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ABSTRACT Musculoskeletal disorders (MSD) are a highly prevalent work-related health problem. Biome-
chanical exposure to hazardous postures during work is a risk factor for the development of MSD. This
study focused on developing an inertial sensor-based approach to evaluate posture in industrial contexts,
particularly in automotive assembly lines. The analysis was divided into two stages: 1) a comparative study
of joint angles calculated during movements of the upper body segments using the proposed motion tracking
framework and the ones provided by a state-of-the-art inertial motion capture system and 2) a work-related
posture risk evaluation of operators working in an automative assembly line. For the comparative study,
we selected data collected in laboratory (N = 8 participants) and assembly line settings (N = 9 participants),
while for the work-related posture risk evaluation, we only considered data acquired within the automotive
assembly line. The results revealed that the proposed framework could be applied to track industrial tasks
movements performed on the sagittal plane, and the posture evaluation uncovered posture risk differences
among different operators that are not considered in traditional posture risk assessment instruments.

INDEX TERMS Inertial sensors, ergonomics, motion analysis.

I. INTRODUCTION

Musculoskeletal Disorders (MSD) are the most prevalent
work-related health problem among European Union work-
ers, with three out of five workers reporting MSD complaints,
mainly about the upper body [1]. These numbers represent
a primary concern worldwide, not only due to the pain and
disability suffered by the worker, but also to its economic
impact on the employer and society [2]. Effective manage-
ment of work-related health requires the management of
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both sickness absence and presence by controlling exposure
risk factors [3]. Work-related MSD (WRMSD) risk factors
can be classified into personal (e.g., medical history) or
related to the workplace (i.e., physical and psychosocial work
environment) [4].

There are three main types of methods to assess occupa-
tional risk [5], [6]: self-reported, observational, and directly-
measured. In the first, the risk is perceived by the worker,
e.g., throughout questionnaires and interviews, which can
be unreliable as it depends on the worker’s literacy and
risk exposure perception. The observational method is con-
ducted by ergonomic experts and is based on instruments
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(e.g., checklists), standards, and guidelines. It can be a
demanding and time-consuming task for ergonomic teams,
with limited observation time and mostly qualitative. The
directly-measured methods use sensors to capture the work-
ers’ motion and activity, providing relevant data for the
occupational risk assessment. However, in practice, only
self-reported and observational approaches are conducted on
a more frequent basis [7].

Moreover, note that risk assessment instruments used by
ergonomic experts, such as the European Assembly Work-
sheet (EAWS) [8], guidelines and standards, derive from risk
factors specifications provided by epidemiological studies,
e.g. [9], [10]. Hence, ergonomic intervention approaches
designed for WRMSD prevention that rely on these instru-
ments’ outcomes are well-founded.

While exploring key enabling technologies towards
human-automation symbiosis work systems, the authors
of [11] introduce the concept of the “Operator 4.0”. Among
other technologies, the “Operator 4.0” proposes the usage
of wearable motion capture (MoCap) technology through-
out ubiquitous data collection, enabling an objective risk
assessment.

The majority of MoCap systems exploited in indus-
trial contexts research are based on Inertial Measurement
Unit (IMU) sensors rigidly attached to human body seg-
ments [12]. Nonetheless, the inertial sensing technique still
lags in sensor durability, information validity and efficacy,
and worker’s compliance [13]. Yet, arecent study with 31 par-
ticipants, conducted by [14] in a manufacturing working
environment, concluded that operators report low ratings of
discomfort, distraction, and burden while wearing inertial
devices during work.

Directly-measured methods used to quantify the risk expo-
sure resort to information about segments’ orientations and
joint angles. These data can be derived from on-body inertial
sensors setups, which collect body segments acceleration,
rotation, and magnetic field data used on motion recon-
struction algorithms based on sensor fusion techniques [15],
[16]. Inertial MoCap data has often been validated within
laboratory settings using optical MoCap data as ground truth
[17]-[22]. However, in industrial shop floor, existing ferro-
magnetic interferences disturb inertial sensors data, subse-
quently degrading the orientation estimates. There are fewer
research works on the assessment of estimates based on data
acquired in real industrial settings. The usage of an optical
MoCap to validate segments orientation and joint angles cal-
culated using inertial data, acquired in real industrial settings,
can be challenging due to the marker occlusions which pre-
vents the optical MoCap motion reconstruction [12]. Inertial
systems developed by Xsens have been extensively validated
with optical MoCap systems in laboratory settings. Further-
more, according to Xsens, these feature compensation mech-
anisms to mitigate magnetic disturbances and drift, being
used in recent studies without the need for validation with
an optical MoCap system [23].

83222

Over workplace ergonomics research, several methods
have been pursued to analyze human motion data acquired
in occupational settings [13], which provide outputs to
assess postural biomechanical exposure and the resulting risk.
Descriptive statistics methods use the median, mean, standard
deviation, range and percentiles, as measures of exposure
that are selected considering risk factors specifications and
calculated either for the entire acquisition duration or strati-
fied by condition for comparison (e.g., by job category, task
types) [24], [25]. In addition, inferential statistic methods,
such as ANOVA or mixed effects analysis, have been under-
taken to establish relationship variables among measurements
of occupational exposure [26], [27]. Moreover, several stud-
ies provided computational implementations of the Rapid
Upper Limb Assessment (RULA) instrument, using statistical
measures and assessing upper body posture risk within real-
world settings [20], [21], [28]-[30].

Other methods rely on applying more sophisticated data
mining algorithms on human motion data. The authors
of [31], [32] proposed a time series similarity measurement
that can be used to quantify the operators’ distance to a stan-
dard work method. Furthermore, the analysis of time series
regarding human motion data is often complemented using
feature-based representations of the resulting signals. These
feature-based representations have been used to discover
undefined and seemingly featureless patterns in data to char-
acterize industrial processes. Examples of features are inertial
and orientation data [20], [33]-[38], data-related statistical
measurements [37], [39]-[41] and metrics derived from the
application of risk assessment instruments [42], [43].

Despite current well-founded risk assessment approaches
using direct measuring, there are barriers to their adoption
in large manufacturing settings. Therefore, it is necessary to
continue researching how to automate data collection and
processing to engage traditional and innovative methods to
improve the existing risk evaluation.

There has been an increased interest in developing
directly-measured methods in the last few years. How-
ever, studies usually validate their approaches only based
on laboratory protocols that simulate work processes [44].
Few studies validated MoCap systems when tracking oper-
ators’ motions in real industrial contexts and compared the
motion tracking performance when moving from controlled
(i.e, laboratory) to uncontrolled settings (i.e, real industrial
context). Additionally, very few studies established a rela-
tionship between biomechanical exposure and resulting risk
over work-cycle data, such as the authors of [45], or com-
pared different operators’ work method. These analyses could
provide relevant information to industrial processes redesign
and adjustments, perceiving high-risk tasks, and increased
exposure.

In [21] we validated our proposed inertial on-body sensors
network within laboratory settings using an optical MoCap
(i.e, VICON). Hence, we considered the inertial data provided
by our sensors accurate in the laboratory environment. In the
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present study, we extend our prior work with an improved
inertial MoCap framework in order to estimate joint angles,
concerning movements of the upper body segments on the
sagittal plane (i.e, flexion/extension). Further, the goal was to
apply those methods to track human motion in real industrial
settings. We also propose a computational implementation of
a section of the risk assessment instrument EAWS in order to
evaluate the work-related posture risk. Beyond the methods,
the main contributions of this work include the following:

1) Comparison of the joint angles calculated using the
proposed framework and provided by a state-of-the-art
validated inertial MoCap;

2) Evaluation of work-related posture risk with respect to
a case study in an automotive assembly line.

Our previous study [21] and the current study differ in
the motion reconstruction algorithm (the latter proposes an
automatic data-driven synchronization method and an angu-
lar extraction approach based on kinematics descriptions) and
in the ergonomic risk assessment instrument implemented.

The rest of this paper is structured as follows: Section II
describes the materials used and methods developed, includ-
ing the MoCap routine and motion tracking framework,
and the computational implementation of EAWS instrument.
Then, Section III discusses the obtained results. Finally,
Section IV presents the main conclusions and future research
outlook.

Il. MATERIALS AND METHODS

An automotive assembly line is divided into diverse
processes, from parts production and rendering to their
assemblage. Among the different processes needed to pro-
duce a car, manual processes are the ones that could com-
promise workers’ health and safety. For our case study,
we selected the fitting processes. As vehicles are assembled,
the fit-up of various parts is inspected by measuring the width
of the gap between adjacent panels and the alignment of
surfaces. After checking the need for fitting on each car,
workers perform adjustments until the reference condition is
achieved. Some examples of panels composing a vehicle are
depicted in Fig. 1.

Our study results were divided into two stages: 1) compar-
ison of calculated joint angles with equivalent data provided
by a state-of-the-art inertial MoCap; and 2) work-related
posture risk evaluation.

The comparison aimed to assess the reliability of the
motion tracking for upper body segments movements on the
sagittal plane, i.e., spine, shoulders, elbows, and wrists joints
flexion/extension angles. Accordingly, the data estimated,
using our proposed inertial MoCap routine and the developed
framework were compared with the data provided by a Xsens’
system.

We consider that both systems can be prone to mag-
netic disturbances and drift since there is a lack of studies
validating the Xsens’ system under highly ferromagnetic
environments, such as an automotive assembly line. Hence,
our comparison aims to assess the consistency between our
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FIGURE 1. Examples of car panels that are verified and aligned during
fitting processes.

proposed system and the Xsens’ system data in laboratory
and real industrial settings.

At the risk evaluation, we analyzed the biomechanical
exposure and resulting risk, both at the workstation- and
operator-level. This allowed us to compare the risk assess-
ment outputs among different workstations and workers in the
selected case study. Furthermore, we computed the biome-
chanical exposure and resulting risk using joint angles pro-
vided by the Xsens’ system and determined the mean and
standard deviation of absolute differences between Xsens’
system and our system posture evaluation results.

It should be noticed that the data acquired in the laboratory
were exclusively used for the reliability assessment (i.e, joint
angles comparison), while the automotive assembly line data
were handled for both joint angles comparison and evalua-
tion. As follows, the risk assessment was only conducted on
automotive assembly line data.

A. DATA COLLECTION

1) SYSTEM SETUP

We simultaneously used the two inertial MoCap systems as
depicted in Fig. 2.

The proposed on-body inertial sensor network comprises
seven wireless Kallisto IMUs (Sensry Gmbh, Dresden,
Germany), collecting data at 100 Hz. The other inertial sys-
tem considered for our study was the MVN Awinda (Xsens,
Enschede, Netherlands), collecting data at 60 Hz.

The IMUs from our proposed setup were attached to the
subjects’ bodies as follows: one IMU inside a glove for each
hand, one IMU for each upper arm, and forearm using velcro
straps; and one IMU for the trunk fixed to a waistcoat and
located on the chest. Each sensor was placed with the x-axis
of the sensor frame along the longitudinal axis of the respec-
tive body segment, pointing from distal to proximal extremity,
and with the z-axis normal to the segment, as depicted in
Fig. 3. The MVN Awinda IMUs were attached according to
the full-body motion tracking guidelines [46].
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(a) Chest

L

FIGURE 2. Placement setups of the two inertial MoCap systems.

(b) Upper Arm

(c) Forearm and Hand

FIGURE 3. An illustrative figure detailing our proposed on-body inertial
sensors network setup.

The joint motion reconstruction using the proposed
on-body inertial sensor network data was performed using the
motion tracking framework, further described in section II-B.
The MVN Awinda setup relied on the MVN Analyze to
record and extract joint angles data. This data was trans-
formed to match the joint angles computed using the
developed motion tracking framework.

Additionally, we also collected video recording data to
provide a visual reference for additional post-acquisition
inspection.
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The data collected in the assembly line were annotated with
the timestamps corresponding to the beginning and end of
each work-cycle (5 + 2 cycles per acquisition). The anno-
tation was performed using the NOVA software [47].

2) PROTOCOLS

The laboratory and automotive assembly line (assembly line
will be referred to as field) data collection protocols differed
since they had separate goals. Nevertheless, both protocols
included collecting each participant’s body measurements,
both systems calibrations, and synchronization procedures.

There were two stages of our system calibration: 1) hard-
ware and 2) model calibrations. The former consists of cal-
ibrating our IMUs within the data collection environment.
To control data quality, a visual inspection of each IMU’s
signals and, further, sampling frequency verification were
conducted. To calibrate the model, subjects were asked to
maintain the neutral pose for 15 seconds. The subject’s pos-
ture during the calibration was then matched to the default
pose of the biomechanical model used.

The Xsens’ system only required model calibration,
conducted according to the guidelines [46].

Aiming to define a common temporal reference within sen-
sors and between systems, we asked the subjects to perform a
purposeful preset movement at the beginning and end of each
acquisition. We used that movement to conduct a data-driven
temporal synchronization. Movement and synchronization
method are described in section II-B2.

The following tasks were tracked according to each setting:

« Laboratory: each participant was asked to perform five
trials - two functional trials, where each subject mobi-
lized his/her upper limbs (for approximately 5 min-
utes) and trunk (for approximately 2 minutes) joints
degrees of freedom (DoF) within their respective ranges
of motion (RoM); and three goal-oriented sets (approx-
imately 2 minutes each), wherein specific tasks were
given to the participants. The latter were named simu-
lation trials, as they simulate real operation tasks com-
posing the fitting processes and required the use of tools
within safety limits.

« Field: each worker was tracked between 15 to 50 min-
utes conducting regular work, namely fitting car panels
highlighten in Fig. 1.

3) PARTICIPANTS

Seventeen participants (Tables 1 and 2) were recruited into
this study: eight and nine subjects cooperated in the labora-
tory and automotive assembly plant acquisitions, correspond-
ingly. The study population was purposive, i.e., volunteer
participants within the scope of the study, and was formed by
Portuguese citizens. Thus, the sample is geographically and
culturally limited. Volunteers were asked if the occupational
doctor had assigned any medical restrictions. If not, they were
considered “healthy”” and took part in the study sample, being
excluded otherwise. Informed consent was signed to respect
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TABLE 1. Laboratory population characteristics and protocol tasks.
Classes of body profiles are small (S), medium (M) and high (H).

1D Age (range of Gender Task (Protocol) Body
years old) Profile
(class)
Subject 1 [20, 30[ M Functionals + H
Simulation
Subject 2 [20, 30[ M Functionals + M
Simulation
Subject 3 [30, 40[ F Functionals + S
Simulation
Subject 4 [30, 40[ M Functionals + M
Simulation
Subject 5 [20, 30[ M Functionals + M
Simulation
Subject 6 [20, 30[ F Functionals + S
Simulation
Subject 7 [20, 30[ M Functionals + S
Simulation
Subject 8 [20, 30[ M Functionals + M
Simulation

TABLE 2. Field population characteristics and protocol tasks. Classes of
body profiles are small (S), medium (M) and high (H).

ID Age (range of Gender Task (Protocol) Body
years old) Profile
(class)

Doors Right

Operator 1 [30, 40[ M Doors Left H
Doors Right

Operator 2 [30, 40[ M Doors Left M

Operator 3 [30, 40[ M Doors Right M
Prefit

Operator 4 [30, 40[ M Brake Light Right H
Brake Light Left
Rear End
Front End

Operator 5 [30, 40[ M Prefit S
Brake Light Right
Brake Light Left
Rear End

Operator 6 [40, 50[ M Front End M
Doors Right

Operator 7 [40, 50[ M Doors Left
Prefit

Operator 8  [40, 50[ M Brake Light Right M
Brake Light Left
Rear End

Operator 9 [40, 50[ M Front End M

each participant’s privacy and inform them precisely what
would be done with their data.

Tables 1 and 2 shows laboratory and field data collec-
tions samples characteristics. Note that participants’ ages are
distributed in three ranges: [20, 30[, [30, 40[ and [40, 50[
years old. The body measurements distributions percentiles
are displayed in Table 3. Participants’ body profiles classes
were defined based on their height (178 £ 10 cm), body
mass (75 £ 14 kg), arm span (175 £ 9 cm), shoulder width
(40 £ 4 cm), hip height (100 £ 8 cm), knee height (53 £
4 cm), ankle height (11 & 1 cm) and shoe size (30 &+ 2 cm).
For each body measurement, we observed if its value was
below 25% percentile (small), between 25% and 75% per-
centiles (medium) or above 75% percentile (high) in relation
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TABLE 3. Population characteristics distribution percentiles per body
measurement collected.

Percentile (%)

75 50 25
Height (cm) 184 176 170
Weight (kg) 82 77 65
Hip height (cm) 105 100 95
Arm span (cm) 183 171 166
Ankle height (cm) 12 11 10
Knee height (cm) 55 53 49
Shoulder width (cm) 43 39 37
Shoe size (cm) 31 30 27

to the study population. The class of a participant’s body pro-
file was defined according to the most frequent classification
among the participant’s body measurements, as small (S),
medium (M), or high (H).

B. MOTION TRACKING FRAMEWORK

In the following sections, we will present the proposed
motion tracking framework. Only the IMU data acquired
using the proposed on-body sensor network underwent the
motion tracking framework. We focused its application on the
spine, shoulders, elbows, and wrists joints’ flexion/extension
DoFs.

1) DATA PREPROCESSING

The on-body sensor network signals were linearly resampled
to 100 Hz. The accelerometer and magnetometer signals were
filtered using a 4" order Butterworth low-pass filter with
a cutoff frequency of 10 Hz [48], [49]. The gyroscope was
filtered with a 4™ order Savitzky-Golay polynomial filter
with a window size of 11 samples [50].

2) DATA SYNCHRONIZATION

Our on-body sensor network does not have a communication
protocol to synchronize the multiple sensors. As previously
mentioned in section II-A2, the data collection protocol had
a purposeful preset movement that all subjects performed
before and after the acquisition to synchronize data from
IMUs placed in different segments. The movement consisted
of performing a vertical jump.

The algorithm developed to synchronize data streams from
the multiple sensors is summarized in Fig. 4. The algorithm
uses peak detection methods to identify synchronization
opportunities from signals collected from different sensors.
The synchronization opportunities O are filtered using a
technique to identify pairwise correspondences. The final
matches are named as alignment points A. An alignment point
is a representation of a physical event in a sensor data stream
that can be accurately distinguished and directly related to the
same event in the data stream of another sensor (i.e., coupling
occurrence) [51]. In our case, the physical event of interest
was the vertical jump.

The Xsens’ system uses a communication protocol to syn-
chronize its multiple sensors.
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drop Os without matching
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5. Determine the linear regression
that translates sensor drift
c=[0,d]

6. Remove the linear regression
element-wise to each sensor
time axis tg

0 t, t 0 t t

7. Interpolate correction of each
segment data

0 T X
FIGURE 4. A stepwise description of the temporal synchronization
algorithm. (1) Synchronization opportunity (0) events are identified using
peak detection method. (2) For each sensor data streams (x-, y- and z-axis
acceleration, magnetic field and angular velocity data), samples with an
index anterior to the first O index are cut off. (3) Match the remaining
synchronization opportunity events between different sensors, if their
distance in time is less than the maximum interval (¢4, where A refers to
alignment point). (4) For each sensor, compute the vector of differences
in time between the occurrence of each alignment point in sensor data
and in another sensor data, selected as reference, - the correction
intervals (c) - and (5) determine the linear regression that describes c
(which models the sensor desynchronization). (6) Desynchronization is
eliminated by subtracting c to the sensor time (ts). (7) Interpolate all
sensors to a common temporal reference.

3) ATTITUDE ESTIMATION

Attitude estimation was conducted using the nine DoF Madg-
wick filter implementation provided by the AHRS: Attitude
and Heading Reference Systems open-source python tool-
box [52]; it uses x-, y- and z-axis acceleration, magnetic field
and angular velocity data for each sensor attitude estimation.
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TABLE 4. Upper body segments joints’ flexion/extension DoF and the
respective RoM, defined according to the model [55].

Segment DoF RoM

Trunk Lumbar flexion/extension [-90°, 90°]
Upper arm Upper arm extension/flexion [-90°, 180°]
Forearm Elbow extension/flexion [0°, 160°]
Hand Wrist extension/flexion [-90°, 90°]

Madgwick filter is a sensor fusion algorithm that enables
a fair orientation estimation performance at low sampling
rated data and compensation of magnetometer magnetic dis-
tortion. Additionally, it also enables to compensate gyroscope
low-frequency bias (i.e. drift) [53].

The filter provides the attitude representation of each IMU
in regards to the Earth’s reference frame in the East-North-
Up (ENU) convention, which will be needed to the inverse
kinematics (described in section I1-B4).

The attitude is represented as a quaternion that is
a 4-dimensional complex number defined as the sum of a
scalar go and a vector q = (g1, g2, q3) [54]. Accordingly,
the quaternion representation can be used to characterize
a rotation of a segment frame about an axis, defined in
3-dimensional space.

4) INVERSE KINEMATICS

Inverse kinematics (IK) provides insight into measured move-
ment and was performed through the OpenSim software’s
OpenSense workflow [17].

The IMUs orientation data, resulting from methods
described in section 1I-B3, were imported and assigned to a
biomechanical model.

In model calibration, we used the calibration pose data
to place and establish the orientation of each IMU on the
corresponding body segment in the model (i.e, model’s virtual
IMU); and we considered the chest IMU as the base IMU, i.e.,
the IMU representing the model’s segment from which other
segments move as a chain.

According to the authors of [17], OpenSense workflow
IK corrects segments orientations and calculates joint angles
considering model joints kinematics descriptions. It solves an
optimization problem minimizing the difference between the
experimentally measured IMUs orientations expressed in the
Earth’s reference frame and the orientations of the model’s
virtual IMUs.

We used the full human body model developed by [55]. Itis
less detailed about the motion of the upper body region than
other models, such as [56]-[58], but the information retrieved

by the model was adequate for this research, presenting lower
computational complexity and resorting to simpler joints
motion definitions.

Table 4 summarizes the flexion/extension DoF and respec-
tive RoM of segments, defined according to the model [55].

C. STATISTICAL ANALYSIS

A statistical analysis was performed to compare joint angles
data retrieved by the systems. We assessed the consistency
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and agreement between data estimated using our motion
tracking framework and data provided by the Xsens’ system
in both laboratory and field data collections.

Consistency definition concerns the degree to which the
estimated data (y) is related to the data provided by Xsens’
system (x) plus a systematic error (c) (ie, y = x + ¢).
We considered c as the unknown differences between the
joints’ kinematic descriptions of the biomechanical model
selected and the one used by Xsens. Intraclass correlation
coefficient (ICC) estimates and their 95% confidence inter-
vals (CI) were calculated using rpy2 python package based
on a mean-measurement (n = 100 measurements per acquisi-
tion), consistency, 2-way mixed-effects model. ICC was cal-
culated for each upper body joint flexion/extension DoF data,
and both laboratory and automotive assembly plant settings.
The authors of [59] proposed that ICC values less than 0.5 are
indicative of poor reliability; between 0.5 and 0.75 indicate
moderate reliability; between 0.75 and 0.9 indicate good
reliability; and greater than 0.90 indicate excellent reliability.

Standard error of measurement (SEM) values were also
calculated. SEM was selected as an indicator of absolute
reliability of measurement [60].

D. AUTOMATED RISK ASSESSMENT

The EAWS is a risk assessment instrument to estimate risk
exposure by computing a total risk score. This score combines
partial scores from posture, strength, force, and repetition.
This instrument is originally based on the observation of
workstation and work method. We developed an automated
approach to estimate partial scores for upper body segments
postures on their sagittal plane.

Fig. 5 is an excerpt from the EAWS showing the rating
scales of partial risk scores relative to basic postures and
movements of the trunk and arms. The partial risk score
depends on the work-cycle time in the posture, i.e., its biome-
chanical exposure, and on its rating scale. For example,
if an operator is 5 % of the work-cycle upright and with
hands above head level, the partial risk score is 5,3 points.
These scores are calculated automatically using our proposed
approach, excluding the components of shoulders abduction
that could increase scores about the two last lines (in Fig. 5
EAWS section). Notice that we consider the exposure to a
posture as the relative frequency of the posture’s occurrence
in a work-cycle, excluding the analysis of time spent in the
posture in terms of duration of posture’s occurrence.

It is worth emphasizing that a complete EAWS evaluation
has additional sections whose variables cannot be directly
quantified using an inertial sensor setup, such as the force
and loads.

Moreover, this study focused on the sagittal plane due to
the priority on studying joints’ flexion/extension. Nonethe-
less, there are sections addressing postures concerning the
upper body segments movements on the coronal and trans-
verse planes.

Fig. 6 contains a stepwise description of the implemented
procedure until the risk assessment. Firstly, each work-cycle
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Basic Positions / Postures and movements of trunk and arms (per shift)
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and action forces of 30-40 N) Evaluation of static postures
and/or high frequent movements of trunk/arms
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FIGURE 5. Excerpt of EAWS - Basic positions/postures and movements of
trunk and arms - standing (and walking) section.
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Work-Cycle Angular Data
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FIGURE 6. Work-cycles annotation performed in data from an acquisition.
Work-cycle angular data is a set of time series, one for each segment’s Sy
flexion/extension DoF, 6, where N varies from 1-7. Angular ranges
quantization: a function g was implemented for each segment
flexion/extension DoF, as described in Fig. 7.

angular data were downsampled to 1 Hz. Secondly, the data
were quantized according to the working postures described
in EAWS.

A diagram of conditions used to assign joint angles to
angular ranges related to EAWS postures (selected to risk
assessment) is shown in Fig. 7. The conditions were chosen
taking into consideration feedback from two ergonomists that
supported our study. The joint angles used as input were
flexion/extension DoF of the trunk (1), upper arms (1 DoFs x
2 arms = 2 DoFs) and forearms (1 DoFs x 2 arms = 2 DoFs)
segments (see Table 4).

Furthermore, the angular ranges data were taken as input
to the biomechanical exposure determination. The biome-
chanical exposure consists of the percentage of values in
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FIGURE 7. Conditions defining the EAWS postures selected to risk assessment. Firstly, the lumbar flexion/extension data is divided into three
angular ranges - “Upright”, “Bent Forward” and “Strongly Bent Forward". Afterwards, it is verified if there is data within the “Upright” angular
range that also verifies the “Upright with elbows at/above shoulder level condition”; if so, data is assign to that angular range and removed
from “Upright” data. Finally, it is verified if there is data within the “Upright with elbows at/above shoulder level condition” angular range
that also verifies the “Upright with hands above head level”; if so, data is assign to that angular range and removed from “Upright with

elbows at/above shoulder level condition” data.
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FIGURE 8. Biomechanical exposure (i.e, percentage of work-cycle time in each posture) is determined and the respective
partial risk score is calculated using the linear regression, constructed according to EAWS instrument rating scale. cxy and vy
denote the biomechanical exposure and risk score related to each posture, respectively.

each posture X (%cy) per work-cycle. We used EAWS rating
scales to draw linear regressions of partial risk scores () as
a result of biomechanical exposures (see Fig. 8). Thus, for
each posture, the biomechanical exposure was determined,
and the respective partial risk score (vy) was computed using
the linear regression.

The total risk score was also calculated as the sum of the
postures’ partial risk scores. Note that, for the postures of the
upper limbs, only the highest sum value, assigned either to
the right or to the left limb, was considered in the final total
risk score sum.

lIl. RESULTS AND DISCUSSION

A. JOINT ANGLES COMPARISON

Table 5 shows the values of ICC, the respective 95% IC and
SEM.

Regarding laboratory results, ICC values, and the respec-
tive 95 % CIs, shows that the tracking of flexion/extension
movements from elbows is excellent; spine, shoulders, and
left wrist are good; and right wrist is moderate to good.
Nonetheless, shoulders SEMs are greater than 10°.

Field results highly decreased in consistency and agree-
ment when compared to the laboratory setting. Spine and
elbows estimates are moderately consistent with Xsens’
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system data, while shoulders decrease for poor to moderate
and wrists to poor. The SEMs are steadily higher than 10° for
every joint.

The higher SEM values for shoulders flexion/extension in
laboratory and field settings could be due to increased soft
tissue artifact (STA) occurrence, i.e., the skin motion relative
to the underlying bone, which is the primary source of error
in inertial motion tracking [61], [62].

Additionally, an initial offset between the participant’s
body calibration posture and the biomechanical model’s
default pose can introduce error into angular estimates. For
instance, when a body segment is close to an extreme posture,
the estimation might result in an impossible segment’s pos-
ture according to the model, which is then wrongly adjusted
by the algorithm. Moreover, our biomechanical model was
not scaled according to subjects’ body measurements, result-
ing in an additional source of error when compared to the
Xsens’ system, which considers it.

Field results show greater differences between joint angles
data of systems than laboratory results. Although we used
Xsens’ data to compare with our data and assess both
data consistency and agreement, note that there is no evi-
dence in the literature about Xsens’ system motion tracking
performance in long-term acquisition within real industrial
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TABLE 5. Laboratory and field reliability study results. ICC, 95% IC and SEM (°) values for each joint flexion/extension DoF data. The values are

significant, with a p-value < 0.01.

ICC SEM (°) 95 % CI
Joint Laboratory Field Laboratory Field Laboratory Field
Spine (Lumbar) 0,91 0,66 5,56 10,32 [0,89; 0,93] [0,60; 0,71]
Left Shoulder 0,83 0,53 12,53 25,50 [0,79; 0,86] [0,45; 0,60]
Left Elbow 0,94 0,58 7,74 20,19 [0,92; 0,95] [0,51; 0,64]
Left Wrist 0,90 0,27 6,28 23,39 [0,88; 0,92] [0,15; 0,38]
Right Shoulder 0,84 0,52 12,63 25,79 [0,80; 0,87] [0,44; 0,59]
Right Elbow 0,95 0,62 6,63 19,39 [0,94; 0,96] [0,55; 0,67]
Right Wrist 0,76 0,40 8,82 23,13 [0,70; 0,81] [0,30; 0,49]
MEAN 0,88 0,51 8,60 21,10
TABLE 6. Abbreviations used to refer to EAWS postures. — 100
- - ,
Posture Abbreviation R
Standing upright U BF |42 31 28 24 19 29 89 [-80 g
Bent forward (20-60°) BF )
Strongly bent forward (>60°) BS BS 74 19 87 22 08 76 01 o ‘,O%
Upright with elbow at/above shoulder level through FlexOS left FlexOS 33 19 43 74 92 79 15 %
arm flexion Q
Upright with hands above head level OH leffOH 07 04 07 09 05 1 06 40 §
[
. L. . . right Flex0S 46 09 7 52 57 64 69 _o g
environments. The validations reported in the literature are 2
collected in laboratory or controlled simulations of manu- rightOH 1.6 04 17 08 o 1
facturing processes settings [63]-[65]. This fact results from $ £ % £ 2 g @
. . . . . . . . ) = - p =
the difficulty of implementing inertial systems validation £ Z g ¢ : o ”;Z'
. . . . = < = o D
protocols with optical systems in real assembly lines. The 2 24 3 = 4
increased data differences are due to issues that can affect g <
both systems, such as the occurrence of magnetic interfer- “ Workstation
ences [66], [67]; longer acquisition time (i.e., 15-50 minutes) (a) Biomecharical Exposure
that can result in gyroscope sensor data drift over time; the P .
occurrence of STA in a larger extent; and additional unknown U 05 1 1 09 1 07 11
independent variables that arise in real industrial settings, - n Y .. - 25
namely sensors displacements. Moreover, higher values of
SEM in field also suggest a variability of the errors within BS [ 03 B 08 02 R 0 0 g
each acquisition data, which can be due to the complexity left FlexOS 18 06 08 44 64 44 8 |-150
. X
and duration of the tasks. @
. . . . . lfOH 0 o o o0 0 0o o | &
Notice that, as described in section II-D, only DoF esti-
mates from spine, shoulders, and elbows are used as input to right FlexOS [Ssiil} 0 BSoR 22 8SSERssisel | -
the automated risk assessment. These estimates were taken as fightOH 05 0 02 0 05 0 0
they showed moderate consistency with the Xsens’ MoCap e = e e oo o= oo 0
system. Moreover, further posture evaluation commits angu- $ 23 9 4§ 8 §
’ N . . . . 2 L e & = 0
lar data quantization, as it was mentioned in section III-B, and f‘z’ £ 8 & ¢ e
. . 3 o o
angular ranges are wider, which do not enforce exact angle $ E a
joint estimates. a £
Workstation

B. POSTURE EVALUATION

1) WORKSTATION-LEVEL

The workstation-level analysis focuses on comparing the
results among different workstations. Fig. 9 heatmaps depict
the percentage of work-cycle in postures, i.e., biomechanical
exposure, and the related risk score. The score scale was
selected from O to 30 because the assigned values are within
this range. Nevertheless, it should be noted that the interval of
values considered for the assignment depends on the posture
assessed, and it can reach a 100 score for the “upright with
hands above head level”” (OH) posture. The abbreviations
used for postures are depicted in Table 6.
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(b) Risk Score

FIGURE 9. Workstation-level biomechanical exposure (top) and risk score
(bottom). Biomechanical exposure results are reported as the mean of
percentage of work-cycle time in each EAWS posture, while the risk score
is a dimensionless measurement and linearly related to the
biomechanical exposure.

The biomechanical exposure over the postures varies
among workstations. For almost every workstation, the pos-
ture with the highest exposure is standing upright (U), fol-
lowed by bent forward (BF), excluding brake light left, which
is the opposite. Regarding strongly bent forward (BS), it can
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be seen that the workstations of prefit and brake light left
have a higher risk exposure value when compared to the other
workstations.

Regarding the upper arms postures, some observations may
be noted. Within doors fitting processes, the operators often
perform the arm flexion at/above shoulder level (FlexOS)
with the arm of the opposite side of the alignment, rather than
the corresponding side (i.e., doors left present a higher per-
centage for right arm FlexOS, and vice-versa). Note that the
doors fitting processes left and right are alike, but reversed.
Operators support their bodies in the vehicle using the oppo-
site arm flexed against it during the doors’ fittings. Almost
all of the remaining workstations show an exposure slightly
higher to the left upper limb postures.

Prefit shows a positive exposure to all postures. Front and
rear end workstations show only relevant exposure to arms
FlexOS; rear end shows higher values for both arms than
the front end, as it is bilateral and compromises both arms
flexion to reach the rear end of the tailgate. Contrary to doors
alignments, brake lights’ are not alike; they complement each
other.

By analyzing the risk scores and comparing them with
the respective exposure percentages, we showed that the risk
score assigned highly depends on the postures. For example,
the longer the operator stands in the U posture, the lesser
the risk of performing the fitting process because BF and BS
postures result in a greater risk than U. In fact, notice that just
standing at the U posture over the work-cycle time represents
the optimal condition, that contributes to the lowest total risk
score.

Generally, BF represents the greater risk scores, followed
by BS for prefit and brake light left; then left arm FlexOS
for right doors, front and rear end, and prefit; and right arm
FlexOS for left doors, front and rear end, prefit and brake
light left alignments. In the workstation-level perspective,
prefit and brake light left have the highest calculated risk.

2) OPERATOR-LEVEL

The operator-level analysis aims to compare the biomechan-
ical exposure and resulting risk between operators who con-
ducted the same fitting process. Fig. 10 heatmaps depict the
percentage of work-cycle in postures, and partials and total
risk scores by workstation and operator. The discussion below
considers body profiles from the operators (see Table 1).

e Doors: The working method performed by worker 1 is
associated with the highest risk score for both doors
fitting processes. Operator 1 also has the greatest pro-
file among the subjects who performed the same work-
stations. Therefore, observing the exposure and risk
score related to each posture, which contributes to the
total risk score, it can be noted that the postures with
higher demands are BF and BS for left doors, and BF
and FlexOS for right doors. Regarding other operators,
they have identical body profiles amongst each other.
Nonetheless, operator 7 shows lower risk about BF and
higher risk to both arms FlexOS.
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e Front End: The results are similar among operators,
besides their different body measurements. It is worth
mentioning that operators 5 and 9 had high experience
in the task, while operator 6 was still in a learning stage.
However, no further reasoning can be provided within
the scope of this study.

e Prefit: Operators 4 and 8 show similar total risk scores,
higher than operator 5, who was an expert on prefit.
In terms of body measurements, operator 5 has the
smallest measures, while operator 4 has larger measures
than the others. Analyzing the exposure and risk, higher
values are reported to operator 4 regarding BF and left
arm FlexOS compared with operator 8. Higher exposure
and risk score to BS and right arm FlexOS postures are
reported to operator 8.

e Rear End: Operator 5 results report the highest total risk
score, and he has the smallest body profile. Operator 6
had a lower total risk score than operator 5. Both oper-
ators 5 and 6 seem to perform symmetric arms FlexOS.
However, operator 5 does it to a greater extent during
the work-cycle, probably due to the operator 6 qualifica-
tion as a worker still in the learning process (observing
and not doing some of the workstation’s tasks). Plus,
operator 5 performed BF more than the other workers,
contributing to the higher total risk score. Operator 9 has
a medium body profile, and he had an improved work
method compared to operator 5.

e Brake Lights: Concerning brake light left, operator 8
presents the highest total risk score, followed by opera-
tor i5 and then operator 4. Operators 8 and 5 are smaller
than operator 4 concerning their body measurements.
Moreover, observing the exposure and risk, for opera-
tor 8, the highest values are for BF and BS, and, for
operator 5, they are realized for BF. Regarding brake
light right, operator 5 has the highest overall risk score
due to high exposure to BF posture. Operator 8 displays
a relevant risk score associated with BF, but not to other
postures.

Additionally, we note that the arms OH posture is not often
present, and U takes a considerable percentage of the work-
cycle, which is desirable, as U is considered a less dangerous
posture.

3) SYSTEMS DIFFERENCES

In order to study the differences in posture evaluation between
data provided by the two inertial systems, Fig. 11 shows
the absolute differences means and standard deviations of
biomechanical exposure and risk score results for each EAWS
posture.

As it can be seen, differences in biomechanical exposures
and risk scores are greater concerning to postures that highly
depended on the lumbar flexion/extension (i.e, U, BF), when
compared with other postures.

Although joint angles retrieved by the systems were sig-
nificantly different in field settings, in general, Fig. 11 shows
that there is small differences between the posture risk score
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FIGURE 10. Operator-level biomechanical exposure (top) and risk score (bottom). Biomechanical exposure results are reported as
the mean of percentage of work-cycle time in which each EAWS posture, while the risk score is a dimensionless measurement and

linearly related to the biomechanical exposure.

results, excluding results concerning to BF posture. Notice
that, in spite of U posture shows high differences respect-
ing biomechanical exposure results, differences between the
posture risk score results are minor when compared to other
postures, which can be due to the low risk scores associated
with that posture.

Nevertheless, there is a variation between subjects and
tasks captured by standard deviations, which can be a result
of a heterogeneous sensors placement or displacement during
the acquisition, and subjects and tasks variability, besides the
issues pointed out in Section III-A.

Despite the systems’ angular estimates differences, the sys-
tems’ evaluation results differences are not high, because the
risk assessment uses angular estimates divided into angular
ranges as input.

In contrast to prior studies [21], [29], [30], [42], [43] that
used IMUs to track human motion and joint angle data as
inputs for automated risk assessment based on ergonomic
instruments, mainly RULA, we conducted a posture evalu-
ation in an automotive assembly line, giving the developed
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methods a real-world application. Moreover, we conducted
an operator-level analysis which revealed relevant differ-
ences in operators’ work methods that might be related to
their anthropometry characteristics. Those differences are
reflected in the risk assessment results. Hence, the results
of the operator-level analysis should be considered when
redesigning fitting processes.

C. LIMITATIONS
The quantitative results reported herein should be considered
in light of some limitations.

The sample dimension of the field trials is too small and,
under these conditions, it might be improper to generalize the
results regarding the evaluation (Section III-B). Only two to
four operators with different body profiles were tracked by
workstation. Plus, a sample size closer to the total population
size would enable a statistical analysis of variables correlation
and cause-effect on the posture evaluation.

The kinematic model used [55] lacks a detailed description
of the upper body motion (e.g. the trunk flexion/extension
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FIGURE 11. Means and standard deviations of absolute differences
between inertial systems results - operators’ measurements of
biomechanical exposure or risk score for each EAWS posture. A total of
22 measurements were considered.

varies between —90° and 90°) which might have resulted
in errors in the joint angles estimates while users per-
formed extreme upper body segments postures and/or highly
dynamic movements. Generally, these errors were character-
ized by a clipping of the segment estimates at their maximum
value, and there seems to exist some error propagation to the
adjacent segment estimates.

On the other hand, a set of reduced body measurements
were collected. The collection of more upper body segments
anthropometric measurements would be relevant to provide a
feasible relationship between upper body posture and risk.

IV. CONCLUSION
We provided a comprehensive study of an automatic approach
to evaluate posture biomechanical exposure and risk in indus-
trial contexts, focusing on a case study of an automotive
assembly line. We proposed an on-body sensor network of
inertial sensors, a motion tracking framework used to recon-
struct upper body joints movement on the sagittal plane,
and an automated approach to calculate EAWS scores for
basic positions and postures of the trunk and arm movements.
We compared our results with a commercial system in labo-
ratory and field trials.

The comparison results showed that within laboratory set-
tings, the motion tracking estimates consistency (ICC = 0,88)
and agreement (SEM = §,60°) are good. Nevertheless, these
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differences between systems data fairly increased for automo-
tive assembly line acquisitions (ICC = 0,51; SEM = 21,10°).
The reasons can be magnetic field disturbances, STA and
sensor displacement occurrences, and using a low complexity
biomechanical model to describe upper body motion.

Though we considered field joint angle data reliable for
the risk assessment as exact estimates were not required for
the application; further experiments will be carried out to
extensively validate our MoCap inertial system and motion
tracking framework.

Regarding the evaluation, workstation-level results showed
that the riskier workstations are prefit and brake light left
with high contributions of BF and arms FlexOS postures.
The operator-level analysis revealed quantitative differences
among different operators performing the same task. We also
identified some hypotheses that might explain these differ-
ences, namely the variations within body profiles and expe-
rience. Nevertheless, no generalizations concerning the fit
shop’s population can be provided as a separate study with
a large population would be necessary.

The framework proposed in our study might be used as a
tool to support risk assessment in industrial lines, providing
quantitative insights about the actual exposure of worksta-
tions and operators. This framework can also be used as an
asset to support operator training and evaluate the effective-
ness of ergonomic interventions.

A. FUTURE WORK

This study leaves some unsolved problems and opens new
research questions to which we will be devoting additional
research effort in the future.

Data collection with a larger sample size could be con-
ducted in the field to provide population-representative rela-
tionships between risk assessment outputs and participants’
body measurements.

A continuous enhancement of the motion tracking frame-
work should be pursued. Particularly, the system should be
validated with an optical MoCap system. Moreover, we may
have failed on upper body segments’ motion estimation
regarding extreme segments’ postures using a low complexity
biomechanical model. In the future, using a more complex
upper body model can be a valuable alternative to obtain
better DoFs angular estimates for extreme positions and con-
tribute towards more accurate motion tracking.

Our data analysis focused on implementing an approach
to evaluate static postures according to EAWS. Nevertheless,
there exist other quantitative means of assessing biomechani-
cal exposures which might be interesting to complete the cur-
rent analysis, such as evaluating the dimensions of intensity,
repetition, and duration [9]. Data mining time series methods
might be used to calculate these variables and provide further
insights.
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