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Abstract: The altered activity of drug metabolism enzymes (DMEs) is a hallmark of chemotherapy
resistance. Cytochrome P450s (CYPs), mainly CYP3A4, and several oxidoreductases are responsible
for Phase I metabolism of doxorubicin (DOX), an anthracycline widely used in breast cancer (BC)
treatment. This study aimed to investigate the role of Phase I DMEs involved in the first stages
of acquisition of DOX-resistance in BC cells. For this purpose, the expression of 92 DME genes
and specific CYP-complex enzymes activities were assessed in either sensitive (MCF-7 parental
cells; MCF-7/DOX®) or DOX-resistant (MCF-7/DOXR) cells. The DMEs genes detected to be sig-
nificantly differentially expressed in MCE-7/ DOXR cells (12 CYPs and eight oxidoreductases) were
indicated previously to be involved in tumor progression and/or chemotherapy response. The
analysis of CYP-mediated activities suggests a putative enhanced CYP3A4-dependent metabolism in
MCF-7/DOXR cells. A discrepancy was observed between CYP-enzyme activities and their corre-
sponding levels of mRNA transcripts. This is indicative that the phenotype of DMEs is not linearly
correlated with transcription induction responses, confirming the multifactorial complexity of this
mechanism. Our results pinpoint the potential role of specific CYPs and oxidoreductases involved in
the metabolism of drugs, retinoic and arachidonic acids, in the mechanisms of chemo-resistance to
DOX and carcinogenesis of BC.

Keywords: breast cancer (BC); drug metabolism enzymes (DMEs); drug resistance (DR); doxorubicin
(DOX); cytochrome P450 (CYP); oxidoreductases

1. Introduction

Breast cancer (BC) is the second most common cancer diagnosed in women and the
leading cause of death from cancer in women worldwide [1]. Chemotherapy is one of
the main approaches in the treatment of BC. However, a lack of efficacy due to intrinsic
or acquired drug resistance (DR) is a major impediment in chemotherapy, resulting in
increased disease progression, relapses, and, eventually, death [1-6]. Acquired DR is devel-
oped during therapy, resulting from complex selective and adaptive processes, including
alterations in drug transport and metabolism (increased efflux, decreased uptake, enhanced
detoxification), in drug targets, and/or programmed cell death inhibition [5-12]. However,
the majority of molecular mechanisms leading to these compromising variations in drug
response remain largely unexplained.

Although variability of drug metabolism in the liver (main site of drug metabolism)
must be considered as a potential factor mediating drug sensitivity or resistance, intra-
tumoral expression of drug metabolism enzymes (DMEs), including cytochrome P450s
(CYPs), plays an important role in regulating the efficacy of drugs [4,13,14]. DMEs expres-
sion in BC cells significantly affects drug response and the onset of resistance to therapy by
accelerating the degradation and clearance of anti-cancer agents in tumor cells.
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Doxorubicin (DOX) is an anthracycline commonly used as a chemotherapeutic agent
in BC treatment. It is typically administered in combination with other chemotherapy
medications, at a maximum plasma concentration of 6.7 uM [1,2,15]. DOX is a topoiso-
merase Il inhibitor and generates free radical-mediated oxidative damage to DNA, inducing
apoptosis. Oxidation mediated by CYPs, particularly CYP3A4 (and CYP2Dé, 2B6, 1B1 to
a minor extent), is considered the main primary metabolic pathway of DOX metabolism,
while the one-electron reduction and deglycosidation, both facilitated by oxidoreductases
(e.g., CYP-reductase (CPR), NADH- and NADPH dehydrogenases, xanthine dehydroge-
nase), are considered secondary minor routes [16-18]. Efflux of DOX is dependent on
several members of the ABC transporters family (including ABCB1, ABCC1, and ABCG2),
and solute carrier family (e.g., SLC22A16) [2,8,18].

Efflux transporters, particularly members of the ABC family, have been widely stud-
ied in acquired DOX-resistance in BC cells. Several studies, both in vivo and in vitro,
established the relationship between DOX-resistance and the overexpression of ABCBI,
identified as the main DOX efflux transporter [2,5,6,8,19]. A previous study using a human
chronic myeloid leukemia-derived cell line resistant to imatinib and dasatinib, demon-
strated that the mRNA expression pattern of efflux transporters varies over time with
resistance level and chronic drug exposure, suggesting that other mechanisms are also
dynamically involved in DR [3,9]. Due to their involvement in the metabolism of both
endogenous and exogenous substances, Phase I DMEs are crucial in terms of tumor devel-
opment and response to therapy [2,18]. However, there is a scarcity of data regarding the
role of Phase I DMEs, including CYP-complex enzymes and other oxidoreductases, in the
mechanisms of DOX-resistance. This is of particular importance in the initial stages of resis-
tance acquirement, i.e., at low levels of DOX, which may instigate/enable the formation of
DR at therapeutic concentrations.

CYPs, together with several oxidoreductases, are involved in the metabolism of xeno-
biotics, sterols, fatty acids, eicosanoids and vitamins [7,20-22]. CYP isoforms of the families
1-3 are key Phase I microsomal enzymes in the biotransformation of a wide range of
anti-cancer drugs (including DOX), which are metabolized primarily in the liver and addi-
tionally in tumor tissues [2,16,17,20]. Although sporadically studied, deregulation of the
expression and/or activity of these CYPs has been suggested to be involved in chemother-
apy failure [7,23,24]. Regarding tumorigenesis, mitochondrial CYPs, involved in sterol and
vitamin metabolism, seem to be deregulated in BC cells [22,25,26]. Recently, the expression
and activity profiles of several CYPs and oxidoreductases have been investigated as puta-
tive tumor biomarkers. The association between expression of these enzymes and cancer
risk, tumorigenesis, progression, metastasis, and prognosis has been widely reported in
basic, clinical and epidemiological studies [23,27-34]. Nevertheless, their role has not been
properly established in the formation of DR.

In order to achieve this, we investigated how Phase I DMEs contributed to the early
development of DOX resistance in BC cells. To understand their significance in the early
phases of DR, we examined and analyzed the expression profiles of 92 genes, including
most representative CYP isoforms and Phase I oxidoreductases, in a BC luminal A cell line
(MCE-7), which was either sensitive or resistant to low doses of DOX. Measurements of
pertinent CYP-enzyme activities were added to the study in order to assess the effects of
changing transcript levels.

2. Materials and Methods
2.1. Reagents

Cytochrome c (cyt ¢) (horse heart), glucose-6-phosphate (G6P), glucose-6-phosphate dehy-
drogenase (G6PD), nicotinamide-adenine dinucleotide phosphate (NADPH), ethoxyresorufin,
methoxyresorufin, resorufin, coumarin, 7-hydroxy coumarin, 3-cyano-7-ethoxycoumarin,
3-cyano-7-hydroxycoumarin, fluorescein, trypsin, penicillin-streptomycin (10,000 units
penicillin and 10 mg streptomycin per mL), Dulbecco’s Modified Eagle’s Medium-low
glucose (DMEM), fetal bovine serum (FBS), phosphate buffered saline pH 7.4 (PBS) and
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doxorubicin were obtained from Sigma Aldrich (St. Louis, MO, USA). Nicotinamide ade-
nine dinucleotide phosphate (NADP+) was obtained from Gerbu (Heidelberg, Germany).
Bradford reagent was obtained from Bio-Rad (Hercules, CA, USA) and Quiazol from Qiagen
(Hilden, Germany). Dibenzylfluorescein, sodium dithionite, dimethyl sulfoxide (DMSO),
acetonitrile (ACN) and sodium hydrogencarbonate (NaHCO3) were purchased from Merck
(Kenilworth, NJ, USA). Insulin was obtained from Cell Applications, Inc. (San Diego, CA,
USA). All other chemicals and solvents were of the highest grade commercially available.

2.2. MCF-7 Cells Cultures

The MCEF-7 cell line, a human breast adenocarcinoma cell line with luminal A sub-
type and naturally sensitive to DOX, was purchased from DSMZ-German Collection of
Microorganisms and Cell Culture GmbH (Braunschweig, Germany) (MCF-7, ACC 115).
DOX-resistant (DOXR) cells were engineered by stepwise exposures to increasing concen-
trations of DOX. Cells were cultured in DMEM medium supplemented with 10% FBS,
1% penicillin-streptomycin and 10 ug/mL insulin, in a 5% CO, incubator at 37 °C. Cells
resistant to 25 or 35 nM DOX (MCF-7/DOXR) were obtained by supplementing the cul-
ture medium with DOX in incremented doses according to cell response. An untreated
DOX-sensitive parental control (MCF-7/DOX®) was cultured in parallel.

2.3. Evaluation of mRNA Expression Levels of CYPs and Oxidoreductases in MCF-7/DOXR Cells
2.3.1. RNA Isolation and cDNA Synthesis

RNA was isolated from MCF-7/DOXR 25 nM, MCF-7/DOXR 35 nM and MCF-7/DOX®
cells. Approximately 3 x 10° cells were washed with cold PBS buffer and centrifuged at
100x g for 5 min. The cell pellet was resuspended in 700 uL of Quiazol and frozen at —80 °C
for later use, following the protocol provided with the Direct-zol™ RNA Miniprep Plus kit
(Zymo Research, Irvine, CA, USA). cDNA was prepared from the total RNA isolated, using
the High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems, Waltham, MA, USA), with
1.7 ug of total RNA per 20 pL reaction, according to the manufacturer’s instructions. The
c¢DNA synthesized was stored at —20 °C until use.

2.3.2. RT-qPCR

The expression profile of 92 genes (Supplementary Table S1) was quantified (duplicate)
in MCF-7/DOXR 25 nM, MCF-7/DOXR 35 nM and MCF-7/DOXS cells, using the TagMan™
Array Human CYP450 and other Oxygenases 96-Well Plates (Applied Biosystems, Waltham,
MA, USA) in a QuantStudio 5 Real Time PCR system (Applied Biosystems, Waltham, MA,
USA), with 47.2 ng of cDNA per well, following the manufacturer’s protocol. The mean
values of the duplicate RT-qPCR reactions for each gene expression assay were normalized
using three endogenous controls (GADPH, HPRT1 and GUSB). The relative expression
(fold-change) of the target genes was determined by the 2724t method.

2.4. Analysis of CYP-Mediated Activities in MCF-7/DOXR Cells-Derived Microsomes
2.4.1. Subcellular Fractions (Protein/Microsomes) Isolation and Characterization

Membrane proteins were isolated from MCF-7/DOX® and/DOXR cells using the
Mem-PER Plus Membrane Protein Extraction Kit (Thermo Scientific, Waltham, MA, USA),
following the manufacturer’s instructions for membrane protein extraction from mam-
malian cells. Briefly, cells were trypsinized, harvested by centrifugation at 100x g for 5 min
and resuspended in growth media. Approximately 5 x 10° cells were washed with the
cell wash solution provided with the kit, centrifuged at 300x g for 5 min and the super-
natant discarded. After the addition of the permeabilization buffer, supplemented with a
protease inhibitor cocktail (#11 836 153 001, Roche, Basel, Switzerland), the samples were
briefly vortexed and incubated for 10 min at 4 °C, with constant mixing. The suspension
obtained was centrifuged for 15 min at 16,000x g and the supernatant discarded; the
pellet was resuspended in solubilization buffer and incubated for 30 min at 4 °C with
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constant mixing. After centrifugation, the supernatant (containing solubilized membrane
and membrane-associated proteins) was stored at —80 °C, until used.

Total membrane proteins were quantified using the Bradford method [35]. CYP quan-
tification was performed by CO-difference spectrophotometry and CPR by cytochrome
c reduction, similarly to what was previously described [36-38]. Due to the low CYP con-
centration in BC cell lines, a membrane protein fraction isolated as previously reported [39]
from an in-house engineered bacterial cell model co-expressing CPR and CYP1A2 [40,41]
was added to the MCF-7 cells derived membrane protein fractions in order to increase
the signal-to-noise ratio. Briefly, 100 uL of this bacterial membrane protein fraction was
added to 50 pL of the MCF-7 membrane protein fractions, 1650 pL of cold TGE buffer
(75 mM Tris, 25 mM EDTA, 10% glycerol, pH 7.5) and 15 uL of 100 mg/mL sodium dithion-
ite; for the control, buffer was used instead of the MCF-7 membrane protein fractions.
The CO-difference spectra were traced between 400 and 500 nm and CYP concentration
determined as previously reported [36,42].

2.4.2. CYP-Activity Assays

Specific CYP-mediated activity assays were performed with microsomal fractions
isolated from MCF-7/DOXR 25 nM, MCF-7/DOXX 35 nM and MCF-7/DOX? cells. These
measurements were performed using different standard probe substrates reactions (MROD:
methoxyresorufin O-demethylation; EROD: ethoxyresorufin O-deethylation; CECOD: cya-
noethoxycoumarin O-dealkylation; C7H: Coumarin 7-hydroxylation; DBFOD: dibenzylflu-
orescein O-debenzylation), as previously described [39,43]. The substrate concentrations
selected (1 uM MROD, 2.5 uM EROD, 25 uM CECOD, 5 uM C7H and 3.75 uM DBFOD)
were above the Ky values determined in previous studies: 0.59 uM, 1.16 uM and 5.00 uM,
respectively, for MROD, EROD and CECOD CYP1A2-mediated activities [44], 1.57 uM for
2A6-mediated C7H, and 0.89 uM for 3A4-mediated DBFOD [43]. The assays were con-
ducted in triplicate with a final MCF-7 microsomes total protein concentration of 0.2 mg/mL
per well.

2.5. Statistical Analysis

Regarding RT-qPCR data, a mixed-effects model (REML) with Dunnett’s multiple com-
parisons test was used to test statistical significance and determine the p-values; differential
gene expression was considered when obtaining p < 0.05 and fold change <2 or >2. Un-
paired ¢ tests were performed to compare protein levels and relative velocities of the CYP en-
zyme assays. Data was analyzed using GraphPad Prism 8.4.3 software (La Jolla, CA, USA).

3. Results
3.1. Gene Expression Profiles of CYPs and Oxidoreductases in the Initial Stages of DOX-Resistance
in MCF-7 Cells

The expression of CYP-enzyme complex protein factors and oxidoreductases in condi-
tions of low levels of resistance to DOX, was assessed by profiling the expression of 92 target
genes from MCF-7 cell lines, either sensitive or engineered to be resistant to sub-therapeutic
concentrations of DOX. The fold change and respective p-values were used to determine the
differential scores of mRNA levels in the two types of MCF-7/DOXR cells versus the MCF-
7/DOXS cells. From the 92 target genes evaluated, 20 (12 CYPs and 8 oxidoreductases) were
found to be differentially expressed in the initial stages of DOX-resistance, when compared
to the MCF-7/DOXS cells (Figure 1). From these, the majority were overexpressed, with
three exceptions, namely CYP2D6, 251 and 3A5 which were downregulated. Interestingly,
the expression of eight genes was found to be deregulated in MCF-7/DOXR 25 nM cells,
which deregulation (up or down) was found amplified (doubled) in MCF-7/ DOXR 35 nM
cells. Only five genes (CYP4F12, 8B1, 26B1, kynurenine 3-hydroxylase (KMO), phenylala-
nine hydroxylase (PAH)) were overexpressed in cells resistant to both DOX levels. This
consistency is indicative that expression of these five genes is key in the mechanisms of
initial DOX-resistance of MCF-7 cells, when exposed to increasing concentrations of DOX
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(up to 35 nM). Three genes (CYP2A6, 2D6, 251) seem to be transiently involved in early
cell response to selective pressure, as they were found to be differentially expressed only
in the MCF-7/DOXR 25 nM cells. Additionally, CYP1A2 mRNA was detected only in
the MCF-7/DOXS cells, evidencing a putative downregulation of CYP1A2 expression in
MCF-7/DOXR cells.

MCF-7/DOXR 25 nM vs. MCF-7/DOXS cells MCF-7/DOXR 35 nM vs. MCF-7/DOXS cells
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Figure 1. Differences of mRNA levels of target genes in MCF-7/DOXR cells. (A) Volcano plots
representing the differences in fold change of genes differentially expressed by MCF-7/DOXR 25nM
or 35nM cells, relative to the parental MCF-7/DOXS cells. Transcripts levels were considered differ-
entially expressed when p < 0.05 and fold change > 2 (upregulated, in green) or <2 (downregulated,
in red). POR (CPR gene) and CYP3A4 transcript levels are depicted in blue and purple, respectively.
(B) Histograms representing the statistically significant increase (fold change) of target-gene expres-
sions in MCF-7/DOXR 25 nM or 35 nM relative to the MCE-7/DOXS3 cells (technical replicates, N = 2).
ALOXE 3: arachidonate lipoxygenase 3; BCMOL1: (3-carotene 15,15-monooxygenase 1; CYB5R1:
NADH-cytochrome b5 reductase 1; CYP: cytochrome P450 (isoforms); FDX1: ferredoxin 1; FDXR:
ferredoxin reductase; FMO5: flavin containing dimethylaniline monooxygenase 5; KMO: kynurenine
3-hydroxylase; PAH: phenylalanine hydroxylase.

Transcripts of the CYP11 family, as well as CYP2A13, CYP2F1, CYP7B1, prostaglandin
12 synthase (PTGIS), and dopamine (3-hydroxylase (DBH), were not amplified from any
of the RNA samples obtained from either sensitive or resistant cells. This is indicative
that these transcripts were present in concentrations below the detection threshold of the
RT-qPCR. This might be the result of very low, or even inexistent, levels of transcripts of
these genes.
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3.2. Detailed CYP-Dependent Activities in MCF-7/DOXR Cells-Derived Microsomes

Microsomal fractions were isolated from MCF-7/DOX5 and MCF-7/DOXR 25 nM and
characterized for CYP-mediated activities. The microsomal contents of components of the
CYP-enzyme complex system are shown in Table 1. Microsomal CYP isoforms are strictly
dependent on CPR in their activity [21,22,37]. In vivo, CPR:CYP contents are in favor of
CYP, implying competition between individual CYP isoforms in binding to CPR in the en-
doplasmic reticulum [45,46]. Although no significant differences in total CYP contents were
observed, both MCF-7 microsomal fractions evaluated (MCF-7/DOXS and MCF-7/DOXR
25nM) have lower total CYP contents, when compared with human liver microsomes (rang-
ing from 210 to 580 pmol/mg) [46,47]. CPR content was significantly higher (1.4 x fold;
p < 0.005) in microsomes of MCF-7/DOXR 25 nM cells. In addition, the CPR:CYP ratios
determined in the MCF-7 microsomal fractions were found to be higher than those reported
previously for human liver microsomes (ranging from 1:5 to 1:15) [46,47]. These higher
CPR:CYP ratios appear to be consistent with the fact that extrahepatic organs express CYPs
to a lesser extent than the liver [7,22,48].

Table 1. Cytochromes P450 (CYP) and cytochrome P450 oxidoreductase (CPR) contents of
MCF-7-derived microsomes.

Microsomal Fractions Protein Contents
CYP CPR CPR/CYP
(pmol/mg Protein) ! Ratios
MCEF-7/DOXS 26.5+ 5.1 15.0£0.2 1:1.8
MCF-7/DOXR 25 nM 392+75 20.8 £0.5* 1:1.9

1T CYP and CPR contents are mean 4 SD (technical replicates N = 3 and N = 2, respectively). Amounts of proteins
in the MCF-7/DOXR 25nM-derived microsomes were compared with the ones from MCF-7/DOXS cells, applying
the unpaired ¢ test (* p < 0.005).

As CYP mRNA levels are not necessarily directly correlated with CYP protein lev-
els [49], we questioned whether CYPs activities were altered in the MCF-7/ DOXR cells.
As such, we investigated potential deviations in drug metabolism, and the relationship
between the mRNA transcripts levels and specific CYP-dependent activities in microsomes
derived from MCF-7/DOXR 25 nM and MCF-7/DOXS cells [50-52] (Figure 2). The com-
parison of the relative velocities demonstrated that in MCF-7/DOXR 25 nM cells there is:
(i) no altered MROD, EROD or CECOD activities; (ii) reduced C7H activity; (iii) increased
DBFOD activity. These results are indicative that at the DOX-resistance level of 25 nM,
CYP2A6-dependent metabolism was significantly down-regulated, while CYP isoforms
involved in DBFOD activity, particularly CYP3A4, seem to be up-regulated.

MROD EROD CECOD C7H DBODF
(1A1, 1A2, 1B1) 1A1 B 1A1, 1A2, 2C9, 2C19, 2D (246) (3A4, 3A5, 2C8, 2C9, 2C19)

1.00 095 1.00

5127 100 098 4
¥ DA [ S -] I & S " = I "
[ -

MCF-7 MCF-7/DOXR MCF-7 MCF-7/DOXR MCF-7 MCF-7/DOXR MCF7 MCF-7/DOXR MCF-7  MCF-7/DOXR

Figure 2. Normalized relative velocities of the CYP activity assays in MCF-7/DOXR 25 nM micro-
somal fractions. Values are represented as mean + SD of technical replicates (N = 3) (* p < 0.05;
** p < 0.005). MROD (red) and EROD (orange) mediated mainly by CYP1A1 (particularly EROD),
1A2 (particularly MROD), and to a minor extent by 1B1; CECOD (green) mediated particularly by
CYP1Al, 1A2, and to a minor extent by 2C9, 2C19, and 2D6; C7H (blue) mediated by CYP2A6;
DBFOD (purple) mediated mainly by CYP3A4, and to a minor extent by 3A5, 2C8, 2C9, and 2C19.
CYP isoenzymes particularly relevant in the specific activities studied are underlined.
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4. Discussion

The main cause of treatment failure in cancer is intrinsic or acquired DR, highlighting
the need for a better understanding of the molecular mechanisms involved [1,3,5]. Upregu-
lation of metabolic pathways mediated by Phase I DMEs, comprising CYP-enzyme complex
protein factors and several oxidoreductases, is considered as an important potential mecha-
nism of anticancer DR [4,7,10,13,14,19,21]. Although central in DOX metabolism, DMEs
are normally underestimated in DR studies, as precedence is given to other prominent
DR-associated gene families [1,5,8,19]. Together with estrogen receptors and especially
drug transporters, CYPs and Phase I oxidoreductases seem to be determinant in DR. This
is due to their role in drug metabolism as well as a variety of pathways that regulate cell
cycle and cell growth, which are normally associated with DR mechanisms and tumor
progression [23,28-33,53-58]. However, it remains unclear whether the role of the Phase
I enzymes contribute to the development of early stages of chemotherapy resistance in
human BC, which may enable the formation of DR to therapeutic drug levels. The novelty
of our study versus a multitude of former studies on BC DR is the assessment of expression
profiles of specific DMEs, as well as CYP-mediated activities, in the resistance to two
sub-therapeutic DOX concentrations. Our findings helped to clarify the possible function
of particular DMEs as prospective biomarkers in the emergence of DOX DR and the ability
to act sooner to facilitate the adaptation to more potent and efficient therapies.

From the five genes with significantly higher levels of transcripts in both MCF-7/DOXR
25 nM and 35 nM cells, CYP26B1 was the most overexpressed, followed by CYP8BI,
CYP4F12, PAH and KMO. Previous studies have shown that high expression levels of
CYP26B1 enhance the cell survival properties of breast carcinoma cells and are signif-
icantly associated with poor prognosis in colorectal cancer [28,54]. Overexpression of
CYP26B1 potentially reduces retinoic acid levels, driving cells into the oncogenic state, by
altering growth, impeding differentiation, and promoting a pro-metastatic phenotype. To
the best of our knowledge, differences in CYP8B1 activity have not yet been associated
with any condition of drug response in BC. CYP8B1’s role in BC seems to be related to
cholesterol homeostasis or molecular signaling, as it catalyzes the hydroxylation of var-
ious sterol intermediates of cholic acid in the bile acid synthesis pathway [59]. Indeed,
hypercholesterolemia represents a risk factor for BC, including worse prognosis [60]. PAH
is overexpressed in estrogen receptor-positive (ER*) BC patients and higher expression
of PAH has been correlated with poor prognosis. PAH might play a role in tumor pro-
gression, as it catalyzes the rate-limiting step in the phenylalanine catabolism, converting
L-phenylalanine into L-tyrosine, two essential amino acids, whose uptake and metabolism
are apparently part of cancer reprogramming [53]. Integrated into the kynurenine pathway,
KMO has been described to be upregulated in BC patients, particularly in patients with
aggressive malignant BC [32,55]. It has been correlated with deregulation of genes encoding
chemokines and pro-inflammatory cytokines, known to be involved in the inflammatory
aspect of tumorigenesis, but also in regulation of CYP expression and other DMEs [56,61].
As such, KMO may facilitate cancer progression and chemotherapy resistance via synergis-
tically modulating inflammatory responses in tumors with a concomitant downregulation
of detoxification pathways. CYP4F12 metabolizes eicosanoids, hydroxylating arachidonic
acid and its intermediate metabolite prostaglandin H2. This CYP isoform is also involved
in the bioactivation of prodrugs such as ebastine and pafuramidine [11]. In a retrospective
NGS study, differential activities of CYP4F12 variants were associated with BC patients’
response to neoadjuvant cytotoxic chemotherapy [10]. CYP4F12 expression was also corre-
lated with tumor stage (TNM staging) [4]. This is indicative that CYP4F12 may be involved
in tumor progression and drug response. Based on our data, expression levels of CYP26B1
and 8B1 and potentially in combination with levels of CYP4F12, PAH and/or KMO, could
act as biomarkers for the development of early stages of DR to DOX, with the practical ther-
apeutic benefit in enabling swift changes to more effective treatment regimes, preventing
full-blown DR, with obvious therapeutic advantages. Still, this needs to be verified and
validated using biopsy material of BC patients undergoing DOX treatment.
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Additionally, our data showed the transcription of other enzymes to be differentially
regulated in DOX-resistant cells. Several epidemiological, diagnostic, and clinical studies
have found that the majority of CYP genes are associated with the clinical efficacy of
chemotherapy drugs in patients with BC; these genes include CYP1A2, 2A6, 2D6, 251, 3A4,
and 3A5 [20,24,62,63], which were found to be deregulated in MCF-7/ DOXR cells, in the
present study. Moreover, from the pool of differentially expressed CYP genes, five (CYP2A7,
251, 3A5, 4B1, 4V2) were previously associated with patients’ survival and suggested as
potential prognosis biomarkers for several types of cancer, including BC—to evaluate tumor
progression or aid decisions regarding optimal adjuvant hormonal therapy [23,29,30]. In
addition, levels of flavin containing dimethylaniline monooxygenase 5 (FMOD)) transcript,
a relevant Phase I DME, were augmented in MCF-7/DOXR cells. Overexpression of this
monooxygenase has been associated with ERx-positive breast tumors and respective sur-
vival, and also with poor prognosis in patients with colorectal cancer [34,64]. The analysis
of the mRNA levels demonstrated no significant differences in CPR transcripts between
MCF-7/DOXR and MCF-7/DOXS cells (Figure 1A). However, CPR activity (Table 1), was
significantly higher in microsomes derived from MCF-7/DOXR 25 nM cells, when com-
pared with the ones from MCF-7/DOX cells, suggesting a discrepancy between mRNA
levels and phenotype. Higher levels of CPR were observed in MCF-7/DOXR cells and its
central key role in the metabolism of drugs, cholesterol, fatty acids, heme homeostasis (via
heme oxygenase) and steroid hormone biosynthesis, is indicative of the potential implica-
tions of this oxidoreductase in tumorigenesis and cancer DR [12,21,37,65]. Other authors
correlated an augmented expression of CPR in triple negative BC patients with shortened
times of cancer relapse, suggesting CPR as a putative biomarker of prognosis [27].

By promoting colonization and metastasis formation, upregulation of NADH-cytochrome
bs reductase (CYB5R) has been previously correlated with poor prognosis in several types of
cancer, including BC [31,33]. Interestingly, increased CYB5R and CPR activities have been
linked to more severe thyroid neoplasms [65]. Together with arachidonate lipoxygenases
(ALOXs, including ALOXE3), CYB5R and CPR have been suggested as critical drivers of
lipid peroxidation to ferroptosis—an iron/reactive oxygen species (ROS)-dependent cell
death, which plays a causative role, both in tumorigenesis progression, and in chemother-
apy resistance [12]. Concomitant increased activities of these three enzymes may be related
with ferroptosis and DOX’s biochemical activity, which involves the formation of ROS
and potentially the reduction of iron by DOX metabolites [18]. ALOXE3 (arachidonic
acid metabolizer) and CYP4 family members (CYP4B1, 4F12, 4F22, 4V2) are involved in
the metabolism of fatty acids and fatty-acid-derived bioactive metabolites [11]. The high
expression profiles of these genes observed in MCF-7/DOXR cells suggest alterations in
arachidonic acid metabolism and eicosanoid synthesis. Arachidonic acid metabolism upreg-
ulation has previously been linked to the induction of growth factor secretion, angiogenic
factors that modulate tumor progression, and pro-inflammatory mediators, the latter of
which has been associated to the regulation of DME expression [56-58,61].

Central in retinoic acid synthesis ((3-carotene to retinaldehyde conversion), 3-carotene
15,15’-monooxygenase 1 (BCMO1) was described previously to be involved in the modula-
tion of migration and invasion in colorectal carcinoma cells [66]. Elevated concentrations of
retinoic acid induce growth arrest, differentiation and promote cell death. However, in a
feedback loop, retinoic acid, a powerful regulator of gene transcription, binds to the nuclear
receptor RAR and induces the expression of CYP26B1 (as we observed), which is involved
in retinoic acid clearance [67]. Therefore, high expression levels of CYP26B1 observed in
MCF-7/DOXR 25 cells could be induced by upregulation of retinoic acid metabolism via
BCMOI1 overexpression, potentially driving the cells into an oncogenic state.

In addition to biogenesis of iron—sulfur clusters and heme homeostasis via ferredoxin
2 (FDX2) activity, ferredoxin reductase (FDXR) is central in sterol and vitamins synthesis,
by reducing ferredoxin 1 (FDX1), the obligatory electron donor of all mitochondrial CYPs.
The elevated expressions of FDXR and FDX1 and the absence of CYP11 family transcripts



Genes 2022, 13,1977

90f13

in the MCF-7/DOXR 35 nM cells is indicative of a variation in the metabolism of cholesterol
into steroid hormones, which is a pathway usually deregulated in BC cells [25,26].

The measurement of specific CYP-enzyme activities suggests that CYP-dependent
metabolism was altered in MCF-7/DOXR 25 nM cells. Interestingly, a discrepancy was
observed between the specific CYP activities and the corresponding levels of mRNA tran-
scripts. Although no differences in the mRNA levels of CYP3A4, 3A5, 2C8, 2C9, and 2C19
were observed between MCF-7/DOXR 25 nM and MCF-7/DOXS cells, DBFOD activity
was significantly increased in microsomes derived from the DOX-resistant cells (Figure 2).
This augmented activity is coincident with a slight (although not significant) increased
expression of CYP3A4 transcripts in the MCF-7/DOXR 25 nM cells (not observed in the
MCE-7/DOXR 35 nM cells) (Figure 1A). Since CYP3A4 is described as the primary CYP iso-
form involved in DOX Phase I metabolism, our findings suggest that CYP3A4-dependent
metabolism may be enhanced in MCF-7/DOXR cells, though this may not be accompanied
by a significant increase in CYP3A4 mRNA levels. C7H activity, mediated mainly by
CYP2A6, decreased significantly in MCF-7/DOXR 25 nM cells, contrarily to the significant
1.2 x fold change observed in the mRNA levels of the gene. Although CYP1A2 transcripts
were not detected in MCF-7/DOXR 25 nM cells, MROD, EROD and CECOD activities were
similar to the ones determined for the naive MCF-7 cells, albeit with a slight decrease in
EROD activity. The variance found in genes transcripts levels in the different types of MCF-
7 cells may be a result of epigenetic modifications or copy number alterations, while the
differences between gene expression and CYP activities could result from mutations or post-
translational modifications—altering enzyme activity, prompted by the recognized genomic
and metabolic instability of the MCF-7 cell line [68-70], induced by DOX exposure. Never-
theless, divergence between mRNA levels and enzyme activities is indicative that the CYP
phenotype is not linearly correlated with transcription induction responses, confirming the
multifactorial complexity of this mechanism [49]. By changing CYP conformation and/or
catalytic turnover, specific CYP polymorphisms, post-transcriptional regulation, or distinct
protein-protein interactions may contribute to this phenotypic variation [2,7,13,37,71].

5. Conclusions

Our findings underscore the need for additional understanding of the mechanisms
involved in the early stages of DR in luminal A-like tumors, focusing on Phase I DMEs.
The transcriptional analysis evidenced that acquired DR in BC cells is a dynamic process,
transiently dependent on multiple pathways, including drug, cholesterol, fatty acid, and
steroid metabolism beyond transport mechanisms. This suggests that mechanisms of DR
may differ significantly between patients as disease progresses, adding to the complexity
of underlying mechanism in the development of BC DR. In addition to evidence of dereg-
ulated drug metabolism through augmented activity of the DOX-metabolizer CYP3A4,
other important pathways, previously reported to be involved in tumor progression and
chemotherapy resistance, were also found to be deregulated in the first stages of acquisition
of DOX-resistance in BC cells. These relate to arachidonic acid metabolism involved in the
induction of growth factor secretion, angiogenic factors, and pro-inflammatory mediators,
modulating tumor progression and expression of DMEs, and retinoic acid metabolism
modulating cell growth and differentiation, potentially driving cells into the oncogenic
state and promoting a metastatic phenotype.
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