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ABSTRACT 

Data-driven decision-making is crucial for any business. With an increasing interest in Business 

Intelligence, Data Visualization is playing a major role in decision-making processes. For making a well-

informed and accurate decision, it is important to understand uncertainty in the data visualizations. 

Uncertainty visualizations improve the way users understand the data, as well as the confidence in 

their conclusions. An important type of uncertainty visualizations is the Hypothetical Outcome Plots 

(HOPs), which allow the audience to gain an intuitive idea of uncertainty through animated sequences 

of random draws from a distribution, leading to a more accurate understanding and decision. 

This document intends to detail a proof-of-concept by carrying out a comparison of static visualization 

vs. HOPs in terms of efficiency and accuracy of results interpretation for Wayne Enterprises (fictional 

name) forecasting projects, in particularly the ones related with product launches and product loss of 

exclusivity. Wayne Enterprises is a world-leading supplier of advanced analytics, technological services 

and clinical investigation solutions for the life sciences industry. For that objective, it was built two 

prototypes using Python to support the proof-of-concept execution. A between-group experiment was 

carried out with 40 members of the German consulting team of Wayne Enterprises, where half 

answered a survey based on static visualizations and the other half based on HOPs. From this 

experiment, it is possible to conclude that HOPs can achieve similar results that static visualizations, 

with people taking the decision in less than half of the time when visualizing a HOP. Thus, it is possible 

to improve Wayne Enterprises decision-making process by accelerating it with Hypothetical Outcome 

Plots. 

 

 

 

 

KEYWORDS 

Data Visualization; Uncertainty; Decision-Making; Hypothetical Outcome Plots; Python 

  



v 
 

RESUMO 

A tomada de decisões baseada em dados é crucial para qualquer negócio. Com um interesse crescente 

em Business Intelligence, a Visualização de Dados está a desempenhar um papel importante nos 

processos de tomada de decisão. Para se tomar uma decisão bem informada e precisa, é importante 

compreender a incerteza nas visualizações de dados. As visualizações de incerteza melhoram a forma 

como os utilizadores compreendem os dados, bem como a confiança nas suas conclusões. Um tipo 

importante de visualizações de incerteza é o Hypothetical Outcome Plots (HOPs), que permite ao 

público obter uma ideia intuitiva da incerteza através de sequências animadas de desenhos aleatórios 

de uma distribuição, conduzindo a uma compreensão e decisão mais precisas. 

Este documento pretende detalhar uma prova de conceito através da realização de uma comparação 

entre visualizações estáticas e HOPs em termos de eficiência e exactidão de interpretação de 

resultados para projectos de forecast da Wayne Enterprises (nome fictício), em particular os 

relacionados com lançamentos de produtos e perda de exclusividade de produtos. A Wayne 

Enterprises é um líder mundial de análises avançadas, serviços tecnológicos e soluções de investigação 

clínica para a indústria das ciências da vida. Para esse objectivo, foram construídos dois protótipos 

utilizando Python para apoiar a execução da prova de conceito. Foi realizada uma experiência entre 

grupos com 40 membros da equipa de consultoria alemã da Wayne Enterprises, onde metade 

respondeu a um inquérito baseado em visualizações estáticas e a outra metade com base em HOPs. A 

partir desta experiência, é possível concluir que os HOPs podem alcançar resultados semelhantes aos 

das visualizações estáticas, com as pessoas a tomarem a decisão em menos de metade do tempo 

quando visualizam um HOP. Por conseguinte, é possível melhorar o processo de tomada de decisão da 

Wayne Enterprises, acelerando-o com Hypothetical Outcome Plots. 
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1. INTRODUCTION 

Nowadays, the use of data visualization to support decision-making is increasingly common (Hullman 

et al., 2019) and its reliance on data has highlighted the need of conveying uncertainty in data 

visualizations (Grewal et al., 2021; L. Padilla et al., 2020). 

Uncertainty can be found everywhere, some examples are economic uncertainties caused by the 

absence of accurate measurements, meteorological uncertainties driven by forecasting inaccuracy, 

health diagnostic uncertainties resulting from imprecision, and sensor data uncertainties caused by 

inaccuracy, error, or incomplete measures (Kamal et al., 2021). In summary, uncertainty can be a result 

of statistical error, ambiguity, risk information complexity, unawareness of important information, and 

so forth (Gray et al., 2022; Pang et al., 1997; Politi et al., 2007). 

Uncertainty visualization usually concerns the presentation of visualised data together with additional 

information such as accuracy, error, and other source factors that affect comprehension and 

interpretation (Jena et al., 2020); and can be associated with results showed in terms of confidence 

intervals, probability density functions, boxplots, means and standard deviations, among others 

(Kirchner et al., 2021). 

As modern analytical approaches become more complex, the identification and management of 

uncertainty information across the whole visualization pipeline is becoming increasingly challenging 

(Jena et al., 2020). Some authors (Han et al., 2011; Politi et al., 2007) point out that some individuals 

can be pleased with uncertainty identification, while other individuals, can be overwhelmed by 

uncertainty information when it is not conveyed in an effective way. Hence, the main challenge is to 

identify and understand the unpredictability of the information given and to efficiently display it 

(Kamal et al., 2021). 

The section 1.1. will address the link between uncertainty and decision making, as well as identify the 

problem covered by this dissertation. 

 

1.1. PROBLEM IDENTIFICATION AND STUDY RELEVANCE 

Although there are many visualization techniques, one key point has frequently been overlooked: the 

uncertainty. Uncertainty visualizations improve the way users understand the data (Greis et al., 2018). 

The main objective is not just to share the actual data, but also its underlying uncertainties (Grewal et 

al., 2021), minimizing the errors in judgment (Kamal et al., 2021) and fostering uncertainty-conscious 
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decisions, where the public recognizes the hazards and benefits of certain decisions, and modulates 

the reliance in its conclusions (Correll et al., 2018). 

Designers frequently think that uncertainty is difficult to deal with because of practical issues in 

building visualization and modelling uncertainty with regard to decision-making (Kamal et al., 2021). 

Further suggested explanations why a visualization designer might be reluctant to introduce 

uncertainty are the concern that information about uncertainty implies unreasonable precision in 

estimates, the believe that uncertainty's existence is common knowledge, thinking that non-expert 

public will not comprehend the information, and that conveying uncertainty will result on a less 

credible message (Fischhoff, 2012). 

Providing just point estimates might give the audience a false sense of precision, making them think 

that an estimate or forecast is more precise than it actually is (Fernandes et al., 2018). By 

communicating the likelihood that a point estimate can differ, uncertainty visualizations allow the 

audience to make more informed decisions (Hullman et al., 2019). Yet, uncertainty visualizations can 

make estimates more ambiguous and, consequently, more difficult to predict reactions to (Hullman, 

2020). In addition to ambiguity, uncertainty can also lead to misinterpretation (Hullman, 2016; Kale et 

al., 2018), for instance, error bars encoding confidence intervals or standard errors are often 

misinterpreted (Belia et al., 2005; Hoekstra et al., 2014), possibly due to the fact that these frequency 

statistics are misunderstood as showing the likelihood of an estimate and not the variability of the 

process that produced the estimate (Kale et al., 2018). A potential solution to mitigate 

misinterpretations of uncertainty in 2D data is the display of hypothetical outcome plots (HOPs) (Kale 

et al., 2019). Hypothetical Outcome Plots are an animated sequence of random draws from a 

distribution (Kale et al., 2018; Roy et al., 2018; Y.-S. Kim et al., 2019; L. Padilla et al., 2020), that are 

known to lead to more accurate interpretation and performance (Kale et al., 2020). For these reasons, 

one of the objectives of this dissertation is to build HOPs (Hypothetical Outcome Plots will be further 

explained in section 2.2.2.). 

This dissertation will be developed in a company, from now on designated as “Wayne Enterprises”, 

inserted in the healthcare sector. Wayne Enterprises is a world-leading supplier of advanced analytics, 

technological services and clinical investigation solutions for the life sciences industry. The company is 

made up of different departments, each one having a panoply of projects available. The focus will be 

two types of projects developed by the German Consulting department. These projects are based on 

forecasting analysis and are related to pharmaceutical product launches and product loss of exclusivity 

(LoE). In order to develop these projects, the employees working on the project have to 

research/gather the data, clean it, do the analysis and in the middle and end of the project make 
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different decisions. Since decision-making is a major part of this type of projects, the company would 

like to improve the process, in order to make more informed, accurate and quicker decisions. 

Decision-making frequently relies on the analysis and assessment of large volumes of data for which 

information visualization has proven to be a powerful approach (Griethe & Schumann, 2005). Several 

studies have demonstrated that conveying uncertainty can enable people to make better decisions 

than when uncertainty is not presented (e.g., (Gkatzia et al., 2016; S. L. Joslyn & LeClerc, 2012; Jung et 

al., 2015; LeClerc et al., 2016; Nadav-Greenberg & Joslyn, 2009)). Nevertheless, convey uncertainty in 

data, clearly and accurately, is still an open challenge (Grewal et al., 2021). 

 

1.2. STUDY OBJECTIVES 

The main objective of this dissertation is to conceive a proof-of-concept experiment using two 

prototypes to investigate the impact of Hypothetical Outcomes Plots in the decision-making process 

in a professional environment. With this objective and the company’s goals in mind, the following 

Research Question was formulated: “How can Hypothetical Outcome Plots perform better than static 

visualizations when interpreted by experienced visualization users?”. 

In order to better address the research question, the following sub-questions were formulated: 

▪ What is a Hypothetical Outcome Plot? 

▪ What are the benefits of using HOPs? 

▪ What are the disadvantages of a Hypothetical Outcome Plot? 

▪ Does experience in visualization have an effect on viewers accuracy? 

▪ What is the relationship between time and the interpretation of different plots? 

▪ Does the representation of more than one figure at the same time have an influence on the 

viewer’s interpretation? 
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To accomplish this study’s goal and address the Research Question, the steps below were defined: 

1. Identify the requirements for building a HOP; 

2. Understand what type of visualizations are used in Launch and LoE projects at Wayne 

Enterprises; 

3. Develop the HOPs’ prototypes using Python 

4. Use the prototypes to support the proof-of-concept execution; 

5. Evaluate the proof-of-concept. 

 

1.3. DISSERTATION STRUCTURE 

This document is divided in seven major sections, as described below: 

▪ The first section is the introduction. Here, is where the background of the dissertation is 

explained, the study problem is identified, and the study objectives are defined. 

▪ The literature review is the second section and is where the theoretical research is carried out. 

This section addresses two key topics: data visualization, and uncertainty. Each one has two 

sub-sections: Information Visualization Principles, and Scientific Visualization Principles are the 

sub-sections of Data Visualization, and Uncertainty Representation and Hypothetical Outcome 

Plots are the sub-sections of Uncertainty. 

▪ In the third section, the chosen methodology is explained, as well as the development of the 

prototypes and proof-of-concept. 

▪ The fourth section contains the results of the experiment and is where they are evaluated 

▪ In the fifth section is where the results presented in the fourth section are discussed. 

▪ The conclusions drawn are fully explained in the sixth section. 

▪ The seventh and last section is where the limitations found are explained and the 

recommendations for future work are made. 
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2. LITERATURE REVIEW 

 

2.1. DATA VISUALIZATION 

Visualization is “the process of transforming data, information and knowledge into visual form making 

use of humans’ natural visual capabilities” (Gershon et al., 1998). It connects the human visual system 

and the information system, aiding in identifying images, formulating hypotheses and extracting 

insights from data sets, as well as contributing to scientific research and forecasting (Hrabovskyi et al., 

2020) and supporting the decision-making processes (Kinkeldey et al., 2017). 

There are two types of visualization: Information Visualization (InfoVis) and Scientific Visualization. The 

first one comprises concept visualization, which is usually abstract in nature; while Scientific 

Visualization encompasses precise visualizations of world and is used to clarify well known phenomena 

(Nagel, 2006). Uncertainty can be observed in both types of visualization (Kinkeldey et al., 2017), 

therefore, the next subsections will go into more detail on the principles of each type of visualization. 

 

2.1.1. Information Visualization Principles 

Edward Tufte (2006), also known as “the da Vinci of data” (Chen, 2017), described six fundamental 

principles for information visualization: 

▪ “Comparisons”: This principle claims that visuals should show comparisons, i.e., the main point 

in a figure is to enable a person to make intelligent and appropriate comparisons. 

▪ “Causality, Mechanism, Structure, Explanation”: Thoughts about cause and effect might be 

provoked simply by collecting data, therefore, it is important that visuals represent causality 

between data 

▪ “Multivariate Analysis”: In the beginning, the cause-and-effect analysis is bivariate, 

nonetheless quickly becomes multivariate. The Multivariate Analysis principle defends that 

thinking about data should not be two-dimensional, multivariate thinking is needed and for 

that is necessary to show more than one or two variables. 

▪ “Integration of Evidence”: in order to transmit clear information, it is important to integrate 

multiple elements (text, numbers, images, diagrams) in the visual representation and present 

all relevant evidence. 
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▪ “Documentation”: is a key quality control tool, since credibility is given by sources’ quality and 

integrity. 

▪ “Content Counts Most of All”: The most effective way to convey information is to ensure the 

quality, relevance, and integrity of the content. 

 

In summary, Tufte advocates thinking about proof, which includes data description, performing 

multivariate comparisons, comprehending causality, multiple evidence integration, and detailing 

analysis. 

Other authors focus their work on effective visualizations, one example is Ying Zhu (2007), who raises 

two key points regarding InfoVis: the definition of effective visualizations and its measurement. In 

order to determine the effectiveness of data visualization, this author uses the following criteria: 

▪ “Accuracy”: sets the connection between visualization and data, by declaring that visual 

component attributes must correspond to data element attributes, and the visualization 

structure must correspond to the dataset structure 

▪ “Utility”: This criterion defines the link between the visuals and the tasks. The first must 

support users in achieving the objective of the second in order to be considered effective. 

▪ “Efficiency”: describes the association amid visualizations and users. The efficiency criterion 

states that effective visuals must decrease the cognitive burden for a particular task on non-

visual depictions, i.e., the visualization must be effortless to learn and enhance the efficiency 

of the task. 

 

Although Ying Zhu defines these criteria, also points out that they are highly impacted by the domain 

knowledge of users, visualization experience, and visual-spatial ability; and measuring the effect of 

these drivers remains a major challenge. 

 

2.1.2. Scientific Visualization Principles 

We live surrounded by visuals and the need of creating effective scientific visualizations has been 

increasing. Nevertheless, it is common to see information incorrectly represented. Stephen Midway 

(2020) defined ten effective data visualization principles: 



7 
 

▪ “Diagram First”: This principle states that we should give priority to the content we want to 

communicate, view and project it before we make the visualization. 

▪ “Use the Right Software”: In order to have effective visuals, normally, strong knowledge of 

one or more software is required. This usually means learning a new software or deepen 

expertise of a familiar software. 

▪ “Use an Effective Geometry and Show Data”: Geometry is a depiction of data in various ways, 

and most of them belong to these categories: 

➢ Amounts (or comparisons) – Geometries shall be employed only if data have no 

distributional information or uncertainty associated. Although Cleveland dot plots and 

heatmaps can be used, bar plots are often displayed; 

➢ Compositions (or proportions) – May take a wide range of geometries such as stacked 

or clustered bar plots, pie chart, stacked density plots, mosaic plots and tree maps; 

➢ Distributions – Geometries for this category demonstrate high data density and are 

often an underused class of visuals (boxplot, histogram, violin plots, and density plots); 

➢ Relationships – Considered the “workhorse” of geometries, since the so popular 

scatterplot is included, as well as other figures of the coordinate data x and y. 

Also, this principle recommends to show the data, i.e., data can be appended and shown to 

provide the context for the geometry, even though a geometry may be the focal point of the 

image. 

▪ “Colors Always Mean Something”: Color represents information and its use in visualizations 

can be extremely powerful. The majority of visualizations apply color in one of these ways: 

➢ Sequential – vary from light to dark in one or two shades 

➢ Diverging – contain two consecutive schemes representing two different extremes, 

often with one white or neutral color in between 

➢ Qualitative - the use of different and non-related colors to communicate the 

qualitative differences of the group 

It is worth not forgetting some technical recommendations in the use of color: 

➢ The colors used should enable conversion to a gray scale without losing information 
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➢ Colors may be associated with symbols, line styles, and other design features 

➢ Effective color schemes for color-blind users should be used 

➢ Color transparency can be used so that the color information is memorized, yet is not 

visually overwhelming or superior to other design features. 

▪ “Include Uncertainty”: Not including uncertainty in a visualization can be misleading, however 

there are two main challenges in including it: failure to include uncertainty and its 

misinterpretation. Although uncertainty is rarely seen in visuals, it is usually easy to include it 

in the majority of software programs and can be in the shape of standard geometries, namely 

error bars and shaded intervals (polygons). Common metrics of uncertainty are standard 

deviation, standard error, confidence intervals, and credible intervals. Expressing uncertainty 

is important, readers must be acquainted with uncertainty metrics and how to interpret them, 

but the figure author also has to choose the proper uncertainty measure so the message can 

be well interpreted. 

▪ “Panel, when Possible (Small Multiples)”: Small Multiples is an approach that repeats a figure 

with a change in one variable, in order to highlight differences and make the data comparable. 

▪ “Data and Models Are Different Things”: A model must be fully described to guarantee 

reproducibility and a model visualization needs to be described in the figure legend or referred 

somewhere within the paper in order to enable the reader to locate all the information about 

what the model visual is depicting. 

▪ “Simple Visuals, Detailed Captions”: Legends must clarify the geometries used, i.e., should 

provide the best possible explanation for the visualizations and representations used. 

▪ “Consider an Infographic”: Infographics usually embed text, images, and other graphical 

components, while figures generally focus on representations of data and models. Although 

infographics score high on memorability and figures are moving in the direction of 

infographics, converting all figures into infographics is not advised. 

▪ “Get an Opinion”: The most successful visualizations are those that the audience engage with, 

thus seeking external reviews is encouraged. 

 

Other authors also added some rules or guidelines, in order to make a more effective visual. Some 

examples are: “know the audience”, “do not trust defaults” (Rougier et al., 2014), focus on viewing 
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patterns or details, choose relevant axis intervals, and integrate wider datasets in a significant manner 

(Kelleher & Wagener, 2011). 

 

2.2. UNCERTAINTY 

Most often, visualization methods presume that the depicted data is error-free; yet this is seldom the 

case. Since the error is intrinsic to data, it cannot be ignored in visualizations (Kamal et al., 2021), 

uncertainty cannot be ignored. 

It is proven that uncertainty information improves the user understanding of the data (Greis et al., 

2018), as well as the decision making process (Fernandes et al., 2018; Gkatzia et al., 2016; S. L. Joslyn 

& LeClerc, 2012; Jung et al., 2015; Kayongo et al., 2021; LeClerc et al., 2016; Nadav-Greenberg & Joslyn, 

2009). One example is the experiment of Joslyn and LeClerc (2013) where individuals made better cost-

effective decisions when provided with uncertainty in a weather forecast than those who were 

provided with weather forecasts alone. Uncertainty is present in our day-to-day life, it can be observed 

not only in weather forecasts, but also in traffic simulations, GPS, politic polls, games, and so on; but 

what is uncertainty exactly? 

There are several definitions of uncertainty: in the first publications, it was defined as statistical 

(provided by estimated mean and standard deviation, or a true distribution of the data), errors (a 

difference, or an absolute valued error between data estimations) and range (an interval where the 

data should be present, although it is not possible to quantify it in statistical or error definitions) (Pang 

et al., 1997); while in a most recent article was defined as the likelihood that actual data or the model 

predictions may assume on a range of possible values (Hullman, 2020). Despite the many definitions, 

it seems to be consensual that there are several sources of uncertainty. Pang (1997) stated that 

uncertainty may appear during any phase of the visualization development (acquisition, 

transformation, or visualization), and Bonneau (2014) complemented by also covering sampling, 

quantization and interpolation. 

According to Kirchner (2021), it appears that there is an understanding of the distinction between two 

primary causes of uncertainty: stochastic and epistemic. Stochastic uncertainty is caused by underlying 

variability in natural and human systems (Kirchner et al., 2021), and cannot be reduced (Kirchner et 

al., 2021; Therón Sánchez et al., 2019). It is also called statistical uncertainty, aleatoric uncertainty, 

type A uncertainty, variability uncertainty, irreducible uncertainty, and objective uncertainty (Therón 

Sánchez et al., 2019). Stochastic uncertainty occurs mostly in scientific fields and is generally linked to 

objective knowledge derived from general knowledge or unique observations (Therón Sánchez et al., 
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2019). An epistemic uncertainty, on the other hand, is caused by a lack of knowledge/information and 

can theoretically be reduced (Kirchner et al., 2021; Therón Sánchez et al., 2019). It is also called 

systematic uncertainty, type B uncertainty, state of knowledge, reducible uncertainty, and subjective 

uncertainty (Therón Sánchez et al., 2019). Epistemic uncertainty is particularly linked to decision-

making processes and, therefore, can be found either in scientific investigation (commonly related to 

hypothesis testing) or in humanities investigation (related to contested theories or events) (Therón 

Sánchez et al., 2019). 

Other publications address additional uncertainty sources, such as language imprecision (Ascough Ii et 

al., 2008), decision uncertainty (Ascough Ii et al., 2008; Peterson, 2006), and ambiguity (Warmink et 

al., 2010). Table 1 represents the taxonomy of uncertainty sources based on Kirchner’s (2021) article. 

 

Table 1 – Uncertainty sources’ taxonomy (Kirchner et al., 2021) 

Main Type Sub-type Specific cause 

Stochastic 

Natural variability 
Inherent randomness 

Natural variation 

Human variability 

Moral judgements 

Behavior 

Institutional 

Technological breakthroughs 

Epistemic 

Unreliability 

Inexactness 

Missing observations 

Practically unquantifiable 

Structural uncertainty 

Contradictory evidence 

Reducible/irreducible ignorance 

Indetermination 

System understanding 

Process 

Cause 

Effect 

Linguistic uncertainty 

Vagueness 

Ambiguity 

Sub-specificity 

Indetermination of theoretical terms 

Context dependency 
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2.2.1. Uncertainty Representation 

Uncertainty is frequently divided into two categories: the one that can be directly quantified and the 

one that can’t. The first category can be described by mathematical terms and can be employed to 

forecast future situations, while the second category occurs if a model exhibits variability or error 

which the analyst can neither predict nor quantify (L. M. Padilla et al., 2020). Following this line of 

thought, representation approaches can be categorized in quantification or visualization, where 

quantification deals mainly with the uncertainty of modelling data via multiple mathematical 

processes, and visualization involves displaying data uncertainty visually (Kamal et al., 2021). Below, 

figure 1 systematizes the two approaches, quantification and visualization approaches, and the 

popular techniques under them. 

 

Figure 1 - Approaches to uncertainty representation (Kamal et al., 2021) 

 

The quantification approach will not be further addressed, since is beyond the scope of this 

dissertation. Focusing on visualization approaches, figure 1 comprises six techniques: 

▪ Geometry: added to express continuous data. Some examples of techniques are: contour lines, 

streamlines, isosurfaces, volumes, and modification of the existing geometry through 

distortion, scaling or rotation (Kamal et al., 2021; Pang et al., 1997). Glyph is another technique 
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for adding geometry, nevertheless it is only added in discrete locations (Kamal et al., 2021; 

Pang et al., 1997). 

▪ Attributes: uncertainty can be displayed through the modification of attributes such as 

shading, lighting, color, and embellishments (e.g.: textures) (Kamal et al., 2021; Pang et al., 

1997). 

▪ Animation: is a strong, innate and unambiguous technique of showing uncertainty to the 

audience while not cluttering the visualization as several parameters exist in the animation to 

which uncertainty can be applied (Kamal et al., 2021). Some of these parameters are: speed, 

duration, blinking, motion blur, and range (Pang et al., 1997). Hypothetical Outcome Plots are 

one of the uncertainty visualization techniques. The section 2.2.2. will cover this topic in more 

depth. 

▪ Visual Variables: are frequently employed to display uncertainty (Kamal et al., 2021) and some 

examples are: location, size, color hue, color value, color saturation, orientation, grain, 

arrangement, shape, fuzziness, transparency, and brightness (Kamal et al., 2021; MacEachren 

et al., 2012). 

▪ Graphical Techniques: traditional and most popular way of depicting large amounts of data in 

an understandable way, and include, for example, box plots, scatter plots, violin plots, and 

histograms (Kamal et al., 2021). 

▪ Glyphs: geometrically plotted specifiers that encode data values via their shape and/or color 

(Pang et al., 1997). Glyphs attributes such as size, shape, color, and orientation can be 

employed to represent data in the display (Kamal et al., 2021). Some applications of glyphs are 

natural phenomena representation (e.g. hurricane motion on a map), flow visualization, vector 

visualization, interpolation, and radiosity (Kamal et al., 2021). 

 

These techniques aim to represent the uncertainty information (Kamal et al., 2021) and are valuable 

to those who need to make informed decisions based on imperfect data (Pang et al., 1997). 

 

2.2.2. Hypothetical Outcome Plots 

Uncertainty static visualizations often have the problem that the audience can perceive some feature 

of the display as deterministic (Wilke, 2019). This problem can be overcome by displaying the 
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uncertainty using animation, specifically using Hypothetical Outcome Plots (HOPs) (Hullman et al., 

2015). HOPs (figure 2) are an animated sequence of random draws from a distribution (Kale et al., 

2018; Roy et al., 2018; Y.-S. Kim et al., 2019; L. Padilla et al., 2020; Phelan et al., 2019), that allow the 

audience to make an impression of the uncertainty intuitively while watching (L. Padilla et al., 2020), 

leading to more accurate understanding (Hullman et al., 2015). Figure 2 represents an example of a 

bar and line HOPs, where translucent bars/lines represent the movement, and some example frames 

to better understand what HOPs show. 

 

 

Figure 2 – Example of bar and line HOPs where the single frames are made translucent and merged 

into one depiction to reflect the HOPs movement (Phelan et al., 2019) 

 

In order to clarify the definition of a HOP, an example of Wilke (2019) will be used. If someone wants 

to buy a chocolate bar, usually does not concern with the mean taste rating and related uncertainty of 

particular chocolate bars, rather may wish to find out, for example, what to expect to taste better 

when randomly picks up a Canadian and an American chocolate bar. Imagining that this person, Joe, 

has a large dataset containing specialist ratings of chocolate bars, classified on a one to five scale, for 

chocolate bars produced in several countries such as: Switzerland, Canada, Austria, the United States, 
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Belgium and Peru, then it is possible to answer that question, since Canada and the USA are present 

in the dataset. Assuming that Joe selects a Canadian bar and an American bar at random from the 

dataset, compares their ratings, registers the result, and then repeats this several times, then, he could 

represent this visually, by cycling through multiple of these random draws and displaying the relative 

ranking of the two bars for each draw as in figure 3. In Figure 3, each vertical green bar depicts the 

rating for a chocolate bar, and each panel displays a comparison between two bars chosen at random, 

one from a Canadian manufacturer and one from an American manufacturer; and in a real HOP the 

visualization would move between the different plot panels rather than show them side by side. 

 

 

Figure 3 – Representation of a HOP for chocolate bar ratings (Wilke, 2019) 

 

Although Hypothetical Outcome Plots are not feasible in a printed environment they can be highly 

successful in online environments or presentations (Wilke, 2019). When building a HOP, it is important 

to ensure that the results displayed reflect the true distribution of possible outcomes, if not, the 

Hypothetical Outcome Plot can mislead the audience (Wilke, 2019). Possible solutions to this problem 

are selecting a large number of results, whereby sample biases are not likely to occur, or checking that 

the results presented are appropriate (Wilke, 2019). Besides this, another important aspect when 

building a HOP is the frames switch, i.e., how should the switch occur, hard or smooth? Kale et al. 
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(2018) showed that smooth transitions make it more difficult to judge on the probabilities depicted, 

and, following this line of thought, Wilke (2019) suggested that HOPs should have fast transitions or 

an animation style in which the results fade in and out rather than distorting from one to the other. 

Hypothetical Outcome Plots are a logical approach for uncertainty visualization when the basic visual 

encodings are already complex and difficult to understand, so that adding other encodings or glyphs 

might not be effective (Zhang et al., 2021). 

Jessica Hullman (Hullman et al., 2015) identified some drawbacks, such as: introduction of sampling 

error, since the reader examines a limited set of frames, obtaining an inaccurate idea of the full 

distribution; and the reduction but not elimination of visual integration’s difficulty. Nevertheless, 

several advantages have been recognized (Hullman et al., 2015; Kale et al., 2018; L. Padilla et al., 2020): 

▪ Allowing the audience to think about individual results in finite ways instead of infinite ways 

abstracted over entire distributions 

▪ No need of adding new marks or new encodings, and, therefore, not being required that 

viewers understand those marks/encodings; 

▪ Force the audience to be aware of uncertainty in their understanding of data; 

▪ Force viewers to acknowledge that unlikely outcomes are covered by the distribution; 

▪ Strongly enhance multivariate probability estimation versus conventional static uncertainty 

visuals; 

▪ Support decision-making. 

 

Furthermore, a couple of studies about visualizations found that HOPs could lead to better estimates 

than error bars (Hofman et al., 2020; Hullman et al., 2015; Kale et al., 2018), as well as other 

approaches such as static ensembles and violin plots (Kale et al., 2018). Another advantage of 

Hypothetical Outcome Plots is that they allow for more accurate interpretations also among individuals 

who are not experienced in statistics and have had little instruction in using the plots (Hullman et al., 

2015; Kale et al., 2018). 

Overall, when weighing the advantages and drawbacks, is clear that advantages win. 
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3. METHODOLOGY 

The proposed methodology for this dissertation is the Design Science Research Methodology (DSRM), 

developed by Peffers et al. (2007), which will guide in the development and assessment of two artifacts 

designed to address specific problems of Wayne Enterprises. 

 

 

Figure 4 – DSRM Process Model (Peffers et al., 2007) 

 

This approach presents six different steps of implementation: 

1. Problem Identification and Motivation; 

2. Definition of the Objectives for a Solution; 

3. Design and Development 

4. Demonstration; 

5. Evaluation; 

6. Communication 

 

The choice of methodology for this dissertation is supported by the purpose of the same, i.e., the 

artifacts that will be created (HOPs prototypes) seek to tackle a problem and improve the decision-

making process. 
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The Problem Identification and Motivation stage requires defining the research problem and the 

solution’s value rationale (Peffers et al., 2007). This step was already done in sections 1.1. and 1.2. of 

this document. Also, it is possible to find in section 1.2. the step 2: Definition of the objectives for a 

solution. 

In step 3 (Design and Development) is where the artifacts are created, which could be any conceived 

objects where an experiment contribution is incorporated into the design. To create the artifacts, it is 

necessary first to determine the wished functionalities and their structure, and afterwards to create 

the concrete artifacts (Peffers et al., 2007). In this step will be developed the entire process that will 

lead to the creation of the artifacts. 

The aim of the Demonstration step is to show the usage of the artifacts to address the problem, which 

can include using them in experimentation, simulation, case study, proof, or another suitable activity 

(Peffers et al., 2007). Here is where the HOPs prototypes will support the proof-of-concept execution, 

being compared against static visualizations through a survey. 

Regarding the Evaluation, it is required to notice and gauge the extent to which the artifacts provide 

an answer to the problem (Peffers et al., 2007). This step is performed in section 4 of this document, 

and is where the results of the experiment are evaluated. 

Finally, the Communication will be done through this dissertation, which will disclose the identification 

of the problem and development of the solution. 

As mentioned, the next sections will address steps 3 and 4, focusing on the development of the 

prototypes as well as the comparison process against static plots. 

 

3.1. DESIGN & DEVELOPMENT 

 

3.1.1. Context of the Prototypes 

In order to perform the Design & Development step, it is necessary to know why launches and loss of 

exclusivity are so important for pharmaceutical industries. For that, it is important refer the life cycle 

of pharmaceutical products (figure 5). 

The life of a pharmaceutical product starts with its discovery of the product and consequent 

development. Normally, this phase takes about 12 to 15 years (Haque & Ratemi, 2017), and is where 

the discovery phase, pre-clinical trials and clinical trials (Phases I, II and III) take place (Gaessler & 
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Wagner, 2019). The objective of this phase, besides the discovery of a new product, is to get marketing 

authorization, so that the product can be commercialized, as well as the patent covering the active 

substance of the medicine, giving exclusive rights. Once the product receives the patent protection 

and the marketing authorization, begins the market exclusivity period (Gaessler & Wagner, 2019). The 

duration of this period is set by the patent and data exclusivity periods. Data exclusivity concerns the 

timeframe in which the results of clinical trials are not eligible to be used by generic players to obtain 

further marketing approval. Since clinical trials are expensive, data exclusivity raises barriers to entries 

and is therefore a cause of market exclusivity regardless of patent protection (Gaessler & Wagner, 

2019). In addition, there is also the supplementary protection certificates (SPCs). These certificates are 

optional and, in case the protection is granted, can delay loss of exclusivity by a maximum of five years 

(Gaessler & Wagner, 2019). 

 

 

Figure 5 – Representation of pharmaceutical products life cycle (Gaessler & Wagner, 2019) 

 

Once market exclusivity expires, generic manufacturers tend to step into the market, reducing the 

price and hence the margins and profitability of the originator (Gaessler & Wagner, 2019; Higgins et 

al., 2020). Aiming to delay generic competition, companies frequently attempt to extend the duration 

of market exclusivity by working on additional improvements and obtaining further patents during the 

life cycle of the drug. 

Forecasts are important throughout all phases of the product lifecycle, nevertheless, this project focus 

on launch and LoE forecasts. Companies main interest in launch forecasts is to study how the future 
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market will behave and to assess the overall future sales potential of the new product, while for LoE 

forecasts the main objective is to understand the impact of generics entry in the market. Some of the 

key questions that pharmaceutical companies seek answers to are: 

▪ What is the expected share of decrease for the originator? (LoE); 

▪ What share of generic sales can be expected? (LoE); 

▪ How fast is the generics effect taking place? (LoE); 

▪ How does the price develop after generics launch? (LoE); 

▪ What uptake pattern can be expected for the new product? (Launch); 

▪ What is the typical uptake pattern for similar products? (Launch); 

▪ How will controlled access and risk management impact uptake and peak share? (Launch); 

▪ What persistence (or therapy drop-out) and compliance rate can be expected? (Launch); 

▪ What would be price per day? (Launch); 

▪ What is the market and product potentials? (Launch). 

 

Now that the launches and loss of exclusivity processes are explained, it is possible to build the 

prototypes. The section below (3.1.2.) explains the process of building the prototypes. 

 

3.1.2. Prototypes Development 

 

3.1.2.1. First Prototype (One Product) 

To build the first prototype, it helps having a case scenario, which in this case it will be a hypothetical 

one. Below is the case scenario’s description and the standard procedure: 

▪ Case Scenario: Wayne Enterprises has a client – Umbrella Corporation – that is preparing to 

launch a new product (Product A) on the market of Breast Cancer. The Umbrella Corporation 

has asked Wayne Enterprises to develop a forecast in order to understand how successful this 

product can be. For this, Wayne Enterprises will need to provide a list of analogous molecules 

in oncology market, and from this list select approximately two to three molecules in total 
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based on key selection criteria in alignment with Umbrella Corporation. After analyzing each 

molecule, Wayne enterprises will develop the launch forecast for the new product. 

 

Assuming that the process described above was done and all the data was gathered, it is possible to 

start developing the prototype. To do that, it is necessary to know and understand the type of graphics 

that are used in forecast projects at Wayne Enterprises, in order not to introduce bias in the study. 

After a brief informal poll with Wayne Enterprises’ employees that currently do Launch forecasts, it 

was clear that the most commonly used type of graph in these forecast projects is line charts. 

Therefore, the prototype needed to be an animated line chart. 

The HOP prototype was developed with Python, in particular with Matplotlib1 and Imageio2 libraries. 

First it was used Matplotlib to build the different plots with the possible outcomes, and only after all 

plots were obtained, it was used Imageio to combine all of them. The HOP was obtained by repeatedly 

sampling 24-month sets of units sold for Product A, showing these figures in line charts, and animating 

the shifts between frames. Animations were rendered at 0.5 frames per second (=500ms), since this 

frame rate tends to perform best according to L. Padilla (2020), with no transition animations defined 

(e.g., fading). 

Since it is not possible to display the animated prototype in this document, below, in figures 6, are the 

different frames that integrate this HOP prototype. 

 

 

1 https://matplotlib.org/stable/index.html 
2 https://imageio.readthedocs.io/en/stable/ 
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Figure 6 – Frames of Product A’s HOP 
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3.1.2.2. Second Prototype (Two Products) 

Besides building a Hypothetical Outcome Plot for Umbrella Corporation’s product (figure 6), another 

one was built (figure 7), inspired by Hullman’s (Hullman et al., 2015) experiment. This second prototype 

contains two different products with the objective to verify if having more than one product/line could 

impact the overall perception. 

 

Below is the hypothetical case scenario’s description as well as the standard procedure: 

▪ Case Scenario: Wayne Enterprises has a client – Umbrella Corporation – that is preparing to 

launch a new product (Product B) on the market of Multiple Sclerosis (MS). However, the 

Umbrella Corporation learned that the competition will also launch a new product for the 

same market (Product C). Therefore, the Umbrella Corporation has asked Wayne Enterprises 

to develop a launch forecast for both products in order to understand how successful their 

own product can be, and if there is any chance of being overtaken by the competitor's product. 

For this, Wayne Enterprises will need to provide a list of analogous molecules in MS market, 

and from this list select approximately two to three molecules in total for each product based 

on key selection criteria in alignment with Umbrella Corporation. After analyzing each 

molecule, Wayne enterprises will develop the launch forecast for the new products. 

 

Like the first prototype, the second is also an animated line chart, developed with Python, using 

Matplotlib and Imageio libraries. Matplotlib was used first to create the distinct plots with the possible 

results, and only when all the plots were obtained, Imageio was employed to combine all of them. The 

HOP was generated by repeatedly sampling sets of 24-month units sold for Product A and Product B, 

plotting these numbers in line graphs, and animating the shifts between frames. Animations were 

rendered at 0.5 frames per second (=500ms), since, as mentioned in the previous section, this frame 

rate tends to perform better according to L. Padilla (2020), without setting transition animations (e.g. 

fading). 

Given that it is not possible to display the animated prototype in this document, below, in figure 7, are 

the distinct frames that comprise this HOP prototype. 
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Figure 7 – Frames of two products’ HOP 

 

3.2.  PROOF-OF-CONCEPT DEMONSTRATION 

As described in the beginning of section 3, the Demonstration step shows the usage of the artifacts to 

address the problem, which, in this case, includes using it in the proof-of-concept. Before describing 

the proof-of-concept, it is important to understand the general process of a Human-Computer 

Interaction (HCI) experiment. 

In the beginning, HCI research metrics relied on human performance measures from human factors 

and psychology, i.e., it was based on a task-centered model (Lazar et al., 2017). With this model, certain 

tasks such as performance speed, error rate, learning time, retention over time, and user satisfaction 

could be separated, quantified, and measured (Lazar et al., 2017; Shneiderman et al., 2016). Although 

such measures do not include motivation, cooperation, social engagement, reliability, and empathy, 

they remain the core metrics to assess interface usability and continue to be of interest today (Lazar 

et al., 2017; Shneiderman et al., 2016). 

According to Shneiderman (2016), the HCI research methods most commonly employed are 

observations, field studies, surveys, usability studies, interviews, focus groups, and controlled 
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experiments. Such approaches can be used in empirical investigation which can be divided in three 

categories: descriptive, relational, and experimental (Rosenthal & Rosnow, 2008). 

The descriptive category includes observations, surveys and focus groups, and is based on building a 

precise picture of what is happening. The relational category allows the researcher to recognize 

relationships among numerous factors, while the experimental category allows the detection of causal 

relations. These three categories are not entirely unrelated, common research projects comprise a mix 

of two or even the three categories (Lazar et al., 2017). Table 2 contains the comparison between the 

three categories. 

 

Table 2 – Comparison between Descriptive, Relational and Experimental Researches (Lazar et al., 

2017) 

Type of research Focus General Claims Typical Methods 

Descriptive 
Outline a scenario or a 

number of events 
A is occurring 

Observations, field studies, 

focus groups, interviews 

Relational 
Recognize the relationships 

among several variables 

A is connected 

with B 

Observations, field studies, 

surveys 

Experimental 

Recognize the reasons 

behind a scenario or group 

of events 

A is responsible 

for B 
Controlled experiments 

 

 

In order to do an experiment, investigators start by developing a research hypothesis. Usually, an 

experiment needs a minimum of one null hypothesis and one alternative hypothesis. Effective 

experimental research relies on clear research hypotheses that detail the dependent variables to be 

observed and the independent variables to be controlled. A dependent variable can be defined as the 

result or effect that the investigators are interested in, while the independent variable represents the 

agents that the investigators are keen to study or the potential “cause” of the dependent variable's 

change. In general, the aim of the experiment is to assess if the null hypothesis can be rejected or if 

the alternative hypothesis can be accepted. 

After a hypothesis is constructed, is important to choose the design. There are different forms of 

experimental design: the between-group, the within-group and the split-plot designs.  
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In a between-group design, each subject only deals with one experimental condition and the number 

of subject groups matches the number of experimental conditions. Oppositional, the within-group 

design demands that each subject has contact with several experimental conditions and only a single 

group of subjects is required for the whole experiment. When compared, the between-group design 

is cleaner, prevents the learning effect, and is less prone to be impacted by tiredness and frustration, 

however, it is weaker because of the high loudness of individual differences. Also, the large number of 

participants that are usually required can be considered a drawback. In contrast, the within-group 

design successfully isolates individual differences and requires fewer participants. Nevertheless, the 

within-group design is more susceptible to learning effects and tiredness. 

The third design, split-plot, is a mix of between-group and within-group elements, i.e., a single or more 

independent variable is researched using a between-group method and the other variables are 

researched sing a within-group method. This design can only be chosen if there is more than one 

independent variable. (Lazar et al., 2017). Regardless of which method is chosen, it is essential to 

consider the participants, the nature of the application, and the tasks examined, to be sure it is the 

most appropriate method. 

Once the method is chosen and the experiment is done, is required to analyze the data collected. There 

are two major categories of tests: parametric and nonparametric. To choose a parametric test, some 

assumptions need to be met (Cooper et al., 2006; Lazar et al., 2017): 

• The observations are required to be independent; 

• Observations shall be taken from normally distributed populations; 

• The data variance collected from different groups should be equal or approximately equal; 

• Scales of measurement must have at least one interval to enable arithmetic operations to be 

performed. 

 

When these assumptions are not fulfilled, nonparametric tests shall be used instead. Nonparametric 

tests are employed to test hypotheses containing nominal and ordinal data, and although these tests 

have less rigorous requisites regarding the data, they are not supposition free (Cooper et al., 2006; 

Lazar et al., 2017). 
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There are multiple parametric and nonparametric tests, here are some examples of the most used: 

• T-test; 

• ANOVA; 

• Regression; 

• Correlation (Pearson, Spearman’s rho); 

• Chi-square 

 

The proper choice of statistical analysis methods is essential to avoid erroneous conclusions. The type 

of data gathered and the design of the experiment establish the most suitable test to be employed. 

The table below represents the recommended statistical techniques by Cooper et al. (2006). 

 

Table 3 – Recommended statistical techniques by Cooper et al. (2006) 

Measurement 
scale 

1 sample 
Case 

2 Samples Tests k-Samples Tests 

Related 
Samples 

Independent 
Samples 

Related Samples 
Independent 

Samples 

Nominal 

Binomial 

McNemar 

Fisher’s Exact 
Test 

Cochran Q 
χ2 for k 

samples χ2 one-
sample test 

χ2 two-
samples test 

Ordinal 

Kolmogorov- 
Smirnov one-

sample 
test 

Sign test Median test 

Friedman two-way 
ANOVA 

Median 
extension 

Wilcoxon 
matched-

pairs 
test 

Mann-
Whitney U 

Kruskal-
Wallis 

one-way 
ANOVA 

Kolmogorov- 
Smirnov 

Runs test 
Wald-

Wolfowitz 

Interval and 
Ratio 

t-test t-test for 
paired 

samples 

t-test Repeated-
measures 
ANOVA 

One-way 
ANOVA 

Z test Z test 
n -way 
ANOVA 
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For the experiment described in this document, it won’t be possible to fulfill the parametric 

assumption, meaning that a non-parametric test needs to me chosen. Having in consideration table 3 

and other reasons that will be explained further in this document, Fisher’s Exact Test was the chosen 

test. Fisher's exact test evaluates the null hypothesis of independence by employing the 

hypergeometric distribution of the figures (H.-Y. Kim, 2017), being used mainly in 2 × 2 contingency 

tables but may be expanded to bigger contingency tables (H.-Y. Kim, 2017; Robertson & Kaptein, 2016). 

Although this test mainly used in small samples, it can be applied to all sample sizes (H.-Y. Kim, 2017). 

 

3.2.1. Hypotheses and Questionnaire 

Normally, an experiment starts by defining a research hypothesis. Therefore, before executing the 

proof-of-concept, it is necessary to define a hypothesis. Below are the null hypothesis (H0) and the 

alternative hypothesis (H1 and H2) for the prototypes experiment: 

 H0: There is no difference in uncertainty interpretation between a static plot and a HOP. 

 H1: HOPs allow to interpret uncertainty with more accuracy. 

 H2: HOPs allow to interpret uncertainty faster than static visualizations. 

 

Considering these hypotheses and Wayne Enterprises employees, the between-group design was 

chosen. The experiment consists in two groups of participants answering a survey. Each group has 20 

randomized participants and all of them belong to the German Consulting department of Wayne 

Enterprises. 

There are two surveys, one with the two prototypes (figures 6 and 7) and other without them. In the 

last case, the survey without the prototypes, it was used static plots instead (figures 8 and 9), so the 

prototypes could be compared against them and the hypotheses be tested. To build these static plots, 

Python was used, in specific the Matplotlib library. The lines in figures 8 and 9 represent the mean of 

the product, and the shading area represents the confidence level (99%).  
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Figure 8 – Static plot representing Product A launch forecast 

 

Figure 9 – Static plot representing Product B and Product C launch forecasts 
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Both surveys have the same introduction (figure 10) and consist in the same four questions: 

1. How likely is that one year (month 12) after Product A’s launch the sales are over 4 000 

units? 

2. How likely is that in month 16 after launch, Product C has the same or more units sold 

than Product B? 

3. How old are you? 

4. How many years of experience with visualizations have you? 

 

 

 

Figure 10 – Introduction of the surveys 
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Questions 1 and 2 are for figures 6/8 and 7/9, respectively. In both questions, the participants can only 

choose one of the following options: impossible, very unlikely, unlikely, neutral, likely, very likely, 

certain (as exemplified in figure 11). To use Fisher’s Test on these questions it is necessary to have 

nominal variables (as explained in table 3), therefore, the participants’ answers were transformed into 

binary, i.e., correct or incorrect answer. 

 

 

Figure 11 – Question 1 of Static Plots Survey 

 

Questions 3 and 4 are demographic questions, and in order to increase the response rate, participants 

are requested to answer through predefined intervals as shown in figures 12 and 13. 
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Figure 12 – Question 3 (demographic) of both surveys 

 

 

Figure 13 – Question 4 (demographic) of both surveys 

 

The between-group design was chosen because it is cleaner and prevents the learning effect. Although 

this design can have high loudness of individual differences, in this experience this situation is avoided 

since the participants belong to the same team and have equivalent knowledge about plots and 

statistics. 
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4. RESULTS 

 

4.1. SAMPLE DESCRIPTION 

A total of 40 employees from the German Consulting department of Wayne Enterprises were recruited 

to complete the surveys, being randomly and equally split (20 to each survey). From these 40, 34 

answered, who were reduced to 29 participants after cleaning the dataset. While the initial 

participants split was done to evenly distribute them to one or the other survey, once the dataset was 

cleaned, the HOPs survey gathered 13 participants, whereas the static plot survey gathered 16 

participants. 

Both surveys’ participants have a similar age distribution (figures 14 and 15), with more than half of 

the participants having between 20 and 29 years old. 

 

 

Figure 14 – Age from HOPs survey participants 

 

 

Figure 15 – Age from Static Plots survey participants 
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Regarding visualizations experience, in both surveys, the majority lays on between less than one year 

and 10 years. Nevertheless, the static plots survey group has a diverse experience, with at least one 

participant in each interval, while HOPs survey participants is between less than 1 year and 10 years, 

or more than 21 years of experience. 

 

 

Figure 16 – Experience from HOPs survey participants 

 

 

Figure 17 – Experience from Static Plots survey participants 
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4.2. ACCURACY AND TIME 

The accuracy and time were the first measures to be analyzed, in order to get an overview of the 

results. The accuracy was calculated for questions 1 and 2 of both surveys, being measured in a scale 

of 0% to 100%. As referred before, the answers (impossible, very unlikely, unlikely, neutral, likely very 

likely, certain) were transformed into correct or wrong answers. Therefore, the accuracy percentage 

was calculated by dividing the sum of correct answers by the total of answers given in that specific 

question and survey. Five ranges of accuracy (Table 4) were defined: very low, low, medium, high, and 

very high. 

 

Table 4 – Accuracy ranges definition 

Accuracy ranges Values 

Very Low 0% - 20% 

Low 21% - 40% 

Medium 41% - 60% 

High 61% - 80% 

Very High 81% - 100% 

 

 

According to the results obtained (figure 18), in both questions, the accuracy in Static Plots survey is 

higher than in the HOPs survey. The Static Plots survey had high accuracy, with the same accuracy 

percentage in both questions (75%), while the HOPs survey achieved low accuracy (31%) in the first 

question, and high accuracy (62%) in the second. This means that Static Plots survey obtained an 

average of 75%, which is considered high, and HOPs survey obtained an average of 46,5% which is 

medium. 
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Figure 18 – Accuracy measurement of questions 1 and 2 from HOPs, and Static Plots Surveys 

 

Regarding the time, it was observed the opposite scenario. The HOPs’ survey participants completed 

the survey in less time than the participants of the Static Plots survey. In fact, as it is possible to observe 

in figure 19, HOPs’ survey participants took on average less than half the time that the Static Plots 

survey participants took, i.e. 2 minutes and 21 seconds versus 4 minutes and 50 seconds, respectively. 
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Figure 19 – Mean of total time taken to complete the surveys 

 

4.3. HYPOTHESIS TESTING & EXPERIENCE IMPACT 

To test the null hypothesis (H0), a Fisher's Exact Test was performed for each question. This statistical 

test was chosen because a normal distribution could not be assumed and the sample size was small. 

Furthermore, to perform this test the variable needs to be nominal, which is precisely what we have 

since the answers given were converted into binary answers (correct or incorrect). The objective is to 

check if there is a significant difference between the two groups, i.e., a difference between the static 

visualizations and the Hypothetical Outcome Plots interpretations. The significance tests were 

performed using IBM® SPSS® Statistics software, with α=0.05. For both questions, the first step was to 

build a crosstabulation table (tables 5 and 6), so the Fisher’s test could be performed (results in table 

7). 
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Table 5 – Survey group * Question 1 answers crosstabulation 

  Question 1 answers 
Total 

  Incorrect Correct 

Survey Group 
HOP 9 4 13 

Static 4 12 16 

Total 13 16 29 

 

 

Table 6 – Survey group * Question 2 answers crosstabulation 

  Question 2 answers 
Total 

  Incorrect Correct 

Survey Group 
HOP 5 8 13 

Static Plots 4 12 16 

Total 9 20 29 

 

 

Table 7 – Fisher’s Exact Test results 

 Exact Sig. (2-sided) Exact Sig. (1-sided) 

Question 1 0.027 0.022 

Question 2 0.688 0.353 

 

 

Since for question 1 the p-value is less than 0.05, the null hypothesis can be rejected. Therefore, for 

this question, there is sufficient evidence to state that there is a significant difference between the 

static visualization and the HOP. With this result and the information present in figure 18, we can also 

reject the alternative hypothesis (H1) which considered that HOPs allow to interpret uncertainty with 

more accuracy, since according to figure 18, the Static Plots Group answered to question 1 with 75% 

of accuracy, while the HOPs Group answered with only 31%. 
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However, for question 2, the Fisher’s Exact Test results are the opposite, i.e., p-value is higher than 

0.05, meaning that the null hypothesis cannot be rejected. Thus, for this question, there is not 

sufficient evidence to state that there is a significant difference between the static visualization and 

the HOP. 

The difference between the two results leads to the question “did the participants' experience impact 

the answers to the questions?”. To answer this question, four Kendall’s Tau correlations were 

performed using IBM® SPSS® Statistics software. The Kendall’s Tau is a non-parametric correlation 

coefficient which can be used to evaluate and test correlations between ordinal variables (Bolboaca & 

Jäntschi, 2006; Brossart et al., 2018). 

Before performing the correlation, the experience was divided in three levels: low, medium, and high 

(table 8). 

 

Table 8 – Accuracy ranges definition 

Experience Levels Experience years 

Low 0 - 5 

Medium 6 - 15 

High >16 

 

After the experience levels definition, the correlation was performed. Tables 9 and 10 represent the 

Kendall’s Tau correlation between experience and the answers to questions 1 and 2 for HOPs group 

and Static Plots group, respectively. 

 

Table 9 – Kendall’s Tau correlation between experience and Q1/Q2 answers for HOPs group 

 Question 1 answers Question 2 answers 

Correlation Coefficient 0.146 0.138 

Sig. (2-sided) 0.603 0.622 

Sig. (1-sided) 0.301 0.311 

N 13 



40 
 

Table 10 – Kendall’s Tau correlation between experience and Q1/Q2 answers for Static Plots group 

 Question 1 answers Question 2 answers 

Correlation Coefficient 0.577 0.369 

Sig. (2-sided) 0.019 0.133 

Sig. (1-sided) 0.009 0.066 

N 16 

 

 

As referred, the Kendall's tau-b correlation was run to determine the relationship between experience 

level and the answers of questions 1 and 2 for each group. For questions 1 (τb = 0.146, p = 0.603) and 

2 (τb = 0.138, p = 0.622) from HOPs group and question 2 (τb = 0.369, p = 0.133) from Static Plots group 

there was no correlation between the experience and answers given. However, there was a positive 

correlation between experience level and question 1 answers from Static Plots group, which was 

statistically significant (τb = 0.577, p = 0.019). 

 

 



41 
 

5. DISCUSSION 

In order to study the impact of Hypothetical Outcomes Plots in the decision-making process in a 

professional environment, two prototypes were built to support the proof-of-concept experiment 

conceived. This experiment consisted of two groups answering a survey, where one group observed 

the two prototypes (HOPs group) and the other group observed static figures (Static Plots group). The 

main objective of this experiment was to refute the null hypothesis and, consequentially, validate the 

alternative hypothesis, as well as enable to answer the research question formulated in section 1.2. 

(“How can Hypothetical Outcome Plots perform better than static visualizations when interpreted by 

experienced visualization users?”). 

Starting with the null hypothesis (“There is no difference in uncertainty interpretation between a static 

plot and a HOP”), according to the results in section 4, the null hypothesis can be rejected for question 

1, but not for question 2. If the null hypothesis for question 1 was rejected, can the alternative 

hypothesis H1 be validated (“HOPs allow to interpret uncertainty with more accuracy”)? Unfortunately, 

no. According to section 4.2., the Static Plots group answered question 1 with higher accuracy than 

HOPs group. This interesting result might be due to several reasons. First, in the literature reviewed, 

the majority uses lay auditions, whereas this experiment uses experienced participants. Furthermore, 

the difference between the “impossible”, “very unlikely”, “unlikely”, “neutral”, “likely”, “very likely”, 

and “certain” intervals may have a higher subjectivity in HOPs survey, since it is more difficult to fix the 

values. Also, the fact that Hypothetical Outcome Plots’ group accuracy increased from the first 

question to the second, suggests that a learning effect might have happened, i.e. since the participants 

are not used to perform analyses on moving images, it is likely that the first question was a "shock" 

and the second, because it was no longer a "novelty", was easier to answer correctly, indicating some 

sort of learning of how to interpret a Hypothetical Outcome Plot. Moreover, according to Hullman et 

al. (2015), people tend to perform more accurate judgements when the HOPs have more than one 

variable, which is precisely what happened on question 2 (question with two products), where HOP’s 

group increased its performance when compared to question 1. Additionally, another reason for these 

results might be the experience in forecasts, which leads us to the experience impact. 

Results show no correlation between experience level and the answers given of questions 1 and 2 from 

HOPs group, and question 2 from Static Plots group. However, there was a statistically significant 

correlation between experience and question 1 answers from Static Plots group. Overall, can be 

assumed that experience in visualization didn’t impact the observed differences between the two 

Fisher’s tests. Despite the importance of these results, it is important to remember that they derived 

from the question “How many years of experience with visualizations have you?”, that is, the question 
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focused on visualization experience, excluding other types of experience that may have influenced the 

participants' answers such as, for example, experience in statistics, or experience in forecasting. 

One of the research sub-questions was “What is the relationship between time and the interpretation 

of different plots?”. Section 4.2. addressed this question by displaying the average time that each 

group took to complete the survey. Based on these results, it is possible to say the Hypothetical 

Outcome Plots’ group showed greater efficiency (the less time, the greater the efficiency) when 

compared to Static Plots group, since HOPs’ group took on average less than half the time that the 

Static Plots group took. In general, this efficiency topic has a huge impact on companies, it is what 

drives companies forward, because, as we normally hear, “time is money”, and money is (almost) 

everything in the business world. 
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6. CONCLUSIONS 

The main purpose of this dissertation was to better understand how Hypothetical Outcome Plots could 

improve the decision-making process at Wayne Enterprises, in particular, the decisions made in 

launch/loss of exclusivity forecast projects. In order to accomplish this, first was conducted a literature 

review about data visualization, uncertainty, and Hypothetical Outcome Plots. The HOPs information 

gathered was vital for the development of the two prototypes, since it has enhanced the 

understanding of what is a HOP, the best practices to build one, as well as the main advantages and 

disadvantages. The prototypes were used as a support to the proof-of-concept, which consisted in the 

elaboration of two surveys with the objective of refuting the null hypothesis that stated: “there is no 

difference in uncertainty interpretation between a static plot and a HOP”. 

The two surveys were identical, both with four questions, being the first two regarding a specific 

visualization (static or HOP) and the other two questions regarding the participants’ age and 

visualization experience years. The first two questions results were statistically different. While in the 

first question a statistical difference between the two surveys was observed, in the second no 

significant difference was observed. The difference between the results obtained from questions 1 and 

2 can have several reasons. Nevertheless, it is very likely that all or most of them are related to the 

HOPs group, because in terms of accuracy, the Static Plots group kept the same accuracy from the first 

question to the second question while the HOPs group increased the percentage of accuracy 

significantly. This increase may suggest that there was a learning effect, i.e., since the participants were 

not used to perform analyses on moving images, it is likely that the first question was a "shock" and 

the second, because it was no longer a "novelty", was easier to answer correctly, indicating some sort 

of learning of how to interpret a HOP. 

Another interesting result was the correlation between visualization experience and the answers given 

to questions 1 and 2. Overall, the visualization experience had no impact on the answers. Also, the 

time analysis gave important information. The HOPs’ survey participants completed the survey in less 

than half the time that the Static Plots survey participants, showing greater efficiency. 

Although the proof-of-concept results didn’t provide evidence that HOPs can lead to a more accurate 

decision than a static plot, it was demonstrated that a decision made with a HOP can be similar to one 

made with a static plot. And if we consider that the HOP decision took less than half the time than the 

static plot decision, it is possible to state that the decision-making process of Wayne Enterprises can 

be improved by using HOPs. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The biggest limitation that has been identified in this dissertation is the sample size, the data would 

have been significantly better if a larger sample size had been used. Nevertheless, it is important to 

remember that this study had a team from a real company as basis, and in the real world is difficult, if 

not nearly impossible, to find a team with more than 100 individuals and that the majority is willing to 

answer a survey. 

Another limitation found was the virtual environment. Since the population of the study was the 

German Consulting Team, the participants’ majority was not based in Portugal, and, therefore, the 

survey had to be taken online. If it was a face-to-face survey, other type of questions could have been 

made, and even an eye tracking machine could have been used, allowing further analyses. 

In terms of future work, exploring the theoretical learning effect observed in the HOPs’ survey 

participants might be a point of interest. In addition to checking whether there is indeed a learning 

effect, it would also be interesting to see if with more questions the percentage of accuracy tends to 

increase (as occurred from question 1 to 2), to stabilize, or if it varies. 

Another suggestion would be to investigate the impact of the number of lines on visualization, i.e, the 

Hypothetical Outcome Plots’ group results improved from question 1 to question 2, and the first HOP 

had only one line/product, and the second HOP had two lines/products, does the quantity of lines 

impacts how people perceived a HOP? That is something worth looking into. 

Finally, my last recommendations would be, if possible, to have a bigger sample size, and count the 

time by question rather than the total survey. 
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