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Abstract
The model of the near-cathode plasma, developed previously for the case of a
single-species plasma-producing gas, is generalized for the case of multiple
plasma-producing species. Results are presented of calculation of a diffuse
mode of current transfer to tungsten cathodes in a mercury plasma with an
addition of sodium. It is found that the presence of 1% of sodium results in a
considerable expansion of the range of stability of the diffuse mode.

1. Introduction

The concept of nonlinear surface heating has become a widely
accepted tool for modelling of current transfer to refractory
cathodes of high-pressure arc discharges (e.g. [1–15]; see also
reviews in [7, 16, 17]). In previous works the case of a single-
species plasma-producing gas was dealt with.

A calculation of current transfer to thermionic cathodes
in the framework of the concept of nonlinear surface heating
consists of (a) a calculation of the near-cathode plasma layer
and (b) a solution of the thermal conduction equation in the
cathode body. The near-cathode layer of a plasma composed
of atoms and ions of a single species and electrons can be
calculated by means of the model developed in [18] and
modified in [7,9]. A theory of current transfer to a thermionic
cathode, involving this model, has been validated by an
extensive comparison with results of thermal and electrical
measurements in the plasmas of inert gases [7, 19]. A brief
summary of the theory is given in the appendix; a more detailed
description and an online simulation tool based on this theory
can be found on the internet [20].

In this paper, the model of the near-cathode plasma layer
[7,9,18] is generalized to be applicable to a plasma composed
of neutral particles and positive ions of several species, and
electrons. The model thus obtained is employed for calculation
of a diffuse discharge on tungsten cathodes in a mercury
plasma with an addition of sodium. It is found that although
the current–voltage characteristic of the near-cathode plasma
region is not appreciably affected by the presence of sodium,
stability of the diffuse mode may improve. This effect, deemed
to be characteristic of the mixtures of gases with considerably
different ionization energies, is studied in detail.

2. Generalizing the model of near-cathode layer to
plasmas with multiple ion and neutral species

We need to apply the model of a near-cathode layer in a
plasma composed of atoms and ions of a single species
and electrons, developed in [7, 9, 18] and summarized in
the appendix, to plasmas containing neutral particles and
singly charged positive ions of several species and electrons.
(Only singly charged ions are taken into account since they
contribute dominantly to the total ion current to the cathode
surface [21].) To this end, one should join all ion species
into a single (effective) ion species and all neutral species into
a single (effective) neutral species and introduce appropriate
effective coefficients.

The procedure is as follows. The ion (or electron) number
density ni∞ at the edge (on the plasma side) of the ionization
layer, which appears in equations (11) and (13) of the appendix,
is replaced by the combined density of all ion species at the
edge of the ionization layer. The atomic number density na∞
at the edge of the ionization layer, needed for evaluation of
the coefficient C2 appearing in equation (11), is replaced by
the combined density of all neutral species at the edge of the
ionization layer.

Effective coefficients to be introduced into the equations
summarized in the appendix are the following: mi the mass
of the effective ion, ma the mass of the effective neutral
particle, Qia the average cross-section for momentum transfer
in elastic collisions between the effective positive ion and the
effective neutral particle, E the effective ionization energy
(energy needed to produce an effective positive ion) and ki the
rate constant of ionization of the effective neutral particle
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by electron impact. It is natural to evaluate these effective
coefficients by means of averaging over all positive ion and/or
neutral species:

mi =
∑

j

aXjm
(j)

i , ma =
∑

l

bXlm
(l)
a , E =

∑
j

aXjE
(j),

(1)

Qia =
∑

j

aXj

∑
l

bXlQjl, ki =
∑

l

bXlk
(l)

i , (2)

where indices j and l are attributed to positive ions and to
neutral species, respectively; m

(j)

i and Xj are the particle mass
and the molar fraction of positive ions of a species j ; m

(l)
a

and Xl are the particle mass and the molar fraction of a neutral
species l; Qjl is the average cross-section for momentum
transfer in elastic collisions between positive ions of a species j

and neutral particles of a species l; E(j) is the energy needed to
produce a positive ion of a species j (i.e. the ionization energy
of the parent neutral particle); k

(l)

i is the rate constant of
ionization of neutral particles of a species l by electron impact;
a = 1/

∑
j Xj and b = 1/

∑
l Xl are normalization factors.

Note that aXj represents the fraction of a species j in the
positive ion component of the plasma; bXl represents the
fraction of a species l in the neutral component of the plasma;
the formula for Qia implies that the average value over neutral
species is calculated for a fixed positive ion species, and this
value is then averaged over all positive ion species.

Partial composition of the plasma is variable in the near-
cathode plasma region, hence it is of interest to determine
the point at which quantities aXj and bXl , appearing in
equations (1) and (2), should be evaluated. We assume that
these quantities are evaluated at the edge of the ionization layer,
which seems to be the only practicable way to build a model
of the near-cathode region without solving the differential
equations describing the multi-component diffusion.

Thus, the problem of finding the densities of effective
ion and neutral species and the effective coefficients may
be solved in two steps. First, composition of the plasma at
the edge of the ionization layer is determined by means of
solving equations of local balance of production and loss of
every plasma species in volume reactions for given elementary
composition of the mixture and given values of the heavy-
particle (gas) temperature Th, electron temperature Te and gas
pressure p. After the equations governing plasma composition
have been solved, one will be able to evaluate the densities of
effective species ni∞ and na∞ and the effective coefficients
defined by equations (1) and (2).

In the case where the plasma consists of monatomic gases,
the dominating mechanisms of ionization and recombination
are usually ionization by electron impact and recombination
with an electron being the third body. Then the above-
mentioned equations of local balance coincide with the system
of equations of ionization equilibrium (Saha equations) for
each ion–atom pair, involving only the electron temperature
Te and not the heavy-particle temperature Th. Hence, the
plasma composition at the edge of the ionization layer may be
found in this case by means of thermodynamic calculations,
similarly to the case of an LTE plasma, Th = Te. If molecules
are present, the contributions of electrons and heavy particles
to some reactions may be comparable; e.g. this is the case of

dissociation of halide molecules and recombination of metal
and halogen atoms in metal halide plasmas. There is no
detailed balancing between direct and reverse reactions in
such cases, hence, kinetic data are required in addition to
thermodynamic data.

3. Results for Hg–Na plasma

As an example, let us apply the model described in the
preceding section to the case where the plasma-producing gas
represents a mixture of mercury and sodium. Since ionization
potentials of mercury and sodium are essentially different
(10.44 eV and 5.14 eV, respectively), effects of the presence
of multiple species are manifested in this case. Besides, this
mixture is of interest in connection with high-pressure sodium
lamps.

The rate constants of ionization of Na and Hg atoms by
electron impact are calculated by adding rate constants of
direct and stepwise ionization (e.g. [22]). The rate constants
of stepwise ionization are evaluated by means of expressions
given in [23] which are based on the modified diffusion
approximation [22]. The rate constants of direct ionization
of Na and Hg atoms are calculated, respectively, by means of
approximations given in [23,24]. The effective rate constant of
ionization of a neutral particle is shown in figure 1 as a function
of Te for various values of the molar fraction of sodium in the
mixture, ZNa. Also shown are ionization rate constants for
the pure mercury and sodium plasmas. The plasma pressure
was set equal to 5 bar, as well as in all the other calculations
presented in this paper, and Th was set equal to 3000 K. One
can see that at high Te the effective ionization rate constant
in mixtures with small ZNa is close to the ionization rate
constant in the pure mercury plasma. At low Te, the effective
ionization rate constant in the mixtures is close to the product of
ZNa and of the ionization rate constant of sodium atoms (the
contribution of ionization of mercury is small). This result
has a clear physical explanation: at high Te, the dominating
ionization process is ionization of the most abundant atomic
species (Hg); at low Te, when ionization degrees of all atomic

 

Figure 1. Effective ionization rate constant in the Hg–Na plasma,
Th = 3000 K.
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Figure 2. Effective average cross-section of momentum transfer in
ion–atom collisions in the Hg–Na plasma, Th = 3000 K.

species are small, the ionization of atoms with a low ionization
potential (Na) dominates.

Data on individual momentum transfer cross-sections
Na+–Na, Na+–Hg, Hg+–Na and Hg+–Hg are required for
a calculation of the effective average ion–atom momentum
transfer cross-section Qia. The cross-sections Na+–Hg and
Hg+–Na are governed by the polarization interaction, while
the cross-sections Na+–Na and Hg+–Hg are governed by the
charge transfer process. The effective average cross-section
Qia is shown in figure 2. Also shown are the average
cross-sections of momentum transfer in Na+–Hg and Hg+–Hg
collisions. It is seen that the change in ion composition takes
place in the range of Te approximately (6–12) × 103 K. Note
that there is a difference between the effective cross-section
and the cross-section of Na+–Hg collisions at low Te in the
case ZNa = 10%, which is because of the presence of sodium
atoms in the mixture, in addition to the atoms of mercury.

An important parameter governing the physics of the near-
cathode plasma layer is α, the ratio of the ionization length to
the mean free path for ion–atom collisions; see equation (12)
in the appendix. This ratio for various values of ZNa is shown
in figure 3. Shown also are values of this ratio for the pure
mercury and sodium plasmas. One can see that in the electron
temperature range (5–10)×103 K, typical of the diffuse mode
of cathode operation, values of α in a Hg–Na plasma with
ZNa � 1% are substantially smaller than those in the pure
mercury plasma and are of the order of unity rather than
large. It means that the use of the diffusion description of the
ionization layer would be unjustified and the use of the fluid
description (in which equation (11) of the appendix originates)
is especially important under these conditions.

The density of the energy flux from the Hg–Na plasma
to the cathode surface for several ZNa values is shown in
figure 4(a) in a wide range of surface temperature values and
in figures 4(b) and (c) for a narrow surface temperature range
around 3000 K which is typical of the diffuse mode. (In order to
give an idea of conditions typical of the diffuse mode, we note
that the energy flux density needed to heat a tungsten cathode

Figure 3. Ratio of the ionization length to the mean free path for
ion–atom collisions, Th = 3000 K.

of a height of the order of 20 mm up to temperatures of about
3000 K is of the order of 107 W m−2.) All the calculations
described in this paper have been performed for a tungsten
cathode, as well. The work function of the cathode surface was
set equal to 4.55 eV which is the value corresponding to pure
tungsten; the effect of variation of the work function owing to
formation of an alkali metal monolayer on the cathode surface
is treated elsewhere [25] (see also a comment at the end of the
next section). The energy flux from the pure mercury and pure
sodium plasmas is also shown.

On the scale of figure 4(a), the difference between the
data for the Hg–Na and pure mercury plasmas is minor.
Consequently there will be no major difference between
the thermal regimes of cathode spots in a Hg–Na plasma
with ZNa � 1% and the pure mercury plasma. However,
the difference at low temperatures (figures 4(b) and (c))
is considerable, which indicates a possible difference in
characteristics of the diffuse mode of cathode operation. One
can see, from figures 4(b) and (c), that the energy flux from the
Hg–Na plasma at ZNa of the order of 1% at low temperatures of
the cathode surface is close to that of the pure sodium plasma
and approaches the energy flux from the pure mercury plasma
at high temperatures. Given that the electron temperature
increases with an increase in temperature of the cathode
surface, this behaviour is consistent with that shown in figures 1
and 2.

The current–voltage characteristic U(I) of a tungsten
cathode of radius R = 1 mm and of height h = 14.5 mm
in a Hg–Na plasma with ZNa = 1% is shown in figure 5.
(Here U is the near-cathode voltage drop and I is the arc
current.) Also shown are characteristics for the pure mercury,
sodium and argon plasmas. As far as the pure plasma-
producing gases are concerned, a clear tendency is present:
a decrease in the ionization potential results in a decrease of
the voltage necessary for maintaining a given current. In the
case of the Hg–Na plasma, the current–voltage characteristic
is close to that for the case of pure sodium plasma at low
currents and approaches the current–voltage characteristic of
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Figure 4. Energy flux from the plasma to the surface of a tungsten
cathode.

the pure mercury plasma at high currents. Given that the
electron temperature increases with an increase of current, this
behaviour is consistent with that shown in figures 1 and 2.

The maximum temperature of the cathode surface (which
is attained at the edge of the front surface [7]) evaluated for

10

Figure 5. Current–voltage characteristics and stability limit of the
diffuse mode.

Figure 6. Maximum temperature of the cathode surface in the
diffuse mode.

the conditions of figure 5 is shown in figure 6. In the case
of pure plasma-producing gases, a decrease of the ionization
potential results in a weak decrease of the cathode surface
temperature at a fixed current. The maximum temperature in
the case of the Hg–Na plasma is close to that in the case of the
pure sodium plasma.

At high arc currents, the diffuse mode of current transfer
is stable. As the current decreases, the diffuse mode becomes
unstable and a transition to the spot mode occurs. The results of
experimental investigations of this transition can be found, e.g.
in [26] (see also references therein). A theoretical description
of this transition has been developed in [1, 9]. This transition
was treated in [1, 9] as a manifestation of an instability of
thermal balance of a body heated by a nonlinear external
energy flux and the limit of stability of the diffuse mode was
calculated (i.e. the current value at which the diffuse mode
is neutrally stable; this value separates regions of stability
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Figure 7. Regions of stability and instability of the diffuse mode
in the Hg–Na plasma for variable plasma composition. - - - -:
stability limits for the pure mercury and sodium plasmas.

and instability). The results of the calculation of the limit
of stability are depicted by points in figure 5. As far as the
pure plasma-producing gases are concerned, a clear tendency
is present: as the ionization potential decreases, the region
of instability of the diffuse mode expands to higher currents.
This tendency conforms to previous simulations [9] and to the
experiment [27]. However, it is violated in the case of the Hg–
Na plasma, where the stability limit is lower than that in both
mercury and sodium (in fact, it is even lower than that in the
argon plasma). In other words, an addition of 1% of sodium
to mercury results in a considerable expansion of the range of
stability of the diffuse mode.

In figure 7, regions of stability and instability of the diffuse
mode on a tungsten cathode of radius R = 1 mm and of height
h = 14.5 mm in a Hg–Na plasma are shown as functions of
ZNa. Note that at each ZNa close to 10−3 the criterion of neutral
stability [9] is satisfied at two different current values. For
example, at ZNa = 10−3 it is satisfied at I1 ≈ 38.5 and at
I2 ≈ 7.0 A. One can hypothesize, in such situations, that the
diffuse mode is stable at I > I1, is unstable at I2 < I < I1

and regains stability (at least, with respect to the first-mode
three-dimensional perturbations) at I < I2.

One can see from figure 7 that at ZNa � 10−4 and
ZNa � 0.1 the limit of stability in the Hg–Na mixture is close
to that in either pure mercury or pure sodium. There is a
dramatic extension of the stability region at intermediate ZNa.
(In fact, there is a certain range of ZNa, 1.6 × 10−3 � ZNa �
5×103, in which the instability disappears completely, i.e. the
diffuse mode becomes stable against the first mode of three-
dimensional perturbations in the current range considered.)
The reason for this extension is that the stability of the diffuse
mode is governed by the derivative ∂q/∂Tw evaluated at
constant U [1] and that lower values of this derivative favour
stability. One can see from figures 4(b) and (c), that there
is a pronounced decrease of this derivative in the range of
Tw typical of the diffuse mode for a Hg–Na plasma at ZNa

of the order of 1% (this decrease is due to the energy flux

from the Hg–Na plasma at ZNa of the order of 1% at low
temperatures being close to that from the pure sodium plasma
and approaching the energy flux from the pure mercury plasma
at high temperatures). It is this decrease of the derivative
∂q/∂Tw that causes the extension of the stability region.

4. Concluding remarks

The model of the near-cathode plasma [7, 9, 18], developed
previously and validated by the experiment for the case of
a single-species plasma-producing gas, has been generalized
for the case of multiple ion and multiple neutral species and
used for calculation of a diffuse mode of current transfer to
tungsten cathodes in a mercury plasma with an addition of
sodium. It is seen that the presence of 1% of sodium, while not
strongly affecting the characteristics of the diffuse mode
(such as the current–voltage characteristic of the near-cathode
plasma region and the maximum temperature of the cathode
surface), results in a considerable expansion of the range of
stability of the diffuse mode. The latter effect occurs because
the dominating ionization process at high Te is ionization of
the most abundant atomic species (Hg) while at low Te the
ionization of atoms with a low ionization potential (Na) comes
into play. One can expect that this effect is characteristic of
all mixtures of gases with substantially different ionization
energies.

Addition of alkali metals like sodium affects the current
transfer to thermionic cathodes in two ways: through the
variation of properties of the near-cathode plasma layer owing
to the presence of metal atoms in the gas phase and through the
variation of the work function of the cathode surface owing to
formation of an alkali metal monolayer on the surface. Only
the first effect is studied in this work; i.e. all the calculations
have been performed for a fixed work function of the cathode
material. Effects caused by a variation of the work function
of the cathode surface owing to formation of a monolayer
of alkali metal atoms on the surface are studied in [25]. It
is shown that in the case of the Na–Hg plasma, formation
of the sodium monolayer affects the diffuse mode of current
transfer only moderately and in the same direction of metal
atoms in the gas phase, i.e. the cathode surface temperature
and the near-cathode voltage drop decrease weakly while the
range of stability of the diffuse mode expands. In other cases,
the effect of an alkali monolayer may be dramatic, as shown
in the example of Cs–Hg plasma.
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Appendix A. Model of interaction of thermionic
cathodes with high-pressure plasmas produced in
pure monoatomic gases

In this appendix, a summary of equations of the theory of
interaction of thermionic cathodes with high-pressure plasmas
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composed of atoms of a single species, ions of a single species
and electrons is given. A more detailed description and an
online tool for simulation of the diffuse mode of current
transfer based on this theory can be found in [20]. Detailed
presentations of different aspects of the theory can be found in
the original works cited below.

Appendix A.1. Model of nonlinear surface heating

Let us consider a thermionic cathode of a high-pressure arc
discharge. Joule heat generation inside the cathode body is
assumed to be negligible, and the thermal conductivity κ of
the cathode material is assumed to be a known function of its
temperature: κ = κ(T ). The base of the cathode is maintained
at a fixed temperature Tc by external cooling and the rest of the
cathode surface is in contact with the plasma or the cold gas
and is heated or cooled, respectively.

A steady-state temperature distribution in the cathode
body is governed by the equation of thermal conduction

∇ · (κ∇T ) = 0. (3)

The boundary condition at the base of the cathode reads

T = Tc. (4)

The density q of the net energy flux from the plasma or the
cold gas to the cathode surface is evaluated as the difference
between the density of the energy flux from the plasma to
the cathode surface, qp, and the density of radiation losses of
energy by the cathode surface: q = qp − εσT 4

w, where ε is
the emissivity of the cathode material (a known function of
the surface temperature Tw) and σ is the Stefan–Boltzmann
constant.

It is assumed that qp and the density j of electric current
from the plasma to the cathode surface are functions of the local
temperature Tw of the cathode surface and of the near-cathode
voltage drop U : qp = qp(Tw, U), j = j (Tw, U). (One of the
conditions of validity of this assumption is that the energy flux
coming from the arc plasma to the current-collecting part of
the cathode surface be generated in a thin near-cathode plasma
layer which is independent of the bulk plasma.) The near-
cathode voltage drop U is assumed to be a given parameter
which is the same at all points of the current-collecting part of
the surface.

Under the above assumptions, the boundary condition at
the part of the cathode surface that is in contact with the arc
plasma and with the cold gas reads

κ
∂T

∂n
= q(Tw, U), (5)

where n is a direction locally orthogonal to the cathode surface
and directed outside the cathode.

In the framework of the above approach, a description of
the arc–cathode interaction may be constructed in two steps.
At the first step, the (one-dimensional) problem describing the
current transfer across the near-cathode plasma layer is solved
and all parameters of the layer are determined as functions of
Tw and U . In particular, densities of the energy flux and of the
electric current from the plasma to the current-collecting part
of the cathode surface, qp = qp(Tw, U) and j = j (Tw, U),

are determined. At the second step, the nonlinear thermal-
conduction problem (3)–(5) is solved.

A detailed presentation of the model of nonlinear surface
heating can be found, e.g. in [7]. Here, we emphasize, what is
specified in the framework of this approach is not a distribution
of the energy flux from the plasma over the cathode surface
but rather a dependence of the energy flux density on the local
surface temperature, this temperature being unknown a priori.
On solving the thermal-conduction problem (3)–(5), one will
have complete information on a temperature distribution in
the cathode and also on a distribution of the energy flux and
electric current over the cathode surface. Integrating the latter,
one will find the arc current I corresponding to a value of U

being considered.
At present, the second step of the above procedure in most

cases does not pose major difficulties, at least as far as solutions
describing the diffuse mode of current transfer are concerned.
The first step is described in the following section.

Appendix A.2. Near-cathode layer of plasmas composed of
atoms of a single species, ions of a single species and
electrons

The near-cathode plasma layer comprises a number of sub-
layers, of which the most important are a space-charge sheath,
which is adjacent to the cathode surface, and an ionization
layer, which is adjacent to the sheath. The ion flux to the
cathode is generated in the ionization layer. In the sheath,
the ions going to the cathode, and electrons emitted from the
cathode, are accelerated.

The space-charge sheath is considered collisionless for
ions. The number density of the flux of ions to the cathode
surface, being equal to the density of flux of ions from the
ionization layer to the sheath edge, is evaluated as

Ji = nisvs, vs =
√

k(Th + Te)

mi
, (6)

where nis is the ion (or electron) density at the sheath edge,
vs is the Bohm velocity, Te is the temperature of electrons
which is assumed to be constant across the ionization layer
and the sheath, Th is the temperature of heavy particles (ions
and neutral atoms) which is assumed to be constant across the
ionization layer and the sheath and equal to the temperature
Tw of the cathode surface and mi, ma and me here and further
are masses of the ion, the atom and the electron.

The number density of flux of plasma electrons which
come to the cathode surface from the ionization layer after
having overcome the retarding electric field in the space-charge
sheath is

Je = 1

4
nis

√
8kTe

πme
exp

(
−eUD

kTe

)
, (7)

where UD is the voltage drop in the sheath.
Jem, the electron emission flux from the cathode surface, is

evaluated by means of the Richardson–Schottky formula. The
electric field at the cathode surface, involved in this formula, is
obtained by solving the Poisson equation in the sheath jointly
with a kinetic equation describing the motion of ions and the
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Boltzmann distribution for plasma electrons (the space-charge
of emitted electrons is neglected) and reads

Ew =
√

2niskTh

ε0

[
v3

+ − v3
−

6u3
i

− 4

3
−2β + β exp

(
− eUD

kTe

)]1/2

,

(8)

where

ui =
√

kTh

mi
, β = Te

Th
, v± =

[
(vs ± ui)

2 +
2eUD

mi

]1/2

.

(9)

The densities of net electric current and of plasma-related
net energy flux to the cathode surface are

j = e(Ji + Jem − Je), qp = jU − j

e
(A + 3.2kTe).

(10)

On the edge (plasma side) of the ionization layer, the
ionization equilibrium is assumed. The local ion (or electron)
density ni∞ and atomic density na∞ are evaluated, for given
temperatures Th and Te and plasma pressure p, with the use
of the Saha equation. The variation of the charged particle
density across the ionization layer is given by the formula

nis

ni∞
= αC2

√
1 + β

C2 + 2αC2
√

1 + β + α2
√

1 + β
. (11)

Here C2 is a dimensionless coefficient defined by equation (37)
of [28], which depends on β and γ = ni∞/na∞ and varies for
β � 1 between approximately 0.67 and 1 (see figure 7 of [23]).
α is the ratio of the ionization length to the mean free path for
ion–atom collisions defined by the formula [23]

α =
√

2

3

CiaQia

ki
, Cia =

√
8kTh

π

(
1

mi
+

1

ma

)
, (12)

where Qia and ki are the average cross-section for momentum
transfer in elastic ion–atom collisions and the rate constant of
ionization of atoms for the gas being considered. Note that Cia

has the meaning of average relative speed of ions and atoms; in
the case of a plasma produced in a pure monoatomic gas being
under consideration in this appendix, mi ≈ ma and the second
equation in equation (12) coincides with the corresponding
expression in [23].

The voltage drop in the ionization layer and the total
voltage drop in the near-cathode layer are evaluated as

Ui = kTe

e
ln

ni∞
nis

, U = UD + Ui. (13)

The equation of balance of the electron energy in the
ionization layer reads

Jem(2kTw + eUD − 
A) +
e(Jem − Je) + j

2
Ui

= Je(2kTe + eUD − 
A) + 3.2
j

e
kTe + JiE, (14)

where 
A is the Schottky correction to the work function and
E is the ionization energy.

The above-described relationships represent a complete
set of equations which allows one to determine all parameters
of the near-cathode plasma layer for a given plasma-producing
gas, plasma pressure and work function of the cathode material
as functions of Tw and U . In particular, one can determine
functions qp(Tw, U) and j (Tw, U). A detailed presentation of
the model can be found in [7, 9, 18].
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[10] Bötticher R, Graser W and Kloss A 2004 J. Phys. D: Appl.
Phys. 37 55–63

[11] Dabringhausen L 2004 Characterization of electrodes of
high-pressure plasma lamps by means of pyrometry and
simulation PhD Thesis Tenea Verlag, Berlin
(in German)

[12] Galvez M 2004 Proc 10th Int. Symp. on Science and
Technology of Light Sources (Toulouse, 2004)
ed G Zissis (Bristol: Institute of Physics Publishing)
pp 459–60

[13] Luijks G M J F, Nijdam S and Esveld H A V 2004 Proc. 10th
Int. Symp. on Science and Technology of Light Sources
(Toulouse, 2004) ed G Zissis (Bristol: Institute of Physics
Publishing) pp 605–6

[14] Lichtenberg S, Dabringhausen L, Mentel J and Awakowicz P
2004 Proc. 10th Int. Symp. on Science and Technology of
Light Sources (Toulouse, 2004) ed G Zissis (Bristol:
Institute of Physics Publishing) pp 609–10

[15] Paul K C, Erraki A, Takemura T, Hiramoto T, Dawson F,
Rouffet J B, Gonzalez J J, Gleizes A and Lavers D 2004
Proc. 10th Int. Symp. on Science and Technology of Light
Sources (Toulouse, 2004) ed G Zissis (Bristol: Institute of
Physics Publishing) pp 491–2
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