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Abstract
This research empirically investigates the usage of Recurrent Neural

Networks (RNN) to improve the accuracy of mortality rates forecasting
within the context of Longevity linked securities pricing. The benchmark
model in the mortality field is the classical Lee-Carter; the forecasting
procedure of these model is often conducted with ARIMA models. I con-
sider a fixed forecasting time horizon in order to compare the performance
of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
with different hyperparameter and data input choices against that pro-
duced by the best fitted ARIMA models. The results are then applied
to Longevity Swap pricing in order to better estimates the premium of
the derivatives contracts. The investigation is conducted for six countries,
using mortality data from 1950 onwards, differentiating by gender. The
research shows how RNN outperform the classical ARIMA models in the
forecasting procedure. Although the advantages of RNN’s techniques are
strictly bounded to the set of hyperparameter used for the comparison;
the outcomes of such approaches can vary greatly using different input
choices. In the end the results shows that an RNN approach can bring
significant changes to the price of Longevity Linked securities. The re-
search is in the first place one of the few to test the forecasting accuracy of
Deep Learning methods accounting for alternative methodological, hyper-
parameter and data input choices. Afterwards the investigation demon-
strate the necessity of revisit the classical mortality models in order to
better estimates prices of derivatives contracts that are very useful in the
context of Longevity risk.

Keywords: Mortality, Deep Learning, Long short-term memory, Gated
Recurrent Unit, Lee-Carter model, Longevity risk, Longevity swap, Longevity
swap pricing.
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1 Introduction
Mortality modeling is essential in economy, demography and in life and so-

cial insurance, because mortality rates impact insurance liabilities, prices of
insurance products and social benefit schemes. Insurance companies allow indi-
viduals to trade uncertainty for certainty by transferring their own risk to the
insurer in exchange for a fixed premium. An insurer sets the price for a policy
before it’s actual cost is revealed. So because of this phenomenon, known as
the reverse production cycle, it is of fundamental importance that an insurer
properly assesses the risks in its portfolio.

A fundamental longevity improvement is occurring in the past decades, the
causes are several. In this regard there is often referred to Longevity Risk: the
risk of insured capital population living "longer" than expected. Evidence of
longevity improvements can be found directly in the increase of life expectancy
at all ages, showing a strong positive trend in the survival probabilities. Is clear
how Longevity risk is nowadays an important topic and challenge for insurance
companies and especially for pension funds. To hedge against this long-term
risk, financial and insurance instruments have been proposed and placed on
the market since 2004; the solution ranges from capital market instruments
to simple insurance-based solutions. Focusing on the shield provided by the
capital market, Longevity-linked securities assume a particular relevance. In
fact Longevity-linked securities have some advantages over the classic insurance-
based solution (e.g. reinsurance coverage); hence capital market based solution
are prevalent in the hedging of this risk, leading to an intense use of such
contracts. Despite the capacity of financial markets to absorb longevity risk,
some instruments have many challenges on the calculation of their fair values [2].
But there are some issues and difficulties in the pricing of these derivatives
contract: in the first place mortality is not a traded asset, so is impossible to
value these contract through non-arbitrage rules. Then the problem is that since
the cash flows in these contract are directly related to forecasted mortality rates,
their prediction require an adequate modelling scheme. Therefore, since mostly
all this instruments assume value in force of the mortality rate predictions,
seems natural to revise some of the components of the well known mortality
models. Among several stochastic mortality models, the Lee-Carter [13] can be
considered the milestone and benchmark in this field. The main difficulties using
this model are present in the forecasting procedures: in order to catch longevity
improvements, the model need to consider both short both long term pattern in
mortality. Hence this issue is mostly focused on the stochastic process, known
as the time component. This component, representing the time series, is often
modelled as the best fitted ARIMA calibration.

This research is focused on a different approach to time series modelling,
a Deep Learning integrated model: the idea is to model the time parameter
κt with Recurrent Neural Networks, in order to catch both the long and short
term trend in mortality. These kind of techniques are already widely used in
other field because they have the ability to consider a large number of possible
solution and inputs. The objective is therefore to consider this Artificial In-
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telligence(AI) approach and to see the differences with the classical forecasting
through the ARIMA arrangement. With a different pattern for the value of the
stochastic process κt, new mortality rates mx will be produced. Therefore the
difference will be assessed, with the aim of produce a different prediction in mor-
tality rates. The applied context of the research will be the usage of a different
forward mortality rate into the context of longevity risk management. Specif-
ically the research will be focused on the pricing of Longevity Swap contracts,
comparing the AI adjusted price with the benchmark estimation produced with
a simple Lee-Carter mortality rates forecast. Hence the aim of the research is
too evaluate and assess the impact of Deep Learning techniques on the pricing
of Longevity Swap contracts, since the fair value of such instruments is very
sensitive to the predicted underlying asset (mortality rate).

The thesis will be structured as follows:

1. In the first section I introduce the classical Lee-Carter mortality model.

2. Then present the Neural Network, Recurrent Neural Network and in the
end two architecture that fit this specific forecast problem.

3. The next chapter will be focused on numerical applications, performing
some forecasting experiments on different countries.

4. After the evaluation on the differences using Deep Learning techniques in-
stead of ARIMA, I apply the results to Longevity-linked securities pricing.

5. In the end I show my results and conclusions.

2 Lee-Carter model and Artificial Intelligence
algorithms

The existing literature about stochastic mortality refers in general to the
well known Lee-Carter model (LC) [13], and to it’s several extensions and mod-
ification. In order to forecast futures mortality rates, various stochastic models
have been developed. I decided to adopt the first formulation of the Lee-Carter
although several modifications have been proposed to improve the estimates of
this model; the latter remains a benchmark in the forecasting procedures of
future mortality rates.

The Lee-Carter model in it’s first version (1992), returns the the central
death rate mx(t) through the log-bilinear relation:

log(mx,t) = αx + βxκt + ϵx,t (1)

where αx describes the average age-specific trend of mortality, while βx denotes
the deviation from the average mortality rate when κt varies. The univariate in-
dex κt represent changes in the levels of mortality over time, and is the keystone
of the formula, explaining increases and decreases in mortality rates over time.
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Finally ϵx,t is the homoschedastic error term, representing some of the aspects
in mortality not captured by the model. In the literature, it is assumed that
the parameters are subject to constraints that guarantee that identifiability of
the model:

tn∑
t=t1

κt = 0
xm∑

x=x1

βx = 1 (2)

where x1 and xm are respectively the minimum and maximum age considered
for the fitting, and [t1, tn] are the calendar years object of analysis. The model’s
parameters are originally estimated through a Singular Value Decomposition
(SVD), with a two stage procedure. In the first place the SVD is applied to
ln mx(t) − αx to estimate βx and κt. Then κt is refitted so that the observed
number of deaths is equal to the observed one. After the model’s fitting, in order
to forecast the mortality rates, it will be necessary to predict the value of the
stochastic process κt. There is not an unique method for the forecast procedure;
among the most used and successful there are the ARIMA models [1]. Usually
κt is modeled as an ARIMA(0,1,0):

κt = κt−1 + δ + ϵt (3)

where δ is the drift parameter and ϵt are the heteroskedastic error terms, nor-
mally distributed with null mean and variance σ2

k. Hence after the forecasting
procedures, in order to obtain the central death rates mx,t, it will just be nec-
essary to solve the general equation with the SVD fitted parameters αx, βx and
with the forecasted stochastic process κt.

The Lee-Carter model is the benchmark model in this field; many other ex-
tension have been proposed after the first version of the LC. Among the most
relevant there is the Cairns-Blake-Dowd model [5], which enrich the estimation
of the mortality rates with two stocastich process. Further research to incor-
porate the cohort effect, like the Age-Period-Cohort model [18] where Renshaw
et al. incorporate the LC model with the introduction of a cohort dependent
parameter. In the past years several modification of the LC have been proposed,
in general to refer to these proposed research the literature refers the Gener-
alised Age-Period-Cohort (GAPC) stochastic mortality models. An interesting
application to GAPC models can be fund in the research of Bravo et al. [4]; here
instead of a single "candidate" model, the mortality rates are obtained through
a novel adaptive Bayesian Model Ensemble of heterogeneous parametric gen-
eralized age-period-cohort stochastic mortality models. Apart from the very
interesting applications proposed here, for the purpose of this research I focus
solely on the Lee-Carter. In the next section I introduce the Neural Network
architecture, that will serve as a starting point to introduce the AI techniques
object of the research.
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2.1 Neural Networks
A Neural Network (NN) is a mathematical model that, as in the first ver-

sion [15], aims to replicate the behaviour of human brain’s neural networks.
This architecture is composed by neurons, synaptic connections that link the
neurons, and learning algorithms. Usually a NN is composed by three types
of layers, called input layer, hidden layer and output layer and each one of
these comprises several neurons. In the artificial network every unit obtains
"proportional"(weighted) information via synaptic links from many other well
connected units at the same time returning an output through the usage of
an activation function that transforms these proportional totals of the input
signals. So considering a single neuron H, its output is defined by [16]:

outH = Φ(wTx + b) (4)

where x ∈ Rd is the input, w ∈ Rd is the related synaptic weight, d ∈ N is
the number of input signals, b ∈ R represent the bias and Φ is the activation
function that must be differentiable. Then if h = 1, 2, ..d is the number of

Figure 1: A neural Network scheme.

hidden layers in the network, the output outH ∈ Rnh of a generic hidden layer
composed by nh neurons is defined by:

outH = Φ(W T x + b) (5)

where W ∈ Rd×nh is the weight matrix and b ∈ Rnh is the biases vector. Hence
in the context of a regression problem, where d ∈ N is the number of hidden
layers, then output ŷ ∈ R is processed and obtained as:

outH1 = Φ1(W T
1 x + b1) (6)

outH2 = Φ2(W T
2 outH1 + b2) (7)

....
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ŷ = outHd = Φd(W T
d outHd−1 + bd) (8)

where W1, W2, ..., Wd are weight matrices, b1, b2, ..., bd are bias vectors, and
Φ1, Φ2, ..., Φd are the activation functions. It is important to notice that the
dimension of the weight matrices and the bias vectors depend on the number of
units in the hidden layers. As matter of fact by increasing the number of hidden
layers, the level of abstraction of the input data increases.

Going further, the way NN training works has to be addressed to the scope
of minimizing the error rather than better predict the response variable. For
this reason is very important to decide which function will be designated to asses
the loss in each cycle, also in order to understand how fast the NN works. So
the training involves an unrestricted optimization where the goal is to minimize
a loss function. The most used loss function is the Mean Squared Error:

E =
∑N

i=1(yi − ŷi)2

N
(9)

the quantity E aims to measure the average difference between the observed
values yi and the predicted ones ŷi, where the lower value of E represent the
better functioning of the Network. The loss function depends on the matrices
of weights W1, W2, ..., Wd and on the respective biases bi. The scope of the Loss
function is to hint the NN with the best set of synaptic weights. Therefore
the NN will try to find the synaptic weights Wi that minimize the desired
loss function. In the context of training algorithms, the back-propagation [20]
is the most used one. This algorithm compares the predicted values of the
response variable with the observed ones (benchmark); it assesses the difference
(loss function wise) and then update the synaptic weights accordingly by back-
propagating the gradient of the loss function E. So basically, in the forward
step it computes the predictions ŷi setting the synaptic weights Wi, while in the
back-forward step it change the weights in order to minimize the loss function
E. A Neural Network performs this type of operations iteratively a lot of times
till it gets the synaptic weights that produce a minimum for the loss function.
Mathematically speaking, the back-propagation algorithm assesses and find the
synaptic weights for the last layer with the usage of the Delta rule [21]:

△ Wd = −r
∂E

∂Wd
(10)

where r is the learning rate. While going backwards, to find and change the
weight for the other layer, the algorithm repeat it self recursively through the
chain derivation rule, so that:

△ Wd−1 = −r
∂E

∂outHd−1

∂outHd−1

∂Wd−1
(11)

Figuratively speaking, the concept behind the Gradient Descent Algorithm is
similar to climbing down a hill, where the downhill ends whenever a global or
local minimum of the loss function is reached. In each epoch, the search of
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new weight moves in the opposite direction of the gradient; the amplitude and
direction of these "movements" are computed on the basis of the slope of the
gradient and on the value of the learning rate r. The choice of the learning
rate for some NN can be very important, since small values involves too many
iterations while a large values could lead to the incapacity of convergence to a
global minimum.

2.2 Recurrent Neural Networks
Although NN represents good algorithm for analysis problems, it result not

efficient when comes to analyze time sequential data, as can be the time series
κt. As a matter of fact, simple NN can not retrive all the inside pattern in the
sequential data from past predictions, resulting in a constant loss of information.
While the memory of Recurrent Neural Network (RNN) algorithms allows them
to learn more about long-term dependencies in data and understand the whole
context of the sequence while making the next prediction. For this reason,
the usage of RNN’s architecture is more adequate and efficient for the purpose
of this work. A Recurrent Neural Network [20] is a class of artificial neural
network that includes neurons connected together in a loop. Typically, the
main innovation in this technique lies in the fact that the output of an hidden
layer d is used as input for the d − i layer. This interconnection between layers
either allows the use of one of the layers as a state memory, and also providing
a temporal sequence of values as input, it allows to model a temporal dynamic
behavior dependent on information received at previous time steps. The RNN’s
are a broad category of algorithms, all with the characteristic of a "connection"
between the nodes, which is the key to analyze sequential data. But in general
a simple RNN is not adequate to perform time series forecasting for mortality
rates, since the time series are extensive and there are both long and short term
pattern to catch. Besides this problem, in general the RNN’s have the major
problem of gradients vanishing: when the weights changes, but becoming smaller
at each time-step till they have no effect on the response variable. So in recurrent
neural networks, layers that get a small gradient update stops learning. Those
are usually the earlier layers. So since these layers do not learn, RNN’s can
forget what it has seen in longer sequences, thus having a short-term memory.
So the network gradually loses its ability to learn from the past, and become
operationally inadequate for the analysis of long time series data.

2.3 Long short-term memory techniques
To overcome this problem we can make use of Long Short-Term Mem-

ory(LSTM) architectures [10]. An LSTM is a type of Recurrent Neural Network
that allows the consideration of both long and short term memory. The upgrade
within LSTM is made through internal mechanisms called gates that can regu-
late the flow of information at each step. These gates can learn which data in a
sequence is important to keep or to drop away, in order to pass relevant informa-
tion down to the chain of layers. Therefore the main innovation of LSTM’s are
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the cells state, and their gates. The cell state are basically a transport channel
that bring relative information all the way down the sequence chain; these can
be view as the “memory” of the network. In this way even information from the
firsts time steps can arrive to the later time steps, filling the short-term mem-
ory problem of simple RNN. Thus as we move forward with the steps, there
will be some new information, and also some parts of the existing cell state
will be removed. These two operation on the cell state are performed through
the usage of gates. Gates are neural networks that assesses whether to keep or
drop information from the previous step. A plain vanilla LSTM unit (LSTM
block), is composed of three gates, their interconnections and the resulting cell
state (memory cell). The block runs as follows: it receives as initial information
flow the current input xt ∈ R, the previous short-term output ht−1 ∈ Rnh and
the previous state of (long-term) memory cell ct−1 ∈ Rnh . The information is
then processed by the three gates , named, respectively, forget gate, input gate
and output gate, and auxiliary NNs functions helpful in the regularization of
information flow. First, we have the forget gate; this gate decides what infor-
mation should be thrown away or kept. Information from the previous hidden
state ht−1 and information from the current input is passed through the sig-
moid function σ. The sigmoid function has a range in (0, 1). The closer to 0
means to forget the information, and the closer to 1 means to keep it. While in

Figure 2: Plain vanilla LSTM block representation.

order to update the memory, the LSTM block uses the input gate. In first in-
stance, we pass ht−1 and the current input xt into the sigmoid function σ that
assess which values will be updated by transforming the values in the range
(0, 1). Then the information also pass ht − 1 and xt into the hyperbolic tangent
function (tanh)to squish values in range (−1, 1) to help regulate the network.
Then it multiply the tanh output with the sigmoid output. The sigmoid output
will decide which information is important to keep from the tanh output. After
these stages, there is enough information to calculate the memory cell. First,
the cell state gets multiplied point-wise by the forget vector. This calculation
has the possibility of dropping values in the cell state if it gets multiplied by
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values near 0 and vice-versa. Then we take the output from the input gate and
do a point-wise addition which updates the cell state to new values that the
neural network finds relevant. That gives us our new memory. In the end there
is an output gate, that decides what the next hidden state ht will be. Therefore,
in the first place we pass the previous hidden state ht−1 and the current input
xt into the sigmoid function. Then we pass the newly modified cell state to the
tanh function. We multiply the tanh output with the sigmoid output to decide
what information the hidden state should carry. The output is the hidden state.
The new cell state and the new hidden is then carried over to the next time step.
Analytically, referring to an hidden layer composed of:

nh ∈ N neurons, W ∈ Rd×nh , U ∈ Rnh×nh (12)

weight matrices, we refer to the following equations for the functioning of a
general LSTM network:

ft = σ(Wf xt + Uf ht−1 + bf ) (13)

it = σ(Wixt + Uiht−1 + bi) (14)

ot = σ(Woxt + Uoht−1 + bo) (15)

zt = Φ(Wzxt + Uzht−1 + bz) (16)

The forget gate output ft, defined in equation 13, is such that the information
from the previous cell state and the one coming from the current input are
mixed in a nonlinear way by a sigmoid activation function. Therefore, the
output can only assume value between 0 and 1, forgetting or keeping the state
of the previous block. Afterwards, ft is mixed by a point-wise product with
the previous state of memory ct−1. The input gate it, defined in equation 14,
also uses a sigmoid activation, allowing for deciding when information received
should be updated. The output gate ot , described in equation 15, has the role to
prevent the transmission of non-significant memory content stored information
to the other blocks. For this purpose, a sigmoid function is used in order to pass
relevant memory information. In order to regularize the flow of processed data,
the input gate it is combined with that obtained from the associated auxiliary
NN zt as in equation 16. Then we define the processing of the entire input
block, which participates in formulation of the current state of memory cell, as
follows:

ct = ct−1 ◦ ft + it ◦ zt (17)

To obtain the current output, is necessary a combination between st, a function
of ct expressed as st = Φ(ct), and the upshot of auxiliary NN associated to
output gate ot:

outH = st ◦ ct (18)

And in the end the output outH ∈ Rnh is passed to the next layer and became
the short memory ht = outH for the next step.

11



2.4 Gated Recurrent Unit architecture
In the context of Recurrent Neural Networks , in the past few years took

place another Memory-based network, the Gated recurrent Unit (GRU) [6] de-
veloped in 2014. The GRU was developed always to solve the Gradient vanishing
problem, and as an alternative to LSTM, since it represents a less laborious ver-
sion of the latter. In the GRU architecture, the memory is just composed by
two gates, update and reset rate. The reset gate is bounded to the short-term
memory of the recurrent neural network, represented analytically with:

rt = σg(Wrxt + Urzt−1 + br) (19)

where zt−1 are the activations (outputs)at time-step (t−1), while Wr Ur and br

are parameter matrices and vector. So basically the forget rate assess how much
information needs to be forgotten by the model. The second gate is the update
gate is responsible for the long-term memory and it is driven by the formula:

ut = σg(Wuxt + Uuzt−1 + bu) (20)

The update gate is needed from the model to determine how much of the
past information (from previous time-steps) needs to be passed along to the
future.

Figure 3: A representation of a Gated Recurrent Unit block structure and is
internal information forward flow.

Once defined, the reset and update gate, these variables will determine the
state of the activations at time t given zt−1:

zt = rt ◦ zt−1 + (1 − rt) ◦ ϕ(< W, xT > +ut◦ < U, zt−1 >) (21)

So to summarize, the first difference between LSTM and GRU consist in the
number of gates; then anyways GRU controls the flow of information like the
LSTM unit, but without having to use a cell memory. While it can be no-
ticed that GRU’s train faster and perform better than LSTM’s on less training
data; this fact is directly related to the minor complexity of GRU’s. The com-
putational complexity may then be the main advantages of GRU’s over LSTM,
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since most of the time (not considering short sequences data) they produce both
excellent results [23].
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3 Numerical applications
In this chapter I will show and explain the empirical experiments I con-

ducted in order to assess the advantages of Recurrent Neural Networks for the
modelling stocastich process κt. Till now in the field of AI mortality modelling
few solutions have been proposed. I remind in the first place the research of
Deprez et al. [7], a comparison between benchmark models and the usage of
Machine Learning techniques. Then I remind here Hainaut et al. [9] where
a NN is proposed for mortality rates forecasting: this procedure is capable of
consider and detect non-linearities presents in the evolution of log-forces of mor-
tality. More over, a very important research about a deep learning integrated
Lee-Carter model was proposed by Nigri et al. [17]; here κt, the stochastic pro-
cess of the Lee-Carter, is modelled with an LSTM architecture. The results
in this research are very hopeful for the introduction of AI in the forecasting
phase of the stochastic parameter. Further research proposed by Bravo [3] in
the field of RNN approach to mortality forecasting, shows how GRU and LSTM
architectures increase the accuracy of predictions. While a recently proposed
paper in the context of mortality rates was made by Richman and Wuthrich [19],
where RNN’s algorithm are applied to multiple-populations in order to better
estimates Lee-Carter parameters.

The most suitable RNN for this purpose are LSTM and GRU, both very
performing in time-series forecasting. While the benchmark to compare will
be the classic ARIMA model. Therefore my purpose will be to first fit the
Lee-Carter model and obtain the parameters, αx, βx, κt; in order to produce a
forecast comparison to the ARIMA, fit an RNN to the stochastic process κt and
compare the results obtained with the ARIMA method. In order to compare the
different approaches, I will use the test-set to evaluate some metrics related to
the observed values of the time series and the forecasted ones. Once I compared
and found the best fitting, the real forecasting will begin, with a predicted
feature time space of 10 years. So, once I have evaluate the Lee-Carter fit,
the idea is to extract the fitted time series κt that will become the new data
frame to work on. Divided in train and test set, after a pre-processing data
phase, is possible to perform one of the selected RNN technique. Once the AI
model is fitted, is possible to predict both training and testing set. The same
is done for the benchmark method; after selecting and fitting the best ARIMA
model, will be possible to assess the difference between the two approaches. Is
important to notice that the forecasting abilities of the 2 approaches (ARIMA
and RNN) have to be proven on the testing set, since for the future forecasting
there will be no possible actual value to compare with. In this phase I will
produce several experiments on the RNN; this is due to the fact that there are
a lot of different parametrization that can lead to better score in the fitting.
After these experiments on the RNN, will be possible to assess the difference
between the best ARIMA fitting and the best RNN for each country and gender.
The difference will be valued on the "loss" score, to have an initial idea of the
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magnitude of the accuracy. Once I have fixed the two approaches, it will be
possible to forecast the real mortality rates in the context of the Lee-Carter
model. And after some initial consideration, I will switch to longevity swap
pricing.
For what concerns the ARIMA(p,d,q) calibration, according to to the Hyndman-
Khandakar algorithm [12], the procedure to find the best set of parameters
for the forecasting involves at first an assessment on the stationarity of the
input time series, calibrated on the training set of κt; an appropriate unit root
test to choose the differencing order d. Then, based on a specific information
criteria( AIC or BIC information) the algorithm selects the best values of p and
q, respectively the auto-aggressive and the moving average orders.

3.1 Recurrent Neural Networks approach framework
For what concern the RNN, in order to perform a deep learning fit, the first

step is always data pre-processing. Hence the input data, in order to produce
a well functioning AI algorithm, needs to be scaled; this is related to the fact
that when input data are not scaled, during the supervised training is possible
to have tail values that can give to the RNN a misleading weight hint for some
instance. Therefore mean and standard deviation of the input data set can
be used as the scaling coefficients to scale both the training and testing data
sets as well as the predicted values. This way we ensure that the scaling does
not impact the model. So after scaling, the general procedure for time series
forecasting involves a lagged split of the input data set: the algorithm will take
as an input i ∈ N subsequent values to predict one. In this way the RNN will
predict the value of κt through a function ϕ linking the predicted value to its
time lags:

κt = ϕ(κt−1, κt−2, ..., κt−i) + ϵt (22)

where ϵt is the homoschedastic error term. Hence once the kt time series its
modified with i lags, the algorithm requires to split the time series into training
and testing set. The training set, where n is the number of years needed to
train the model and time lag i = 2, will look as follows:

Table 1: Data set for training
INPUT OUTPUT

κt κt+1 κt+2
κt+2 κt+3 κt+4
... ... ...
κt+n−2 κt+n−1 κt+n

So once the model is trained with the training set, and validated with the
testing set, the RNN has learned the main features related to the input-output
relationship. Then is now possible to perform the forecast of the time series. In
order to produce values it will just be necessary to give as input the matrix of
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dimension [n × i] to obtain the output vector [n × 1]. While the values after the
last year of observation, so at time (n + 1, n + 2...), will be obtained recursively.
It should be noted that for time t = n + 1, n + 2, ... the κ̂t values are forecasted
from those predicted previously as there is no data available for periods after n.
For this reason it will be possible to compare the ARIMA and RNN models just
on the testing set, since there are no available data for the comparison after the
last year of κt time series.

3.2 Empirical forecasting experiments
All the experiments and results were conducted with Rstudio 4.1.2 (R) while

the data were taken from Human Mortality Database [12] HMD. For the Lee-
Carter fit I used the package StMoMo [22], for the RNN fit the usual Keras
package. While for the forecasting as well for the ARIMA fit Forecast package
was used. In addiction package Demography [11] was needed to obtain the
data. For the purpose of this research six countries were considered: USA,
Italy, Japan, Belgium, United Kingdom, Portugal. While given the purpose of
the research, I focused on a subset 3.2 of mortality data from 1950 to the last
available year in the Human Mortality Database.

Table 2: Selected countries, LC fitted years and testing years.
Country Fitted Years Testing Set Years
USA 1950-2019 2006-2019
Italy 1950-2018 2005-2018
Japan 1950-2020 2007-2020
Belgium 1950-2020 2007-2020
UK 1950-2018 2005-2018
Portugal 1950-2020 2007-2020

For what concerns the analyzed age of the several countries, I take a range
from 50-90 years old, since for the purpose of Longevity Swap pricing the refer-
ence population age is in this interval.
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Figure 4: A representation of the fitted κt process for all the countries.

In order to produce a different estimation for mortality rates, a first round
of parameters fine tuning was carried out for all the countries distinguishing
by gender. Once the assessment on the best parametrization for each country
and gender was made, it was possible to compare the results with the best
ARIMA fitting. The comparison is based on the RMSE between the actual and
forecasted test set. The measure for the comparison, the Root Mean Squared
Error is implemented as follows:

RMSE =

√∑T
t=τ (κτ − κ̂τ )2

(T − τ + 1) (23)

where κ̂t is the forecasted process, (τ, T ) are respectively the first and last year
forecasted. For the purpose of these experiments, I decided to just adopt this
loss measure to compare the performance of Recurrent Neural Networks over
ARIMA, in the forecasting context. All the experiments were produced with
differentiation by country and gender. I report in tables some of the main AI
parametrization, showing the RNN techniques and their RMSE on the observed
test set. Has to be noticed that the all the reported models outperform in term
of RMSE the best fitted ARIMA for each country and gender. In the tables [3,
6, 12] I summarize the main RNN architectures for each country. The results
obtained are very optimistic regard the usage of RNN’s over ARIMA in the
forecasting procedures. As matter of fact all the reported experiments of the
several different parametrization and models outperform in term of RMSE the
ARIMA forecasted ones. For example, in figure 3.2 is possible to see how the
RNN forecasting better estimate the real stochastic process κt. In this case the
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RNN estimation was produced by a GRU with one layer and 8 hidden units;
the comparison (blue) was instead calibrated with ARIMA(0,2,2).

Figure 5: Forecasting κt for USA male on the test set. RNN (red) and ARIMA
(blue).

Is possible to see how the GRU architecture manages to catch both a short term
both a long term pattern that leads to a better fitting to the observed data. Here
in table 3 is possible to see the several Deep Learning forecast model for the κt

process; the obtained RMSE on the test set really shows how this techniques can
improve the accuracy of the forecasted time series. The rest of the parametriza-
tion I found for the other four countries are showed in the appendix [6, 12]. I
pick the best model (between RNN’s) for each country and gender on the results
obtained in the forecasted test set: the lowest RMSE will be the candidate for
the longevity swap price procedures. In general both models produce a very ac-
curate forecast, but for some cases GRU slightly exceeds the accuracy of LSTM.
This advantage may be due to the fact that GRU’s architecture requires less
data for the training and in general they have less computational complexity as
explained before. At most, for Portuguese female population in table 3 I was
not able to find any LSTM parametrization that would exceed the accuracy of
ARIMA forecast. For the purpose of estimating the stochastic process κt, the
rectified linear unit (relu) has in most of the case overcome the performance
of the Hyperbolic tangent (tanh). While for what regards the number of units
and layers for each model, I discovered that for this time series, an excessive
number of parameters do not lead to a better accuracy. Regarding epochs and
batch size, it is difficult to not fall into over fitting situation. For this reason I
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Table 3: Portugal and Belgium Recurrent Neural Network parametrization.
Portugal Model Layer 1 Layer 2 Batch size Epochs Activation RMSE

Female GRU_1 8 0 6 50 relu 1.313626
Female GRU_1 10 0 8 60 tanh 1.463815
Female GRU_1 8 0 8 80 relu 1.594573
Female GRU_2 4 2 12 150 tanh 1.603688
Female GRU_1 10 0 8 55 relu 1.170603
Female GRU_2 8 6 8 45 tanh 1.151239
Male GRU_1 10 0 10 130 tanh 1.588663
Male GRU_2 6 4 8 120 relu 1.593634
Male LSTM_2 7 6 8 80 relu 1.47787
Male GRU_2 12 6 8 75 tanh 1.161382
Male LSTM_1 12 0 10 200 tanh 1.617838
Male GRU_1 8 0 8 80 tanh 1.180199

Belgium Model Layer 1 Layer 2 Batch size Epochs Activation RMSE
Female GRU_2 12 6 10 105 relu 0.964462
Female LSTM_2 8 6 10 100 tanh 0.868235
Female GRU_1 5 0 8 25 tanh 1.312584
Female LSTM_1 10 0 10 60 relu 1.26508
Female LSTM_2 10 5 10 120 relu 1.187499
Female LSTM_2 10 4 12 40 relu 0.960467
Male GRU_2 10 4 12 80 relu 0.874757
Male LSTM_1 8 0 12 120 relu 1.223899
Male LSTM_1 15 0 10 80 relu 1.34986
Male LSTM_1 12 0 10 70 relu 1.467062
Male GRU_2 10 8 8 110 relu 1.411856
Male GRU_2 12 6 10 75 relu 1.001406
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Table 5: Parametrization for the model I use in the pricing section, with com-
parison to ARIMA RMSE on the test set.

Country Gender Model Layer 1 Layer 2 Batch size Epochs Activation RMSE RNN RMSE ARIMA

USA Male GRU_1 8 0 6 145 relu 0.3570894 3.671365
Female LSTM_1 10 0 6 220 relu 0.4389882 1.756939

Italy Male LSTM_2 10 5 6 70 relu 0.8941078 2.066384
Female LSTM_2 10 6 6 40 relu 0.9486407 1.8091

Portugal Male GRU_2 12 6 8 75 tanh 1.161382 1.699426
Female GRU_2 8 6 8 45 tanh 1.151239 1.634175

Belgium Male LSTM_1 12 0 10 70 relu 1.467062 2.257479
Female LSTM_1 10 0 10 60 relu 1.26508 2.187526

UK Male GRU_1 8 0 8 100 relu 1.143459 3.472622
Female GRU_1 4 0 10 190 tanh 1.181998 2.642061

Japan Male GRU_1 3 0 10 200 relu 0.840978 0.9126
Female GRU_1 4 0 10 190 tanh 1.181998 2.642061

decided to stop all the training phase of the algorithm whenever the validation
loss was not decreasing within 10 epochs: over fitting, although is not the main
difficulty with time series data, can easily affect the forecasted values.

Table 4: Test set forecasted RMSE, RNN vs ARIMA.
Country Gender RNN ARIMA

USA male 0.3571 3.6714
female 0.4390 0.6107

Italy male 0.8941 2.0664
female 0.9486 1.8091

Portugal male 1.1614 1.6994
female 1.1512 1.6342

UK male 1.1435 3.4726
female 1.1820 2.6421

Japan male 0.8410 0.9126
female 0.8714 2.4617

Belgium male 0.8748 2.2575
female 0.8682 2.1875

Hence in the context of mortality rate forecasting, the experiments I perform
gives empirical evidence of a substantial advantage of RNN over the canonical
ARIMA approach. As is possible to see in table 4, the RNN’s techniques always
exceed in accuracy the ARIMA forecasting in the test set. The category "RNN"
refers to the best trained approach (RMSE-wise) as in table 5, while "ARIMA"
refers to the best combinations (p,d,q) that are showed in 10.

Although the usage of AI shows an important development in the forecasting
of mortality rates, I notice several problems in the fine-tuning phase. I think
that the main problem focuses on the fact that these algorithms even with
the same premises (parametrization) do not always return the same outputs.
While an ARIMA process depends solely on the mathematical background (
fitted model) and the time series itself. For these reasons I think the usage of
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Deep Learning techniques is not entirely obvious, although it markedly improves
future estimates of mortality rates. The only country that perform well under
ARIMA assumption is Japan; this fact may be related to the strong increasing
longevity trend that the κt process shows 4. In the next chapter I first introduce
Longevity swaps contract to then explain the main pricing techniques; after
the explanation of the chosen pricing methodology I show the results of the
experiments conducted within the usage of RNN for the forecasting of mortality
rates.
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4 Longevity Swap Pricing
The constant scientific and biological improvements in the past century

leaded the humans to an ongoing improvements of the life expectancy at all
ages. Longevity improvements have been constant over the past decades, and
will probably be for the next ones. For this reason Longevity risk has become
an important topic for insurance companies and pension funds. Longevity risk
is the potential risk attached to the increasing life expectancy of policyholders,
which can result in higher than expected payouts for insurance companies. To
hedge this risk, there are two broad category of solutions:

1. Insurance-based solutions.

2. Capital markets-based solutions.

For the purpose of this research, I focus on the pricing of some of the Capital
Markets solutions. Among the most used ones, I analyse Longevity Swap differ-
entiating the pricing calculations among the techniques object of research. The
hedging for these category of instruments is represented by the usage of Deriva-
tives contracts, which are those whose value is dependent on an underlying asset,
group of assets, or benchmark. A Longevity Swap is an agreement between two
parties to exchange periodically at future dates t = 1, 2, ..., T a series of fixed
payments for a series of random longevity-dependent payments. The latter
are based on realized survival rates of an index or reference population (index
swap) or may be based on actual pension’s plan experience (indemnity swap).
Focusing on the index swap, the two counterparties will periodically exchange
payments based on the notional amount N agreed at inception and based on
the survival rates of a reference population or index. Then a Longevity Swap
is a capital market instrument for transferring to another counterpart longevity
or mortality risk. So basically the fixed leg (i.e. pension fund)enter this type of
contract with the aim to hedge its business in force against longevity risk.

Figure 6: Plain vanila longevity swap scheme.

Net Payments Amount for the fixed leg at each epoch t, are given by:

NPAt = Notional × 100 × [tpfixed
x − tp

obs.
x ] (24)

where tp
fixed
x refers to the pre-agreed survival rate for the reference population

aged x at time t and tp
obs.
x represent the observed at that time. The Net Payoff
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Amount (NPA) can assume both positive and negative values; in order to hedge
longevity risk, for example a pension fund should enter a Longevity Swap as
a fixed-rate payer so that it would receive a positive net payment from the
counterpart whenever observed mortality rates turns out to be lighter than
expected (longevity risk).

To have a glimpse of the absorbing market capacity for Longevity Swap
contracts, in the table below is possible to see the main deals for Longevity
swap and longevity Reinsurance 6(extracted from and available at the link)

Table 6: Main Longevity Swap and Reinsurance deals since 2018.
Buyer Provider(s) Solution Size Date

Phoenix Group Metlife Longevity reinsurance $2.4 billion Dec 2021
Unnamed UK pension Zurich / Metlife Longevity swap and rein. $3.5 billion Dec 2021
Aegon Reinsurance Group Longevity reinsurance EUR 7 billion Dec 2021
Athora Netherlands Reinsurance Group Longevity reinsurance EUR 3.3 billion Sep 2021
ICL Group Pension Swiss Re Longevity swap and rein. £3.7 billion May 2021
Unknown UK pension Inc. and Zurich Longevity swap and rein. £6 billion Mar 2021
Athora Netherlands Canada Life Re Longevity reinsurance EUR 4.7 billion Mar 2021
AXA UK Pension Scheme Hannover Re Longevity swap £3 billion Mar 2021
Legal General MetLife, Inc. Longevity reinsurance $2 billion Dec 2020
BBC Pension Scheme Zurich / Canada Life Re Longevity swap reinsurance £3 billion Dec 2020
Barclays Bank UK Ret. Fund Reinsurance Group of America Longevity swap £5 billion Dec 2020
Prudential Staff Pension Scheme Pacific Life Re Longevity swap £3.7 billion Nov 2020
Rothesay Life MetLife, Inc. Longevity reinsurance $320m Oct 2020
UBS (UK) Pension Zurich / Canada Life Re Longevity swap reinsurance £1.4 billion Jul 2020
Willis Pension Scheme Munich Re Longevity swap £1 billion Jun 2020
Pension Insurance Corporation Metlife, Inc. Longevity reinsurance £280m Jun 2020
NN Group Canada Life, Munich Re, Swiss Re Longevity reinsurance EUR 13.5 billion May 2020
Lloyd’s Banking Group Pacific Life Re / Scottish Widows Longevity swap reinsurance £10 billion Jan 2020
Aegon Canada Life Reinsurance Longevity reinsurance €12 billion Dec 2019
Unknown UK FTSE 100 company Zurich, Hannover Re Longevity swap reinsurance £800m Dec 2019
HSBC UK Pension Scheme Insurance Company of America Longevity swap reinsurance £7 billion Aug 2019
Phoenix Group Insurance Company of America Longevity reinsurance ? Aug 2019
Manulife PartnerRe Longevity reinsurance ? May 2019
Manulife PartnerRe Longevity reinsurance ? Mar 2019
VIVAT Canada Life Reinsurance Longevity reinsurance €5.5 billion Mar 2019
Manulife RGA Life Reinsurance Longevity reinsurance ? Feb 2019
Pension Insurance Corporation SCOR Longevity reinsurance £1.2 billion Dec 2018
Lafarge UK Pension Plan Munich Re Longevity swap ? Aug 2018
Unnamed UK pension Legal General Longevity swap reinsurance £300 million Aug 2018
Aviva Insurance Company of America Longevity reinsurance $1.4 billion Aug 2018
National Grid Zurich Longevity swap £2 billion May 2018
Pension Insurance Corp. Insurance Company of America Longevity reinsurance $1.2 billion May 2018
Scottish Widows Prudential Longevity reinsurance $1.8 billion Feb 2018

As is possible to see, these type of hedging contract are nowadays widely used
in order to prevent unexpected payout due to longevity improvements in mor-
tality. Since Longevity improvements in the mortality are constantly increasing
over time, and also the market is composed mainly of hedge providers (short
position) more than "long" investors, the entities willing to hedge longevity risk,
require as a compensation for it. Mainly for these reasons a premium to enter
the contract is asked to the fixed leg (i.e. pension fund). Hence the premium
calculation assume a primary importance for the Longevity risk market; in the
next section I will introduce the pricing method I used to perform the several
experiments about the Longevity Swaps premium.
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4.1 Pricing methodology
The premium π is proportional to the value of the possible future agreed

payments arising from the fixed leg. Hence in order to price such instruments
we need to apply a Risk-Neutral valuation: the contract settlement at each
epoch t should be fair for both parties at the signing of the contract in t = 0.
Since in the case of Longevity Swap the underlying mortality rate is not tradable,
the common non-arbitrage valuation methodology, which is based on the idea
of replicating risk, can not be applied for this broad category of contracts.

Considering the fixed leg, its periodically fixed payments Kt are determined
by:

Kt ≡
t−1∏
i=0

(1 − (1 − π)iq
BE
x+i) × N = tp

π
x × N, t ≥ 1 (25)

where the product represent the formula to extract tpx (probability of head
aged x to survive at least t years) using the corresponding death probabilities.
Is possible to see how the premium for the fixed leg π represent the reduction of
the best estimate mortality rates that the fixed leg pays for enter the contract;
the fixed leg rate tp

π
x are higher than the best estimates ones tp

BE
x . Hence tp

π
x

are the premium adjusted best estimate survival probabilities, where:

1. with π > 0 refers to fixed leg hedged from Longevity risk

2. with π < 0 correspond to an hedging against mortality risk

While with regards to the floating leg, its payments will be equal to:

St = tp
obs
x × N, t ≥ 1 (26)

Then the only problem is to estimate the value of the risk premium π applied to
the fixed leg. There are several techniques to estimate this parameter, among
the most used ones there are:

1. Wang transform method

2. Sharpe ratio method

3. Utility function pricing approach

4. Forward Force of Mortality

5. Consumption CAPM model

For the purpose of this work I focus just on the Wang transform. The usage of
the Wang Transform refers to the necessity of convert the expected fixed pay-
ments into their Risk Neutral version. To determine the Risk neutral adjusted
rate tp

π
x we need to solve the following:

gλ(p) = Φ(Φ−1(p) + λ) (27)
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where Φ() is the cumulative standard normal distribution, p represent the best
estimate of fixed survival rate tp

BE
x and λ is the market price of risk. Hence the

risk premium adjusted probabilities will be:

tp
π
x = gλ(p) (28)

So the Wang transforms adds automatically the longevity risk to the survival
probabilities, transforming those into risk neutral measures so that no additional
premium is required to the fixed leg. The fixed payments are then determined by
discounting the multiplication of the risk neutral rates with the notional amount;
the discount is made through the market interest rate term structure. While the
floating payments are calculated by simply discounting the best estimates rates
times the notional. The only issue arising from the Wang transform method is
the determination of the market price of risk λ, which can be detected from the
market annuity price [14]. Hence once the adjusted survival probabilities are
estimated, in order to price the derivative contract, one just need to discount
every cash flows to t = 0. So considering B(0, t) the discount factor for the
considered period, the following will give the fair value of the Swap in time
t = 0:

Premium =
T∑

t=0
N × B(0, t) × (tp

adj
x −t pBE

x ) (29)

where N is the upon agreed notional, tp
adj
x are the Wang-adjusted survival

probabilities for population aged x, while tp
BE
x are the Best Estimates forecasted

rates.

4.2 Numerical experiments
In order to price Longevity Swaps, first we have to forecast the matrix of mor-

tality rates. As explained, the benchmark model in this area is the Lee-Carter
model with the best fitted ARIMA modelling for the forecasting procedure; in
comparison I developed a Lee-Carter integrated model with an Artificial Intelli-
gence estimation for the κt stochastic process. Hence the difference in the rates
is accrued using two different κt forecasted time series, while the αx and βx

are the classic fitted Lee-Carter parameters. The Lee-Carter can produce the
forward mortality rates simply forecasting the time dependent parameter κt: so
basically between the two different approaches (RNN, ARIMA), only the time
series parameter will differ, leading to different mortality rates. The LC will
first produce the log of central mortality rate mx,t; then to obtain the death
probabilities qx,t will be obtained as :

qx,t = 1 − e−mx,t (30)

Then is possible to obtain the survival probabilities tpx, as 1 − qx,t. So once the
two matrix of survival probabilities are computed is easy to obtain the needed
rates tpx0, considering the reference age x0 and a time horizon t = 1, 2, ..., T .
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To remind, the benchmark estimation is calibrated on the best ARIMA(p,d,q)
fitting for each country and gender time series; while the comparison is made
on RNN’s testing set lowest RMSE (explained above). Hence after the fore-
casting of the two different survival probabilities , in order to price and use the
Longevity risk measure, the Wang transform was applied to the survival prob-
abilities. In this case, the coefficient λ is estimated through the annuity market
price. For the purpose of this work I decided to adopt λ = 0.1, 0.2, 0.3 in order
to see the difference accrued on the usage of a different market price of risk.
Going further in the pricing, the procedure requires to estimate the interest
rate for the contractual period established; in order to consider the actual value
of payments, the cash flows must be discounted from their time period to the
present. One way to evaluate the interest rate term structure is the calibration
of the Nelson-Siegel-Svensson model [8]. In this case the several parameters are
taken from the European Central Bank website (ECB), where the parameters
are published daily. Hence, is possible to perform the longevity swap pricing;
the procedure is applied both to the forecasted ARIMA both to the RNN’s ad-
justed rates. For the evaluation of the price, Rstudio was used, implementing
the Wang transform and the Nelson-Siegel term structure manually. In order
to produce the prices, the formula 29 was implemented manually in R. It must
be specified that the first survival probabilities used in the formula 29 are not
the forecasted "spot" rates, since the collected data end at maximum in 2020,
but the forward rate start from 2022 in order to produce the actual premium.
This means that with better data availability, both for ARIMA and RNN’s, the
accuracy of the forecasted survival probabilities would have been more precise.

For the purpose of this work I decided to evaluate the price of the following
contract:

1. Notional = 1, 000, 000 €

2. Reference age = 55 years old population.

3. Duration = 10 years.

Then all the contracts premium where produce based on country and gender. As
explained before, the market price of risk λ used in the Wang transform in order
to produce the "market" survival probabilities, can bring significant changes to
the price of the contract. Although this parameter has to be estimated through
market price of quoted life annuity for each country, for the purpose of this
research I decided to focus just on λ = 0.1, 0.2, 0.3. In table 4.2 I report the
price produced for UK and Belgian population with the underlying survival
rate forecasted through deep learning integrated Lee-Carter model and with
the ARIMA approach.

To be precise, the category "RNN" refers to price produced with the Deep
Learning technique with the lowest RMSE on the testing set as in table 3;
while "ARIMA" is the best combination (p,d,q) for each country and gender
(computed with auto-arima [link]) used in the forecast procedure as in table 10.
Hence the obtained price are differentiated by forecasting technique, gender,
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Table 7: Longevity Swap price for UK and Belgium reference populations.
UK RNN ARIMA λ
male 57,447 € 64,689 € 0.1

female 47,477 € 45,398 € 0.1
male 104,102 € 117,591 € 0.2

female 85,706 € 81,866 € 0.2
male 141,644 € 160,460 € 0.3

female 116,204 € 110,887 € 0.3
Belgium RNN ARIMA λ

male 73,732 € 71,099 € 0.1
female 49,905 € 46,094 € 0.1
male 134,418 € 129,480 € 0.2

female 90,175 € 83,123 € 0.2
male 183,909 € 176,978 € 0.3

female 122,369 € 112,593 € 0.3

reference country and market price of risk λ. Here in figure 7 is possible to see
how for England population (hence derived from UK mortality rates qx,t) the two
different approaches give very different results with respect to the experiments
conducted on Belgian population.

Figure 7: Barplot of Longevity swap price for UK contracts; distinguished by
value of market price of risk λ and by gender.

Meaning that the forecasted rate for UK population are very different be-
tween ARIMA and RNN forecasting. I assembled the tables for the remaining
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countries in 8; the contract’s details remains the same, as well as for the several
price "categories". As for Portugal male reference population, also for USA and
UK male populations the produced prices with RNN are lower than the ARIMA
ones; while the price for female population gives the opposite hint, with higher
prices using the deep learning adjusted LC model.

Table 8: Tables of Longevity swap prices for each country.
Japan RNN ARIMA λ Italy RNN ARIMA λ
male 62,991 € 55,895 € 0.1 male 54,599 € 50,042 € 0.1

female 31,675 € 25,519 € 0.1 female 35,117 € 32,149 € 0.1
male 114,442 € 101,220 € 0.2 male 98,876 € 90,433 € 0.2

female 56,721 € 45,485 € 0.2 female 63,001 € 57,567 € 0.2
male 156,083 € 137,634 € 0.3 male 134,452 € 122,733 € 0.3

female 76,339 € 60,959 € 0.3 female 84,937 € 77,475 € 0.3
Portugal RNN ARIMA λ USA RNN ARIMA λ

male 77,465 € 81,317 € 0.1 male 83,415 € 88,721 € 0.1
female 37,558 € 34,706 € 0.1 female 60,935 € 58,346 € 0.1
male 141,235 € 148,505 € 0.2 male 152,387 € 162,400 € 0.2

female 67,463 € 62,227 € 0.2 female 110,581 € 105,763 € 0.2
male 193,245 € 203,508 € 0.3 male 208,889 € 223,028 € 0.3

female 91,052 € 83,844 € 0.3 female 150,656 € 143,941 € 0.3

While for the rest of the countries there is a general trend of RNN overpricing
on ARIMA methods. The cause of higher or lower price for the contracts has
to be sought in the produced survival probabilities. As explained the difference
and innovation consist in a different approach to forecast κt, and consequently
a different estimation for the central mortality rate mx,t; once the survival
probabilities are obtained, the diversity in the two prices are just related to
the best estimates and adjusted probabilities used in 29. Hence the premium,
adopting the Wang transform, is the result of the accrued difference between
the market adjusted probabilities and the forecasted ones. I noticed how the
lower the survival rate tp

BE
55 the higher the difference between the latter and

the Wang adjusted one. Schematically:{
NPAarima

t > NPArnn
t if tp

arima
x < tp

rnn
x

NPAarima
t < NPArnn

t if tp
arima
x > tp

rnn
x

(31)

where NPAt refers the the present amount of the tth cash flows for the Longevity
Swap. Has to be noticed that this inequalities stand just for probabilities (for
the Wang transform) that are approximately higher than 0.5; this is a result
of the shape of the normal distribution which is a is a descending function for
probabilities greater than 0.5. Hence the discrepancies in the price and survival
probabilities should be found in the LC model, and more precisely in the κt

process (having all the other parameters set in both techniques). The lower
(higher) survival probabilities is produced from an higher (lower) value of the
stochastic process at time t.
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Is possible to see in figure 8 a significant the difference between the RNN and
ARIMA premium estimation for Portugal; due to the fact that for this country
there is slightly higher difference in the two estimation of future values of κt

and consequentially of the mortality rate

Figure 8: Barplot of Longevity swap price for Portuguese contracts; distin-
guished by value of market price of risk λ and by gender.

Has to be noticed how the value of λ influences significantly the price of the
derivatives. The market price of risk is able to change the probabilities both
with an upward shift (longevity risk) both with a downward (mortality risk); in
table 4.2 is possible to see the accrued difference using the 3 values of λ. Is clear
how the market price of risk using the Wang transform produces a significantly
higher rate: the higher λ parameter, the higher is the premium required from
the market to hedge longevity risk.
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Table 9: Survival probabilities tp55(used for the pricing) for US male leveled by
market price of risk λ.

Forecasted λ = 0.1 λ = 0.2 λ = 0.3
0.993036 0.9947531 0.9960827 0.9971021
0.985653 0.9889211 0.9915218 0.9935705
0.977785 0.9825716 0.986448 0.9895564
0.96934 0.9756488 0.9808293 0.9850415
0.960475 0.9682896 0.974781 0.9801198
0.951045 0.9603762 0.9682068 0.9747125
0.941045 0.9519046 0.961101 0.9688116
0.930456 0.9428548 0.9534434 0.9623964
0.919304 0.9332449 0.9452453 0.9554724
0.907617 0.9230978 0.9365226 0.9480487
0.895467 0.9124721 0.9273226 0.9401622

In figure 9 I reported the prices solution for Longevity Swap contract for 55
years old male and with a market price of risk λ = 0.2. Is possible to see in the

Figure 9: Price of longevity swap for 55 years old male and with λ = 0.2

barplot 9 that the RNN’s produced prices are for half of the countries higher and
half lower than the respective forecasted with ARIMA . The difference is accrued
in the usage of the different stochastic process κt in the Lee-Carter model. As
explained in section 3 the comparison is made between the best fitted ARIMA
(p,d,q) and the best RNN tuning for the selected country and gender; as in ta-
ble 6, the only adopted Deep Learning parametrization outperform RMSE-wise
the ARIMA estimation. Then is possible to think that the iterative forecasting
could better perform in the future (from year 2022 on), since the result obtained
on the test set (approximately 2010-2019) can be interpreted as very optimistic
about the usage of AI over classical stochastic models.
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Analyzing the produced price in a general way, is possible to notice that the
the most evident price differences occur when ARIMA estimates for κ̂t differ
significantly from the observed ones (test-set). As explained before all the RNN
outperform in term of RMSE the ARIMA approaches on the testing set; hence
is possible to think that the RNN forecast for the future years (from 2022 on)
could be more accurate and realistic. Beside this, as is possible to see that
an RNN approach leads to a major premium size for 3 countries and a lower
price for the remaining 3. To have a general idea of the amplitude of this add
on/off to the price, I calculated the percentage variation with respect to the
benchmark price (ARIMA) for each country, gender and market price of risk
λ. The average percentage variation of the price is then calculated in a broad
way for each country, and then aggregated between the latter. The obtained
coefficient (absolute mean percentage) shows that, on average, the RNN prices
differs 6.7% from the benchmark estimation. This difference is more evident for
some country, like USA and Japan, where the ARIMA estimation differs largely
from the observed ones in the testing set. However it must be notice that I
perform all the price experiments with the same contract detail, which is just a
default one for the purpose of this research; the prices as well as the magnitude
of the discrepancy between the two approaches(RNN vs ARIMA) can vary a lot
considering different reference age and higher Notional amount for the contract.

4.3 Some considerations
To summarize, in the first place the experiments I conduct shows clearly

how, considering the forecasting procedures of the LC, an RNN approach always
leads to a better fitting than the canonical ARIMA. Precisely in most of the case,
Gated Recurrent Unit outperform largely LSTM, manifesting less computational
complexity and less need for data availability. As matter of fact also LSTM
architecture in some country and gender produces very accurate forecast, even
if compared to GRU’s. Since all the RNN architecture I propose and report
outperform in term of RMSE (on the test data) the ARIMA methods, I think
is possible to consider the AI techniques as the most accurate in the forecasting
phase. As I show, the discrepancy in the forecasted test set present a huge
misleading trend by ARIMA approaches; while on the other side is a fact that
some parametrization of RNN really fit the observed data. Going further in
the context of Longevity Swaps, the produced prices evidences the differences
between the two approaches. For some countries RNN has produced higher
prices for others the opposite; the key, in my opinion, is to think that RNN’s
estimates (considering the assumptions in Chapter 3) produce the most accurate
and fair prices in the context of longevity risk.
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5 Conclusion
In the context of mortality, the forecasting phase is the main difficulty for

the several reason I explained. Considering the applications mortality rates
have in many fields, is clear how forecasting them properly is crucial for many
"operators". The lack of accuracy of the classic Lee-Carter forecasting is evident
comparing with deep learning integrated models. In the context of longevity
improvements in the mortality field, the benchmark estimation technique of the
time-dependent parameter of the canonical model need a revision due to the
lack of consistency in most of the countries object of my analysis. Longevity is
currently growing as one of the main risks in insurance and pension business,
as well as for the underlying market for this risk. For these reasons a revision
in the mortality models, carried out on the stochastic process indexed by time,
should represent a critical issue.

In this research I first propose a deep learning integrated Lee-Carter model
with RNN’s techniques for the forecasting of the time-dependent parameter κt;
the results are then applied to Longevity Swap pricing to see the inherent dif-
ference with the benchmark procedures. The comparison is made with ARIMA
models, the classical framework for the forecast of κt. As alternative, I decided
to focus on LSTM and GRU deep learning architectures. After a brief presen-
tation about LC framework, I introduced the deep learning techniques object of
the research. Starting from a plain vanilla Neural Network and its shortcoming
in the context of time series forecasting, I then introduced LSTM and GRU as
two of the most suitable RNN techniques for the topic. For the investigation
I performed the numerical application on six countries world-wide and differ-
entiated by gender. Hence I assessed the advantages of RNN’s techniques over
the canonical ARIMA, showing the misleading trend and the low performance
in front of AI approaches. The result I obtained were then applied to index
Longevity Swap pricing. Considering a default contract, I calculated the price
for the derivatives contracts for the populations of the countries using both the
classical forecasted mortality rate both a suitable RNN technique for the fore-
casting procedures. I then showed the discrepancy in the two produced price,
focusing also on how I obtained different results differentiating by country and
gender.

The purpose of this research is to show how the usage of Deep Learning
techniques in the mortality field can lead to better underlying assumption for
Derivative contract and life-business related market. The result I obtained are
very optimistic surely, showing a total dominance of RNN’s approach over the
classical methods. But as explained in the mortality rate forecasting section,
these AI approach can also produce very ambiguous result in the iterative fore-
casting of κt; consequentially all these "deviated" training and procedures, would
produce very unrealistic price for the related hedging contracts.

In conclusion, I think the field of longevity risk has become of central impor-
tance to the insurance and retirement industry, to the point where the need to
revisit classical modeling has become an important challenge and target. The
contribution of the proposed investigation is founded primarily on the research
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and the usage of new techniques in the field of mortality rate forecasting. Then
since the market and research in the field of longevity risk pricing are not yet
fully saturated, this article make a significant contribution for the fair value
calculation for this hedging instruments.
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6 Appendix

Belgium and UK fitted rates

Figure 10: Belgium(above) and UK(below) fitted mortality rates.
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Italy and USA fitted rates

Figure 11: Fitted mortality rates for Italy(above) and USA (below).
Portugal and japan fitted rates

Figure 12: Fitted mortality rates for Portugal(above) and japan (below).
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Table 10: Best ARIMA(p,d,q) for each country.
Country Best ARIMA Country Best ARIMA

USA UK
male ARIMA(0,2,2) male ARIMA(0,2,2)

female ARIMA(0,1,0) female ARIMA(0,1,1)
Italy Japan
male ARIMA(0,2,2) male ARIMA(0,1,3)

female ARIMA(0,1,1) female ARIMA(0,1,1)
Portugal Belgium

male ARIMA(0,1,1) male ARIMA(1,1,0)
female ARIMA(0,1,1) female ARIMA(2,1,1)

Table 11: RNN parametrization for USA and Italy by gender-
USA Model Layer 1 Layer 2 Batch size Epochs Activation RMSE
Male GRU_1 5 0 6 60 relu 1.852517
Male LSTM_1 5 0 6 84 relu 0.542309
Male LSTM_2 10 5 6 45 relu 2.031578
Male GRU_1 8 0 6 147 relu 0.357089
Male GRU_1 8 0 8 72 relu 2.524158
Male GRU_1 8 0 8 174 relu 0.384254

Female GRU_1 8 0 8 100 relu 1.708639
Female GRU_2 10 5 8 100 relu 1.176006
Female GRU_1 8 0 8 260 relu 0.686256
Female GRU_1 5 0 6 210 relu 1.304324
Female LSTM_1 10 0 6 220 relu 0.438988
Female LSTM_2 3 3 6 260 relu 0.643964
Italy Model Layer 1 Layer 2 Batch size Epochs Activation RMSE
Male LSTM_1 5 0 6 70 relu 2.223601
Male LSTM_1 10 0 6 60 relu 1.809554
Male LSTM_2 10 5 10 95 relu 1.015774
Male LSTM_2 10 5 6 70 relu 0.894108
Male GRU_2 8 5 6 180 relu 1.286334
Male GRU_2 5 5 6 50 relu 0.927548

Female LSTM_1 10 0 6 150 relu 2.1905
Female GRU_1 10 0 10 80 relu 2.295094
Female GRU_1 6 0 4 35 relu 2.133661
Female LSTM_2 10 6 6 40 relu 0.948641
Female GRU_1 10 0 8 50 relu 1.00273
Female LSTM_2 8 6 10 75 relu 1.56602
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Table 12: UK and Japan Recurrent Neural Networks parametrization.
UK Model Layer 1 Layer 2 Batch size Epochs Activation RMSE

Female LSTM_1 10 0 10 225 relu 1.823201
Female GRU_1 10 0 6 80 relu 1.346289
Female GRU_2 8 4 10 250 relu 2.229094
Female GRU_1 4 0 10 190 tanh 1.181998
Female LSTM_2 8 4 8 75 relu 1.540118
Female LSTM_1 10 0 8 80 relu 1.412982
Male LSTM_1 10 0 10 170 relu 2.245425
Male LSTM_1 10 0 10 400 tanh 3.155587
Male GRU_2 8 5 6 60 relu 2.290737
Male GRU_2 8 5 10 200 tanh 2.253668
Male GRU_1 8 0 8 100 relu 1.143459
Male LSTM_1 5 0 10 240 relu 2.018462

Japan Model Layer 1 Layer 2 Batch size Epochs Activation RMSE
Female LSTM_2 10 5 8 60 relu 2.385545
Female LSTM_2 10 5 10 95 relu 1.091808
Female GRU_1 4 0 8 150 relu 0.871357
Female LSTM_1 6 0 6 90 relu 1.136775
Female GRU_1 10 0 8 65 relu 1.268107
Female GRU_1 5 0 10 100 relu 1.295658
Male LSTM_1 8 0 10 105 relu 0.908357
Male LSTM_2 10 5 10 55 relu 0.90571
Male LSTM_2 8 5 12 200 relu 0.883853
Male GRU_1 3 0 10 200 relu 0.840978
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