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Abstract Wastewater treatment process design involves the optimization of
multiple conflicting objectives. The detection of different equivalent solutions
in terms of objective values is crucial for designers in order to efficiently switch
to the new optimal operation policies if changes in the process conditions or
new constraints occur. In this work, the dynamic multi-objective optimization
of a municipal wastewater treatment plant model is carried out. The aim is to
simultaneously optimize an economic cost term and an effluent quality index.
The selected process variables for the optimization are i) an aeration factor
in the aerated tank previous to the clarifier, and ii) an internal recycle flow
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rate. Their time profiles are approximated using the control vector parameter-
ization (CVP) technique. To solve the multi-objective problem and find the
Pareto front, the NSGA-II algorithm has been used. The simulation of differ-
ent realistic scenarios which impose operational constraints (e.g., maintenance
operations) reveals that, indeed, multiple solutions exist at least in some areas
of the Pareto front. It is observed that different control profiles can produce
nearly identical results in terms of Pareto solutions. The a priori knowledge of
these equivalent solutions for different scenarios provides the decision makers
with alternative choices to be adapted to their organizations policies when
events altering decision variables bounds or adding new constraints to the
process model occur.

Keywords wastewater treatment plant · multiobjective optimization ·
dynamic optimization · multiple solutions

1 Introduction

Wastewater treatment plants (WWTPs) are crucial nowadays to process the
industrial and/or urban effluents generated in modern societies. Many WWTPs
use activated sludge to eliminate organic and nitrogen compounds. Such plants,
when designed to treat high volumes of water, usually consist of (i) an aerobic
area, in which organic compounds as well as ammonia and nitrites are oxidized,
(ii) an anoxic area, in which nitrates are reduced to gaseous nitrogen, and (iii)
a clarifier to separate the microbial culture from the water being treated.

The reduction of the WWTP carbon footprint is not just an environmental
issue. There are also important economic repercussions, and benchmarking is a
powerful tool to help reducing economical costs [37]. For instance, wastewater
treatment accounts for about 3% of the U.S. electrical energy load similar to
that in other developed countries [35]. Depending on the particular WWTP
considered, energy becomes the most important cost factor or the second after
personnel costs [38]. Among the energy costs, aeration and recycle costs are
the highest.

Due to the strict legal and environmental standards that WWTPs must
meet, efficient optimization and control tools are mandatory to achieve an
optimal-cost operation when dealing with such systems. Model-based opti-
mization is one the most efficient approaches to carry out this task [41,48]. In
particular, dynamic optimization (i.e., optimization considering time-varying
variables) is a powerful tool for engineers and practitioners in order to find the
optimal operating conditions and/or to infer the optimal design of WWTPs. A
key aspect in the design and optimization of WWTPs is that the mathematical
models describing the processes are inherently nonlinear and dynamic. This
requires the use of robust tools to perform the process optimization. As an
additional obstacle to find the optimal operating conditions of such processes,
the presence of several conflicting objectives to be optimized at the same time
must be considered (e.g. productivity and sustainability), which advises the
use of sophisticated formulations to find the Pareto front. Typical objective
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functions usually include operational costs and product quality measured as
the amount of pollutants in the effluent.

Some recent examples of the literature that address the problem of finding
the optimal operating conditions in WWTPs are the following: Lukasse and
Keesman [32] performed a simulation study using an optimal control method-
ology and selecting from among the best simulated situations; Samuelsson et
al. [42] used operational maps from simulations to choose optimal set points;
Yong et al. [52] evaluated different control strategies using the COST Simula-
tion Benchmark Model [10]; Moles et al. [36] tested several global optimization
methods for simultaneously optimizing operation and design of a WWTP lo-
cated in Spain; Schütze et al. [43] proposed an integrated approach for the
optimization of control strategies; Egea et al. [15] used surrogate model based
optimization to accelerate the solution finding of the computationally expen-
sive model of a WWTP. In single-objective optimization the different authors
have usually focused in the aeration energy, which causes the highest econom-
ical costs in WWTPs and its optimization can produce important savings [2,
3,7,8,33,39].

Design and optimization of WWTPs allows the selection of multiple objec-
tives related to operation, physical design, location and others [13,16]. How-
ever, most of the scientific literature refers to optimization and control of the
operational aspects. For instance, Fu et al. [19] considered different objectives
mainly based on the effluent quality and pumping energy. Flores-Alsina et
al. [18] combined multivariate statistics and life cycle assessment concepts to
choose a set of different criteria to be optimized simultaneously. Zhang et al.
[53] proposed a multi-objective optimization problem where multiple effluent
quality indexes as well as the treatment costs where optimized with the help
of a surrogate model. Beraud et al. [6] solved a multi-objective optimization
problem similar to the one presented in this work. They considered the simul-
taneous optimization of the effluent quality and the energy consumption. More
recently, Hreiz et al. [27] studied the influence of different time-varying vari-
ables over two conflicting objectives, namely the mean nitrogen concentration
in the effluent and the net electrical consumption in a small size WWTP. In
this work, the authors included the idea of excess sludge incineration to pro-
duce energy. Chen et al. [9] tested different control strategies in an activated
sludge plant using the SA2/OCM process to simultaneously optimize the ef-
fluent quality and the operational costs. A recent contribution [40] analyzed
the dynamic set-point controller profiles in a WWTP by multi-objective opti-
mization. More examples about multi-objective and/or dynamic optimization
in WWTPs can be found in the review by Hreiz et al. [26].

The most popular optimization algorithm to solve multi-objective opti-
mization problems, which has been used in many of the references cited above,
is NSGA-II [12]. This evolutionary algorithm has been modified and combined
with other optimization approaches (e.g., [17]), becoming one of the most im-
portant references for multi-objective optimization, with implementations in
many programming languages. Other evolutionary methods or metaheuris-
tics have also been used for solving multi-objective problems in WWTPs [23].
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WWPTs model- based design and optimization are computationally expensive
tasks. For this reason, different researchers have used surrogate model-based
optimization methods alone or in combination with evolutionary algorithms.
For instance, Fu et al. [20] compared the results of the optimization or urban
wastewater systems using NSGA-II and ParEGO, a surrogate model-based
multi-objective optimization algorithm [30]. More recently, Hartikainen et al.
[24] implemented the approximation method PAINT within an interactive op-
timization platform to construct computationally inexpensive surrogate prob-
lems for the original wastewater treatment problem.

The aim of this work is to find and analyze the optimal control profiles
of a WWTP model that uses the activated sludge process in a multicriteria
approach. Both the aeration and recycle rate policies are investigated in order
to simultaneously optimize an economic term and the effluent quality. Pre-
liminary optimization results suggest that different control profiles can lead to
equivalent solutions in terms of objective values. These equivalent solutions can
be calculated by different procedures. Here we have implemented two different
(possible) operational scenarios in which the control variables are forced to
change their values in a period of time to simulate maintenance operations or
even a failure. Knowing these (alternative) equivalent solutions can be of great
importance for WWTP plant operators to know which operational conditions
must be applied in case of certain events to maintain the desired standards as
much as possible. This approach is related to the concepts introduced by Lewis
et al. [31] that explore the idea of dynamic s-Pareto frontiers and preferences,
or by Vallerio et al. [47], which consider operational risks and uncertainties as
additional objectives to solve multi-objective optimization problems of non-
linear dynamic processes. The idea of simulating possible realistic scenarios
in a multiobjective formulation could be compatible with the interactive op-
timization platforms to analyze WWTP optimization problems proposed in
recent years [22,24].

This work is organized as follows: section 2.1 presents a description of
the WWTP model under study; in section 2.2 the multi-objective dynamic
optimization problem is formulated, and the obtained results considering an
undisturbed formulation and two possible scenarios are presented, compared
and discussed in section 3. The final section depicts the main conclusions of
the study.

2 Methods

2.1 WWTP model description

The WWTP which is the object of this study is modelled by the Benchmark
Simulation Model No. 1 (BSM1) which can be defined as a simulation protocol
defining a plant layout, a process model, influent data, test procedures and
evaluation criteria [10,29]). It includes a pre-denitrification system consisting
of 5 main units, the first two being anoxic and the rest aerobic. The scheme
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of the plant also includes a secondary clarifier that separates the microbial
culture from the effluent treated. Figure 1 shows the plant layout.

Fig. 1: COST Benchmark WWTP model layout

There are two recycle loops in the plant: internal and external. The inter-
nal one recycles nitrates from the last (aerated) reactor to the first (anoxic)
reactor. The external one recycles activated sludge and connects the bottom
of the clarifier with the plant entrance.

The BSM1 arose to test different control strategies for the operation of
this type of plants regarding carbon and nitrogen removal. It has been used
in hundreds of applications regarding WWT Plants [28]. The system dynam-
ics are described by algebraic mass balance equations, ordinary differential
equations for the biological processes in the bioreactors, as defined by the
ASM1-model [25], and the double-exponential settling velocity function [46],
for a total number of around 100 differential algebraic equations [1]. The vol-
umes of the reactors are, respectively, 1000 m3 for the anoxic units and 1333
m3 for the aerated ones. The secondary settler has 10 layers with a total area
of 1500 m2 and a depth of 4 m.

The influent dynamics are also defined in BSM1 and three different weather
conditions can be chosen: dry, rain and storm weather. These are introduced
as input files and can be used as standard and realistic representation of influ-
ents in the mentioned weather conditions, although there are several different
approaches to generate such influent dynamics [34]. The files contain influent
information every 15 minutes for a total period of 14 days. Evaluation func-
tions comprise a 100-day initialization period until steady state is achieved,
followed by a period of 14 days of a type of weather defined by the correspond-
ing input file. Calculations on the plant performance are based on the data
obtained from these last 14 days.

Given the physical design of the plant, there is a number of candidate con-
trol variables to optimize different possible objectives. The BSM1 defines two



6 Vı́ctor M. Ortiz-Mart́ınez et al.

control variables by default: nitrate concentration in reactor 2 and dissolved
oxygen in reactor 5. In the original implementation two controllers are mod-
eled to control the mentioned variables by manipulating the internal recycle
flow rate (Qintr) and the oxygen transfer coefficient in reactor 5 (KLa5). In
this work we have used the “open-loop” implementation of the BSM1 and ap-
proximated the mentioned manipulated variables using zero-order polynomials
according to the control vector parametrization approach (CVP, see section
2.2.1) [50,51]. The aim is to find the manipulated variables dynamic profiles to
simultaneously optimize two performance indexes: one related to the process
economy and another one related to the process sustainability. The problem
formulation and further details on the solving approach are given in the fol-
lowing section.

2.2 Problem formulation

Different criteria can be defined in BSM1 in order to find efficient and sustain-
able operating conditions. The most usual criteria are related to economical
costs, often as a weighted sum of aeration and pumping energy costs (which
represent the highest energetic cost in WWTPs) plus the cost of wasted sludge
treatment, and the effluent quality considering all the possible remaining pollu-
tants and their concentrations in the outlet stream. These two criteria counter
each other, allowing multiobjective formulations to be made. The economical
cost term has been defined in this work as follows.

C = AE + PE + 3Psludge (1)

where AE stands for the aeration energy needed in the aerated tanks in
kWhd−1, PE is the pumping energy needed in the recycles, also in kWhd−1,
and Psludge is the wasted sludge that must be treated in kgd−1. Those terms
are weighted according to [49]. The aeration energy is given by:

AE =
24

T

∫ t14days

t0

5∑
i=3

(
0.0007KLai(t)

2 + 0.3267KLai(t)
)
dt (2)

where KLai(t) is the mass transfer coefficient in the i-th aerated reactor at
time t (in units of h−1).

The pumping energy term is defined as:

PE =
0.04

T

∫ t14days

t0

(Qintr(t) +Qr(t) +Qw(t)) dt (3)

where Qintr(t) is the internal recycle flow rate, Qr(t) is the return sludge
recycle flow rate and Qw(t) is the wasted sludge flow rate, all of them at time
t with units m3d−1.

The wasted sludge to be treated, Psludge, is calculated as:

Psludge = TSSw ·Qw(t) (4)
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where TSSw is the total suspended solids in the flow wastage.
Regarding the second criterion, the effluent quality in kg pollution units

d−1 is defined as follows:

EQ =
1

T · 1000

∫ t14days

t0

βSS · SSe(t) + βCOD · CODe(t)+
+βBOD ·BODe(t) + βNkj · SNkj,e(t)+
+βNO · SNO,e(t)

Qe(t)dt

(5)
where T is the time horizon (i.e. 14 days), SSe, CODe, BODe, SNkj,e and
SNO,e are the total suspended solids, chemical oxygen demand, biological
oxygen demand, total Kjeldahl nitrogen and nitrites/nitrates nitrogen, respec-
tively, all of them measured in the effluent. Qe is the effluent flow rate. The
weighting coefficients βi are taken from [48].

Once the objectives have been defined the general multiobjective dynamic
optimization problem is formulated, which aims to find the time varying con-
trol profiles (u(t)) in order to optimize a given set of objectives represented
as cost functions (F) subject to the system dynamics and possible algebraic
constraints [5]. Mathematically:

min
u(t)

F (x(t),u(t)) (6)

subject to:

dx

dt
= Ψ (x(t),u(t), t) (7)

x(t0) = x0 (8)

h (x(t),u(t)) = 0 (9)

g (x(t),u(t)) ≤ 0 (10)

uL ≤ u(t) ≤ uU (11)

where the vector of objective functions, F (Equation 6), contains all the objec-
tives considered in the problem. In our case, the objectives were already defined
as f1 = operational costs (Equation 1) and f2 = effluent quality (Equation 5).
x is the vector of state variables (i.e. those variables that change with time and
that can not be controlled, such as pollutants concentrations). Copp described
a total number of 13 variables for this model [10]. u is the vector of control vari-
ables (the aeration factor in the last aerated reactor and the internal recycle
flow rate in our case) whose variation with time need to be found to optimize
the objective functions. Equation 7 represents the system dynamics (dynamic
mathematical model that defines the BSM1). Equation 8 represents the values
of the state variables at the beginning of the process (t = 0). Equations 9 and
10 represent, respectively, equality and inequality constraints, which can be
considered at the end of the process or at intermediate times (e.g. a maximum
pollutant concentration in the effluent). In our formulation no additional con-
straints have been imposed apart from the process dynamics. Finally, Equation
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11 corresponds to the lower and upper bounds for the control variables (e.g.,
the minimum and maximum aeration and internal recycle flow rate allowed
for the operation). In our problem those bounds are defined as [0, 360] h−1 for
KLa5 and [0, 70000] m3d−1 for Qintr. The values of the operational variables
not considered as control variables (e.g., aeration rates in tanks 1 to 4 as well
as influent, wastage and external recycle flow rates) are those defined in [10]
and remain constant during the optimization procedure. The accurate solution
of the differential-algebraic equation (DAE) system defined in Equation 7 of-
ten requires the use of an implicit ordinary differential equation (ODE) solver.
In this work we have used the ode45 and ode15 included in Matlab-Simulink,
where the BSM1 was implemented. The integral terms included in the objec-
tive functions are numerically solved by discretization, using the same time
step size as in the ODE solution.

2.2.1 CVP for approximating the control variables

A number of solution methods can be used for solving the general dynamic
optimization problem [45]. For the problem formulated above, a control vector
parameterization approach (CVP) is employed. CVP is a direct method which
transforms the original problem into a non-linear programming (NLP) prob-
lem, which must be solved by a (global) optimization solver [5]. This method
enables the discretization of the control problem by dividing the time horizon
into a number of time intervals so that nonlinear programming (NLP) tech-
niques can be applied to the resulting finite-dimensional optimization problem.
According to this method, basis functions, usually low order polynomials, are
used to approximate the control variables within the time intervals. This pa-
rameterization method transforms the infinite-dimensional optimization prob-
lem into a nonlinear programming problem. Thus, the differential equality
constraints describing the system dynamics are integrated for each evaluation
of the performance index of interest. The CVP method has also been used in
other applications involving anoxic / aerated systems [4]. In this work we have
used zero order polynomials (i.e. steps) to approximate our control variables.
We have considered 20 fixed-length time intervals for each control variable,
which results in a non-linear optimization problem with 40 decision variables

2.3 Considered scenarios

The analysis of some adjacent solutions in the Pareto front of the problem for-
mulated in Equations 6-11 suggests that control profiles with different shapes
can lead to very similar solutions in terms of objective values. This can be ob-
served in the Supplementary Information where sweeps of the control profiles
corresponding to all points (200) in the Pareto fronts of the solved problems
are shown as figures. An example is given by the adjacent solutions #33 and
#34 of the undisturbed problem, where differences between control profiles
can be observed whereas the values of the objectives are almost identical. To
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check whether this can be found in other parts of the Pareto front, we pro-
pose a procedure in which extra constraints to the optimization problem are
added so that the shape of some control variables is intentionally changed
with respect to the undisturbed case. From a practical point of view, these
constraints should reflect realistic situations or events that can occur during
practical operations of WWTPs like unexpected failures, maintenance opera-
tions or punctual changes in environmental requirements or energy consump-
tion. The Pareto fronts of the new optimization problems are then compared
with the one of the undisturbed problem to check if there is any kind of over-
lapping. In this study we propose two very simple scenarios. In the first one we
simulate that aeration in tank 5 (corresponding to our first control variable)
does not work for some time at the beginning of the process due to a failure.
In the second one recirculation is not allowed for some days (also at the be-
ginning of the process) simulating maintenance operations. In the considered
scenarios the modification of the optimization problem formulated above is
straightforward: the number of decision variables is reduced. In particular, we
consider only 36 decision variables from the initial set of 40 since we choose 4
time intervals in which the incumbent control variables are forced to be zero.
Other more complex scenarios that involve the formulation of new constraints,
changes in the bounds, etc. can be conceived, but, for illustrating the idea of
multiplicity of solutions, the proposed scenarios are suitable.

2.4 Optimization method

The whole formulation in Equations 6-11 is a non linear programming prob-
lem that must be solved with specific optimization solvers. In the context of
WWTP optimization, Egea et al. [14,15] showed that the associated problems
are multimodal. Further, problems resulting from the application of CVP are
also frequently multimodal. Thus, global optimization solvers must be used.
For problems with multiple (conflicting) objectives like the presented here, the
aim is to find the optimal trade-offs between such objectives. This trade-off is
represented in the Pareto front. All solutions in the Pareto front are optimal
in the sense that it is not possible to improve one of the objectives without
worsening one or more of the rest.

In this work we have used the popular evolutionary multi objective opti-
mization method NSGA-II [12] already mentioned in Section 1, which is used
to capture the Pareto front of the proposed multi-objective model and further-
more, the final optimal control profiles can be selected based on the preference
of the decision-maker. NSGA-II is a revised version of the NSGA [44]. The
NSGA uses an evolutionary process with surrogates for evolutionary operators
including selection, genetic crossover, and genetic mutation. The population
is sorted into a hierarchy of sub-populations based on the ordering of Pareto
dominance. Similarity between members of each sub-group is evaluated on the
Pareto front, and the resulting groups and similarity measures are used to
promote a diverse front of non-dominated solutions. NSGA is a very effective
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algorithm but has been generally criticized for the high computational com-
plexity of non-dominated sorting, the lack of elitism and the need to specify the
sharing parameters. Compared to the simple NSGA algorithm, the NSGA-II
improves the computational efficiency by reducing the time-complexity from
O(MN3) to O(MN2), where M is the number of objectives and N is the size
of the dataset. Furthermore, it has a better sorting algorithm, incorporates
elitism and no sharing parameter needs to be chosen a priori. The NSGA-II
uses (µ + λ)-selection instead of a secondary population as its elitist mech-
anism. The multi-objective optimization was carried out using the following
parameters of the NSGA-II algorithm: binary tournament selection, number of
generations (200), population size (200), crossover probability (0.9), mutation
probability (0.1). The simulation model was implemented using the software
MATLAB & Simulink. Each member of the population was computed using a
cluster with 8 nodes. Such nodes are equipped with 2 Intel Xeon E5-2620 at
2 GHz and 32GB of RAM memory.

3 Results and discussion

The dynamic multiobjective optimization problem formulated above was solved
for the dry-influent data set. A similar procedure could be performed consid-
ering the other weather conditions or a combination of them. The obtained
Pareto fronts for the undisturbed, scenario 1 and scenario 2 problems are
shown in Figure 2. The results correspond to all the 14 operation days. The
shape of the Pareto fronts is similar to that obtained in [11,21,27].

As shown in Figure 2, the Pareto fronts indicate that, as expected, the im-
provement of one objective deteriorates the other, i.e. a lower Effluent Quality
index involves increasing the operational costs and vice-versa. To avoid confu-
sion with the nomenclature, it should be recalled that a lower EQ index means
a higher effluent quality. Regarding the control profiles, three main areas in the
Pareto fronts can be distinguished: a) an area with low operational costs and
poor effluent quality (Area 1), b) an area with high operational costs and good
effluent quality (Area 2) and, c) an intermediate area (Area 3). Figure 3 shows
the control profiles for the representative solutions (undisturbed problem) of
each area presented in Table 1.

Table 1: Representative objective values for the 3 main areas of the Pareto
front (undisturbed problem)

(Monetary units d−1) EQ (kg poll units d−1)
Area 1 13927 8924
Area 2 16765 6718
Area 3 14992 7584

The combination of the Pareto front and the control profiles associated to
each solution are useful decision tools to design the process and possible con-
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Fig. 2: Pareto fronts for the undisturbed, scenario 1 and scenario 2 problems

trol strategies. Figure 3 shows expectable control profiles from the qualitative
point of view regarding the areas they refer to. In Area 1 (low operation costs
and poor effluent quality, Figure 3a), almost no aeration and recirculation are
applied, which reduces the electricity consumption but also the oxidation and
de-nitrification capacity. In Area 2 (high operation costs and good effluent
quality, Figure 3b), the aeration and specially the recirculation become signif-
icant, which increases notably the electricity consumption but allows a better
oxidation and de-nitrification. The profiles in Area 3 (solution balancing both
objectives, Figure 3c), seem to represent an intermediate case between the
previous ones, with punctual episodes of high aeration rates and an almost
continuous intermediate recycling rate.

Going back to Figure 2, where the pareto fronts for the considered cases
(undisturbed, scenario 1 and scenario 2) are shown, it can be observed that
all the three Pareto fronts converge in Area 1. While this is not a general case
and the picture could be different when simulating other scenarios, two aspects
should be highlighted: i) despite of the constraints imposed in scenarios 1 and
2, the same (or very similar) solutions in terms of objective values regarding
the Area 1 of the Pareto front can be achieved, and ii) due to these constraints,
the control profiles leading to those equivalent solutions must present different
shapes. The identification of such shapes would allow WWTP operators to
efficiently change the operating conditions when some of the considered sce-
narios occur without damaging any of the pursued objectives. An additional
conclusion from Figure 2 is that the absence of recirculation has a deeper im-
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(c) Profiles for solution in Area 3

Fig. 3: Control profiles for representative solutions in the different areas of the
Pareto front (undisturbed problem)

pact on the pareto solutions of area 2 than the absence of aeration in tank 5.
This could be provoked because, although no aeration is applied on tank 5,
tanks 3 and 4 are also aerated, which produces some oxidation of ammonia
to nitrates. However, the lack of recirculation to increase nitrates reduction to
nitrogen can not be compensated by any other mechanism.

To illustrate the existence of the mentioned multiple solutions we have se-
lected similar solutions from Area 1 of the three pareto fronts. Table 2 shows
the objective function values for each of them and Figure 4 shows their corre-
sponding control profiles.

The maximum differences from the objective values in Table 2 are below
0.1% for EQ and 0.4% for the operational costs, thus we can consider them
as equivalent solutions from the point of view of the objectives. However, Fig-
ure 4 shows different control policies for each scenario. This would prove the
existence of multiplicity of solutions and their previous identification would
allow to react efficiently when one of these events occur during WWTPs op-
eration. Figure 4a (middle) shows the constraint imposed in scenario 1: no
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Table 2: Equivalent solutions in terms of objective values from the Pareto
fronts of the three considered scenarios

(Monetary units d−1) EQ (kg poll units d−1)
Undisturbed 14454 8183
Scenario 1 14493 8175
Scenario 2 14509 8176
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Fig. 4: Control profiles for equivalent solutions from the Pareto fronts. Top:
undisturbed; middle: scenario 1; bottom: scenario 2

aeration during the first 1-3 days of the process, while Figure 4b shows the
one of scenario 2: no recirculation between days 4 and 7. Interestingly, the
optimal aeration profile for this scenario 2 considers almost no aeration within
the same period (days 4 to 7). The reason for this could be to avoid an excess
of nitrates in the effluent during a certain period of time.

The fact that multiple equivalent solutions can be found for different sce-
narios in a system is not a general claim of this study. Certain systems can be
very sensitive to changes in operational conditions which make very difficult to
find such equivalent solutions. But for WWTPs, since typical control variables
are usually related to aeration and recirculation and the objectives are related
to operational costs and effluent quality, these equivalent solutions may exist.
Therefore, by means of dynamic simulation and multiobjective optimization
we encourage the simulation of different realistic and possible scenarios to iden-
tify such equivalent solutions, if they exist, and anticipate the control actions
when these simulated events occur in the real process.

4 Conclusions

WWTPs have a high environmental and economical impact because of the
effluent quality returned to the environment and their high energy consump-
tion, respectively. These two objectives are usually simultaneously considered
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when designing these plants. They are conflicting objectives, and determining
their trade-offs is crucial in the decision making process. The non-linear, dy-
namic and multiobjective nature of the models describing WWTP processes
make that the optimization problems formulated for the design are complex
and they must be solved with efficient and robust optimization techniques to
obtain the Pareto front of optimal solutions.

Once the Pareto front has been obtained the simulation of possible and
realistic operational scenarios (e.g., typical failures, maintenance operations,
possible changes in legislation, etc.) can be performed to identify equivalent
solutions in terms of objectives by comparing the obtained pareto fronts, and
use the best control policy adapted to the incumbent event. In this work we
have considered two simple realistic scenarios and have detected that this
multiplicity exists in some area of the Pareto front. The application of this
methodology could result in “alternative” Pareto fronts (or areas of the Pareto
front) in terms of control profiles, which would enrich the knowledge of the
process and would allow different options for the design. The exploitation of
this idea can be quite relevant in the decision making process within current
scenarios in which the energy costs are fluctuating hourly, supplying the de-
cision maker a set of possible strategies to follow depending on the actual
economical, technical or legal circumstances.
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