is a dataset with a very similar nature to that of UAVDT, 

i.e., high-resolution videos recorded with UAVs. The total num- 

ber of HR objects is 5731 after joining both datasets. Some HR 

examples are shown in Fig. 6 (left). 
• Real LR training subset : To obtain the LR objects we select 

those objects under 32 × 32 with sufficient context to cover 

an area of 32 × 32 pixels. This results in a total of 18,901 ob-

jects coming from the UAVDT training set —these objects are 

a part of the UAVDT small subset, where redundant instances 

have been discarded. However, in order to simulate a small ob- 

ject scarcity scenario, the LR subset will only consist of approx- 

imately 25% of the videos of the UAVDT dataset. The selected 

videos include a total of 5226 LR objects. Some LR examples 

are shown in Fig. 6 (right). 
• Real LR testing subset : To evaluate the performance DS-GAN 

and the pipeline we use the 274,438 small objects coming from 

the UAVDT testing set with sufficient context to cover an area 

of 32 × 32 pixels. 

For training the DS-GAN, we augment the training data by ap- 

lying random image flipping to increase diversity. We provide a 
8 
ifferent noise vector ( z) sampled from a normal distribution to 

ach HR object in order to simulate a large variety of image degra- 

ation types. DS-GAN is trained during 10 0 0 epochs with an up- 

ate ratio 1:1 between the discriminator and the generator, and it 

s optimized with Adam [43] with parameters β1 = 0 and β2 = 0.9. 

e set the base learning rate to 1e-4, decreasing it twice during 

he training phase by a factor of 10. We use λ = 0.01 in Eq. (2) to

alance the relevance of the two components in the image gener- 

tion process —l G 
adv is two orders of magnitude higher than l pixel . 

hus, the adversarial loss helps to learn to contaminate the HR in- 

ut with noise and artefacts coming from the LR subset, and the 

ixel loss helps to preserve the visual features from the original 

nput. 

Figure 7 a and b show the experimental results to evaluate the 

uality of the synthetic objects generated by DS-GAN over the LR 

esting subset of UAVDT. Our approach is compared to the main re- 

caling functions: linear and bicubic interpolation, nearest neigh- 

ors and Lanczos [41] . The reference values are obtained by the 

odels trained on the LR training subset (blue bars). 

The FID value in Fig. 7 is measured using the final average pool- 

ng features in Inception-v3 [44] . The reference value of the LR 

raining objects compared with the LR testing subset is 27.62. The 

raph of Fig. 7 shows how the small objects obtained by any re- 

caling function lead to values above 100, which is a poor perfor- 

ance relative to the reference value. The FID value of the SLR ob- 

ects generated by DS-GAN for the LR test objects is 45.15. This FID 

alue shows how the objects generated by the DS-GAN have better 

uality than those obtained by a simple re-scaling function, i.e., are 

ore similar to the real ones. 

To complement the FID distance, we have trained a classifica- 

ion network (ResNet-50 pre-trained on ImageNet [8] ) with each 

f the defined subsets and tested them with the LR testing sub- 

et. Figure 7 b shows, again, how the SLR object generated by DS- 

AN provides a considerably higher accuracy (83.06%) than the re- 

caling functions ( ≈74%), and are very close to the reference accu- 

acy obtained by the LR training subset (85.16%). 

These results validate the conclusions reached in [17,18] , since 

e-scaling functions introduce artefacts that make the output 

bject differ considerably from real-world objects. Even though 

hese differences are not visually appreciable —as we will see in 

ig. 9 (left) below—, they are identified by the layers within the 

NNs (Inception-v3 and ResNet-50). DS-GAN significantly improves 

his issue by learning the different artefacts found in real-world 

bjects. 

.2. Data augmentation pipeline 

In order to evaluate our pipeline for data augmentation for 

mall object detection, shown in Fig. 2 , we use the UAVDT detec- 
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Fig. 7. FID (a) and classification accuracy (b) for different subsampling methods on the LR testing subset of UAVDT. 

Table 1 

Comparison of several data augmentation approaches for small object detection 

with FPN, STDnet and CenterNet networks on the small object testing subset of 

UAVDT. The training phase was conducted by simulating a low instance small ob- 

ject scenario —25% of the UAVDT training videos. 

Data 

augmentation 

FPN STDnet CenterNet 

AP @ . 5 s AP @[ . 5 ,. 95] 
s AP @ . 5 s AP @[ . 5 ,. 95] 

s AP @ . 5 s AP @[ . 5 ,. 95] 
s 

LR 39.0 17.6 41.2 19.0 51.9 22.6 

LR + Interp. 38.1 16.5 38.8 16.9 46.9 18.4 

LR + SLR 46.3 20.1 48.1 20.6 60.6 26.1 

LR + SLR ×6 50.9 22.5 51.5 23.4 63.5 26.8 
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detection. 
ion metrics that were originally defined by the MS COCO dataset, 

.e., AP @ . 5 and AP @[ . 5 ,. 95] . STDnet [4] , FPN [3] and CenterNet [45] are 

dopted as the baseline detection networks. 

The implementation details for DS-GAN are those defined in 

he previous section. The other component that requires training 

s DeepFill for image inpainting. In this case, the default parame- 

ers [36] are used to train the model on the UAVDT dataset. We 

ave set τ = 40 as the frame search range for the position selec- 

or. The rest of the components of the pipeline shown in Fig. 2 are

lso configured with their default values. 

We detail the results obtained by STDnet [4] , FPN [3] and Cen- 

erNet [45] on the UAVDT testing set for small objects. The training 

hase for all the models was conducted from the same 25% of the 

ideos as in the DS-GAN training, in order to simulate a scenario 

ith a low number of LR objects, up to the whole UAVDT training 

et. Here, the LR label means that no data augmentation has been 

pplied for training, so the images come directly from the standard 

AVDT training set. The LR + Interp. and LR + SLR labels mean the 

ame images with real objects as in LR , and also duplicating those 

mages replacing the real LR objects with synthetic objects ones 

enerated with the pipeline using bilinear interpolation and DS- 

AN, respectively. So that, in LR + Interp. and LR + SLR , the number

f synthetic objects is equal to the number of LR objects. Notice 

hat LR + Interp. is a more elaborated solution than [5] , as it is the

roposed pipeline, but replacing DS-GAN by bilinear interpolation. 

inally, the LR + SLR ×n labels mean that the number of SLR objects

s n times higher than the number of LR objects. 

We do not provide an ablation study on the influence of the 

ifferent com ponents of the pipeline but DS-GAN, as the process 

ould be incomplete —without segmentation—, it would create in- 

oherent scenes —without position selecting—, or the generated 

ynthetic small objects would have artifacts in the background sur- 

oundings —without inpainting or blending. 

Table 1 studies the influence of different data augmentation 

ethods for a scenario where the number of small objects for the 

raining phase is reduced. So that, the first row refers only to the 

se of real objects contained in the 25% of the videos. The use of 

ata augmentation with DS-GAN improves the performance of FPN 

y 4.9% AP 
@[ . 5 ,. 95] 
s and 11.9% AP @ . 5 

s , STDnet by 4.4% AP 
@[ . 5 ,. 95] 
s and 
9

0.3% AP @ . 5 
s , and CenterNet by 4.2% AP 

@[ . 5 ,. 95] 
s and 11.6% AP @ . 5 

s —

able 1 , rows 1 and 4. It should be noted that the greatest influ-

nce is given by the nature of synthetic objects. If they did not 

ontain useful information for learning the model, they would not 

mprove the performance, or even worsen it, as seen with the bi- 

inear interpolation method in Table 1 . The improvement from data 

ugmentation with objects re-scaled by bilinear interpolation to 

ynthetic objects generated by DS-GAN is of 3.6% AP 
@[ . 5 ,. 95] 
s and 

.2% AP @ . 5 
s in FPN, 3.7% AP 

@[ . 5 ,. 95] 
s and 9.3% AP @ . 5 

s in STDnet, and 

,7% AP 
@[ . 5 ,. 95] 
s and 13.7% AP @ . 5 

s in CenterNet —Table 1 , rows 2 and 

. 

Fig. 8 details the extended results for FPN and STDnet for the 

se of a different percentage of videos in the training phase and, 

lso, shows how AP changes by increasing the number of SLR ob- 

ects ×n in the training phase. These graphs are designed to show 

he improvement due to data augmentation for different percent- 

ges of training videos —with real LR objects. It is possible to ap- 

reciate a great improvement in AP for those solutions based on 

ur data augmentation approach —the greater the number of SLR, 

he greater the improvement— especially when the percentage of 

raining videos is low. As the percentage of training videos in- 

reases, the improvement is reduced, as there are more real objects 

n the training set. From the use of 50% of the videos onwards the 

P shows a smaller improvement rate, so does the gain by adding 

LR objects. That is, when adding more training images with real 

bjects performance does not improve, and thus it is useless to try 

o use data augmentation techniques. 

As expected, as training examples increase, so does AP. How- 

ver, as mentioned above, the improvement from 50% of videos is 

onsiderably lower, moving from 25.9% AP 
@[ . 5 ,. 95] 
s for 50% of the 

ideos to 26.8% AP 
@[ . 5 ,. 95] 
s for FPN and the whole UAVDT train- 

ng set (blue line, left). Similarly, the performance of the trained 

odel with data augmentation increases as objects are added, but 

he gain over the baseline is lower above 50% of training videos. 

he same conclusions can be drawn in the case of STDnet (blue 

ine, right). 

Moreover, the models are able to take advantage of the increas- 

ng number of SLR objects until reaching a point where the pro- 

ression stops —9 × with respect to LR objects. To synthesize new 

bjects above SLR ×3 requires to triplicate the images and exchange 

he synthetic objects, because there are not enough empty spots 

vailable where to insert SLR objects. This decreases the context 

ariability, and thus the performance improvement. 

Finally, we want to highlight how the generated synthetic ob- 

ects constantly improve the performance even for the complete 

raining set (100%), where they improve AP 
@[ . 5 ,. 95] 
s . In contrast, the 

bjects generated by bilinear interpolation do not provide infor- 

ation, and even they harm the learning of the models (green 

ines). This confirms the high quality of the synthetic dataset pro- 

uced by our pipeline for data augmentation for small object 
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Fig. 8. AP @[ . 5 ,. 95] 
s for small object detection in UAVDT for different percentage of training videos with the FPN and STDnet architectures. 

Fig. 9. Synthetic objects obtained by bilinear interpolation (left); synthetic objects generated by the DS-GAN (middle); and real LR objects (right). 

Fig. 10. Data augmentation for small objects examples from UAVDT training set provided by our pipeline. From left to right and from top to bottom: standard real frame 

with LR objects; LR objects replaced by SLR objects; SLR ×2 objects; and SLR ×3 objects. 
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As qualitative results, Fig. 9 compares the synthetic objects 

oming from a simple re-scaling function with those generated 

y the DS-GAN and with the real LR objects. Objects obtained 

y simple re-scaling seem artificially defined with blurry arte- 

acts. Objects from DS-GAN look more closely to real LR objects 

s they contain artefacts and are contaminated by low-resolution 

mall objects features. Fig. 10 displays the outcome of the com- 

lete pipeline for different UAVDT scenarios. 

We have also tested the data augmentation pipeline on the 

SAID dataset [19] . iSAID has 1869 high-resolution aerial images 

ith objects from 15 categories, 1411 for training and 458 for test- 

ng. As the pipeline requires for training and testing several subsets 

a real HR subset, and a real LR training and testing subsets—, we 

elected the categories with a sufficient number of objects in each 

ubset. The number of objects selected for training is about 15% of 
s

10 
he total number of annotated objects —6,628 objects for the LR 

ubset and 1405 for the HR subset. 

Table 2 shows the results for the FPN detector for our augmen- 

ation method compared with the baseline on iSAID. The use of 

ata augmentation with DS-GAN improves the performance of FPN 

y 2.6% AP 
@[ . 5 ,. 95] 
s and 4.7% AP @ . 5 

s . Depending on the category, the 

P @ . 5 
s increases between 1.5 (ship) to 8.2 (swimming pool). More- 

ver, DS-GAN does not harm the performance of large objects de- 

ection (AP 
@[ . 5 ,. 95] 

l 
), and even it improves the medium objects de- 

ection (AP 
@[ . 5 ,. 95] 
m 

) —as the larger small objects are close in size to 

he smaller medium objects. 

Even though the performance of DS-GAN is good on iSAID, it 

s not as impressive as on UAVDT. We argue that there are two 

easons for that. First, iSAID is an image dataset, so the position 

elector of DS-GAN has less places to insert synthetic objects in 
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Table 2 

Results of FPN on iSAID. The training phase was conducted by simulating a low instance small object 

scenario —real LR training subset. The results for the different categories —storage tank (ST), large 

vehicle (LV), plane (P), ship (S), and swimming pool (SP)— are for AP @ . 5 s . 

AP @[ . 5 ,. 95] 
s AP @[ . 5 ,. 95] 

m AP @[ . 5 ,. 95] 

l 
AP @ . 5 s ST LV P S SP 

LR 24.8 45.0 31.3 43.2 38.2 14.6 62.3 50.0 50.7 

LR + SLR 27.4 47.1 31.1 47.9 41.8 16.6 70.4 51.5 58.9 
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[  
omparison with a video dataset like UAVDT. The second reason 

s that iSAID contains aerial images that are taken much further 

way and for objects much larger —the objects undergo a higher 

cale change— than those of the videos of UAVDT, so the texture of 

he small objects of UAVDT is much better than that of iSAID. 

The runtimes for the generation of a dataset with synthetic ob- 

ects ready to be used for training an object detector are quite fast. 

he small object generation, which includes the execution of the 

AN and the object segmentation, creates 12.6 objects per second. 

he small object integration into the image, which involves posi- 

ion selection, object inpainting and object blending, inserts 10.1 

bjects per second. 

. Conclusions 

We have designed a novel a pipeline for data augmentation for 

mall object detection. The pipeline takes a dataset as input and 

eturns the same dataset with the images populated with anno- 

ated small synthetic objects. The proposed pipeline requires both 

R and LR objects to train the DS-GAN and, also, a trained ob- 

ect segmentation system for HR objects. The approaches based on 

uper-resolution through GANs also need both HR and LR objects 

or training [21–24] . However, our proposal has an advantage over 

uper-resolution-based approaches, as the GAN only has to be ex- 

cuted during the training stage in order to generate the synthetic 

R objects, so at inference time —small object detection— only the 

bject detector has to be run. On the other hand, super-resolution- 

ased pipelines require both the execution of the generator of the 

AN and the object detector at the inference stage. 

The quality of small objects generated by DS-GAN has been val- 

dated in an isolated way. Experiments show that the FID value for 

he SLR objects is very close to the FID value for real LR objects, 

s opposed to the simple downsampled objects, which have a very 

istant FID value. In addition, we reached the same conclusion by 

raining a standard CNN classifier. So that, we confirm that small 

bjects generated by DS-GAN boost small object classification. On 

he contrary, the small objects generated by direct large objects 

e-scaling are useless for data augmentation to recognise small ob- 

ects, as the artefacts introduced by these functions differ greatly 

rom real-world small objects. 

The proposed pipeline for data augmentation method improves 

he performance of state-of-the-art models in the detection of 

mall objects on both the UAVDT and iSAID datasets. The results 

n the UAVDT test set show an improvement of 10.3–11.9 AP @ . 5 
s , 

epending on the detector, in a scenario where the number of 

raining small objects is limited –only 25% of the videos are con- 

idered. For iSAID, the improvement is of 4.7 AP @ . 5 
s for a scenario 

n which only the 15% of objects were included in the LR subset. 

hese results validate the initial hypothesis that, when a dataset 

ontains few small objects, the proposed data augmentation tech- 

ique boosts the performance of the detector. 
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