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Bifurcation points in the theory of axially symmetric arc cathodes
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Steady-state current transfer from arc plasmas to axially symmetric cathodes is treated in the framework of
the model of nonlinear surface heating. An approach is developed to calculate the bifurcation points at which
three-dimensional spot-mode solutions branch off from solutions describing the diffuse mode and axially
symmetric spot modes. In particular, the first bifurcation point positioned on the diffuse-mode solution has
been calculated, and thus its stability limit, i.e., the current below which the diffuse mode becomes unstable.
Calculation results are given for the case of a tungsten cathode in the form of a circular cylinder in high-
pressure plasmas. The effect produced on the stability limit by variations of control paraffeetiisde
dimensions, work function of the cathode material, plasma-producing gas, and its présssitelied and
found to conform to trends observed experimentally. The stability limit is found to be much more sensitive to
variations of control parameters than characteristics of the diffuse mode are, the strongest effect being pro-
duced by variations of cathode dimensions and of the work function of the cathode material. This finding
conforms to the fact that the diffuse-spot transition is difficult to reproduce in the experiment.

DOI: 10.1103/PhysReVvE.68.056407 PACS nunider52.40.Hf, 52.80.Mg

[. INTRODUCTION tion describing the diffuse mode is one dimensional in this
case. It was found that multidimensional solutions describing

Very few phenomena in gas discharge physics have gerspot modes branch off from the one-dimensional diffuse-
erated a number of hypotheses, models, and theoreticatode solution. In agreement with this finding, the numerical
frameworks comparable to the number of those devoted tmodeling[9] has shown that axially symmetric spot-mode
arc-cathode interactiofe.g., Ref.[1]). Advances achieved solutions for circular-cylinder cathodes with an insulating
recently in the theory of current transfer to refractory cath-lateral surface branch off from the one-dimensional diffuse-
odes of high-pressure arc dischargese Ref[2] and also mode solution.

Refs.[3-9]) have been attained by means of the model of The model of a cathode having the form of a right cylin-
nonlinear surface heating. In the framework of this modelder with an insulating lateral surface, while providing results
the equation of thermal conduction in the cathode body isvhich are qualitatively correct in many respects, is hardly
solved with the nonlinear boundary condition specifying thesuitable for practical purposes. As far as axially symmetric
density of the energy flux from the plasma to the cathodecathodes with an active surface are concerned, the two-
surface as a function of the local value of the surface temdimensional numerical modelin®,11] has revealed no bi-
perature and of the voltage drop across the near-cathodarcations, i.e., the spot- and diffuse-mode solutions do not
plasma layer. The latter function is obtained from a treatmenjoin. This is not surprising since the diffuse-mode solution is
of processes on the plasma side. axially symmetric for such cathodes, as well as the spot-

In particular, it has been provdd0] that multiple solu- mode solutions calculated in Ref9,11], and one would not
tions may exist for a given set of input conditions, some ofexpect to encounter bifurcations if breaking of symmetry
these solutions describing the diffuse mode of cathode operaoes not occur. On the other hand, one would not exclude the
tion, when the current is distributed over the front surface ofpossibility of three-dimensional solutions describing spot
the cathode in a more or less uniform way and the othersnodes to branch off from axially symmetric solutions de-
describing spot modes, when nearly all the current is localscribing the diffuse modéand maybe also spot modes
ized in regions occupying only a small fraction of the cath- In the present work, bifurcation points in which three-
ode surfacgcathode spois In the case of an axially sym- dimensional solutions describing spot modes branch off from
metric cathode, the diffuse mode is described by an axiallyaxially symmetric solutions describing diffuse or spot modes
symmetric solution, while spot modes are described by axiare found numerically. Such calculation is essential, in par-
ally symmetric or three-dimensional solutions. At presentticular, for understanding the general pattern of current-
steady-state axially symmetric solutions describing both difvoltage characteristicCVC'’s) of various modes of current
fuse and spot modes have been understood relatively welfansfer. Besides, it will provide reference points for three-
[8,9,11]. dimensional numerical simulations.

An important question arising in problems with multiple  Apart from being of theoretical interest, finding bifurca-
solutions is whether these solutions branch off frgoin)  tion points in which three-dimensional solutions branch off
one another, or, in other terms, whether bifurcations occuifrom axially symmetric solutions may be also of consider-
As far as the model of nonlinear surface heating is conable technological interest due to the following. In many
cerned, this question has been studi#d] by means of the applications, the diffuse mode of operation of a high-
bifurcation theory for the case of cathodes having the form opressure arc cathode is preferred. The experiment indicates
a right cylinder with an insulating lateral surface. The solu-that the diffuse mode is stable at large values of the arc
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current(“the diffuse mode is favored by high current;” see,
e.g., Refs[12,13). There are also similar indications of a arc
theoretical charactdrl4,15; note that the diffuse mode is
probably the only one possible at high currd@d.0]. As the
current decreases, the diffuse mode becomes unstable. One

v

can expect, according to Refd4,15, that the loss of sta- r
bility occurs at the first bifurcation point, at which a three- ¢

dimensional solution describing the first spot mode branches (

off from the diffuse-mode solution. Thus, the value of arc -

current corresponding to the first bifurcation point is likely to
represent the limit of stability of the diffuse mode, i.e., the
current below which the diffuse mode becomes unstable. r v
It should be emphasized that numerical calculations re-
quired for finding bifurcation points at which three-
dimensional solutions branch off from axially symmetric so- cathode
lutions are two(rather than threedimensional. Thus, the
approach developed in this work for calculation of the sta-
bility limit of the diffuse mode is not computationally intense e
and can be easily realized on a PC, thus being suitable for
engineering practice. _ :
The outline of the paper is as follows. The model of non-, FIG. 1. Schematic of the_ moddI.. : base of the cathode, which
linear surface heating is described in Sec. Il. General aspec'l.%eXtema”y .COOled py a fluid-y, :.front and lateral surfaces of the
of the multiplicity of solutions are discussed in Sec. Ill. An cathode, which are in contact with the plasma or the cold gas.

approach to calculation of bifurcation points is described in q h ith it. Under th
Sec. IV, where also calculation results are given and gisd@s and can exchange energy with It. .nder these assump-

cussed. Stability of solutions is discussed in Sec. V. The efyons, the steady-state temperature distribution in the cathode

fect of variation of control parameters on the limit of stabil- is governed by the nonlinear boundary-value problem for the

ity of the diffuse discharge is analyzed in Sec. VI. Sectionl‘aIOIaCe equation
VII contains concluding remarks.

Py 1oy 1Py 2
= r% 5+ =0, @
Il. THE MODEL ar r*de” oz
The model of nonlinear surface heating goes back to 1963 I
[16] and may be briefly described as followsee Refs. ry: %ZQ(@/JW,U), I'e: ¢=0. (2

[8,17] for a more detailed descriptipnThe problem of cal-
culation of a steady-state arc-cathode interaction is divide
into three steps. At the first step, one calculates characteri
tics of the near-cathode plasma layer in which the energ
flux to the cathode surface is formed. In particular, one find
dependences),=q,(T,,U) and j=j(T,,U) describing
densities of the energy flux and of the electric current from
. T

the plasma to the current-collecting part of the cathode sur- ‘/’ZJ K(T)dT, (3)
face as functions of the local cathode surface temperatyre T,
and of the voltage drop across the near-cathode plasma layer
U (which is assumed to be constant along the currentand q(¢,,U) is a function obtained from the above-
collecting part of the cathode surfacét the second step, described functiorg(T,,,U) by replacing the local surface
the functionq, is corrected in such a way as to describe attemperatureT,, with respective values), of the heat flux
low T,, heat exchange of the inactive part of the cathodepotential.
surface with the cold gas and/or radiation losses from this After the problem(1),(2) has been solved fdad given, one
part. The resulting dependence will be designatgd will know the temperature distribution over the cathode sur-
=q(Ty,U). At the third step, the steady-state thermal-face and will be able to calculate, using the dependgnce
conduction equation in the cathode body is solved. =j(Tw,U), the distribution of the current density over the

In this work, only the last step is dealt with. We consider surface. Integrating the latter, one will find the arc currdent
a cathodgsee Fig. 1 made of a substance with the thermal corresponding to the value &f being considered.
conductivity k which is a known function of the temperature,  Control parameters of the model are cathode geometry,
k= k(T). Joule heat production inside the cathode body ighermal conductivity and work function of the cathode ma-
neglected. The bask, of the cathode is maintained at a terial, the plasma pressurg and species of the plasma-
fixed temperaturel, by external cooling. The rest of the producing gas. Numerical results given in this work refer to
cathode surfacd;},, is in contact with the plasma or the cold cathodes made of tungsten. Data on thermal conductivity of

g-jerer,go,z are cylindrical coordinates is a direction lo-

ally orthogonal to the cathode surface and directed outside
he cathodey/ is the heat flux potential related to the tem-
perature by the equation
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tungsten have been taken from REE8] and the value of 1290 (108 W/m2)
4.55 eV was assumed for the work function of tungsten. U=4o0V
Functionsq(T,,,U) andj(T,,,U) have been calculated as .
described in Ref{17] with modifications introduced in Ref.
[8] and in the Appendix of the present work. Function 8 - 30
q(T, ,U) for the atmospheric-pressure argon pladarad a
tungsten cathodeis shown in Fig. 2a). In Figs. 2b) and
2(c), g is shown as a function af, (by the solid lines One
can see that the dependencesjoi T,, and ony,, are quite 20
similar.
The model described, being of a purely thermal nature,
does not take into account effects such as changes of the 14
cathode form as a consequence of melting, Joule heating in /b\
the cathode body, and effects produced on the arc by self- 0 L L L L
induced magnetic field. However, these effects come into 25 3 35 4 45 5 55
play at high current densities and are not supposed to play a
role under conditions treated in this work. 2.0—

q (108 wim?)
IIl. GENERAL

It was established in recent years that the problem consid-
ered has multiple solutions, some of them describing the dif- .
fuse mode of cathode operation and the others describing
spot modes. This multiplicity stems from the nonmonotony
of the dependence af on T,,, which can be seen in Fig. 2. _
(A detailed discussion of this nonmonotony can be found
elsewherg8]; here we only mention the mechanisms that are
responsible, respectively, for the maximum of the depen- _
dence ofgon T, at low voltages and for the firstand second | . =10V
maxima at high voltages: overcoming of the increase of com- 0.0 ==
bined ion and plasma electron heating by an increase of ther- 0
mionic cooling which occurs when the plasma approaches
full ionization; nonmonotony of the dependence of the ion 16 —
current on the electron temperature which is caused by a q (10° W/m?)
deviation of the ion current from the diffusion value; rapid T
increase of the plasma electron heating which is subse-
guently overcome by thermionic cooling.

The occurrence of the multiplicity may be best understood 1
if one starts with the particular case of a cathode having the
form of a right cylinder, not necessarily circular, with a ther- 8
mally and electrically insulating lateral surface, which was
studied in Ref[10]. Choose the origin at the front surface of
the cathode with the axis directed normally to the surface 4
into the cathode body. The solution describing the diffuse
mode is one dimensional;= /(z), and has the form

h, (4) ©

_( z
y=11-y

whereh is the height of the cathode anfd,= #,,(U) is the
temperature of the front surface of the cathode. This tem-

perature is governed by the transcendental equation FIG. 2. Density of the net energy flux to the cathode surface vs

the local value of the surface temperatyae or of the heat flux
potential (b),(c). Solid lines: calculation by means of the model of
ﬂ =q(iy,,U) (5) the present work. Dashed lines: calculation by means of the model
h W= used in Ref[8]. Points: hottest points of the surface of a circular-
cylinder cathode withR=2 mm andh=10 mm operating in the
As an example, the left-hand side of E(p) for h  diffuse mode (full circles) and on the low- and high-voltage
=10 mm is shown in Fig. @) by the dotted line. One can branches of the first axially symmetric spot modeangles and
see that Eq(5) has two positive roots, provided thetex-  open circles, respectivélyArgon plasmap=1 atm.
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40 lutions, &= ¢(r,z,¢), which describe spot modes. In con-
U (V) trast to the case of a cathode having the form of a right
. cylinder with an insulated lateral surface, one should not
expect the axially symmetric solutions describing the spot
30 4 mode to branch off from the diffuse-mode solution, since
solutions of both types are axially symmetric and one would
i not expect to encounter bifurcations if breaking of symmetry
does not occur. The modelin§,11] has indeed revealed no
20 1 2 bifurcations of such kind. However, one would expect that
three-dimensional solutions describing spot modes branch
off from axially symmetric solutions describing the diffuse
mode and maybe also spot modes. The present work is con-
cerned with the calculation dbifurcation points at which
this branching occurs.

FIG. 3. CVC's of the diffuse mode. 1: cathode with an insulated IV. CALCULATION OF BIFURCATION POINTS

lateral surface. 2: cathode with an active lateral surface. Argon A. The method

lasma,p=1 atm,R=2 mm, h=10 mm. . . . .
P P Let ¢o(r,z;U) be an axially symmetric solution. Desig-

ceeds a certain minimal value which is somewhere betweenate byU; the value of the voltage drop corresponding to a
10V and 12 V. The smaller root is positioned on the growingbifurcation point in which one or more three-dimensional
section of the functiormy while the bigger root is positioned solutions branch off. Solutions in the vicinity of this point

on the falling section. Apart from the positive roots, E§.  are sought in the form of a series

has also a trivial root,,=0 which exists for allU [one can

assume to a very good accuracy théT.,U)=0] and cor- P(re.zU)=go(r,zU) +edu(r,e,2)+---. (6)

(r;ﬁgggs to the situation in which no current flows to theHerea is a small parameter relatedtb— U; by the equation
The CVC of the diffuse mode is depicted by the line 1 in 2

Fig.l 3 for the case wher(nT the cathode is a circular pylinder of U=U;+teaq+ 5 @2, (7)

radiusR=2 mm and heighh=10 mm. The CVC is non-

monotonic, the falling section being associated with the , i

smaller positive root of Eq(5) and the rising section with Where three choices are possibie;=1 anda,;=0, ;=0

the bigger root. Apart from this line, the CVC on the whole @d @2=1, or «;=0 anda,=—1. The first choice is ap-
includes also a branch coinciding with the axis of voltagesPropPriate in the case where solutions that branch off in the
which is associated with the zero root of E). Thus, the bifurcation point conS|d_ered exist _both fdd below and_
CVC described by the one-dimensional solution is bistablétPove U; and perturbations described by these solutions
(N-shaped], and one should expect that apart from the one9row in the V|cm|_t)_/ of the blfu_rcat|on point, proportional to
dimensional solution describing the diffuse mode, multidi-Y — Ui (& transcritical bifurcation; see, e.g., RE9)). The
mensional solutions describing spot modes may exist. Thé&cond and third choices are appropriate in the cases where
latter hypothesis was confirmed by the bifurcation analysighe solutions that branch off exist in the range=U; (or,

of Ref. [10], in which it was shown that multidimensional respectivelyU<U;), i.e., are supercriticafor subcritica),
spot-mode solutions exist and branch off from the one&nd perturbations described by these solutions grow propor-
dimensional solution, and also by the numerical modelingionally to yU—U; (or to yU;—U) in the vincinity of the

[9]. bifurcation point: a pitchfork bifurcation.

In the case of a cathode of an arbitrary shape, the diffuse The problem governing functior; may be obtained by
mode is no longer described by a one-dimensional solutiordifferentiating Eqs(1) and(2) with respect tce and setting
However, the respective CVC remains qualitatively similare =0:
and bistable. An example can be seen in Fig. 3, where the
CVC of the diffuse mode is depicted for the case where the Py 1oy, 1 %Y, Py
cathode is a circular cylinder with a current- and energy- o2 r a2 P -
collecting lateral surface wittiR=2 mm andh=10 mm.
Hence, the existence of other solutions is likely. Such solu- o J J
tions have indeed been detected; see, e.g., R&fkl]. . W o4 1=—q011,

Consider now an axially symmetric cathode and choose an - diy u
the origin at the center of its front surface with theaxis o ) )
directed along the axis of symmetry from the surface into thé1€re derivatives of the functiog=q(¢s,,U) at each point
cathode body. The problem considered has axially symmetrief the surfacd’, are evaluated a, = o(r,z;U)|r, (i.e., at
solutions, = (r,z), which describe diffuse or spot modes the local surface temperature taken at the bifurcation point
of current transfer to the cathode, and three-dimensional s&nd atU=U, .

0, ®

Pt ¢1=0. (9
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Since a bifurcation occurs in the point considered, thewhich a solution reaches a limit of its existence region and

(linear inhomogeneouisproblem (8),(9) must have non-

then turns back. The latter situation occurs in the problem

unique solutions. The corresponding homogeneous probleronsidered when the CvQJ=U(l), of a certain mode

[which is obtained by dropping’¢/ dU) «; on the right-hand
side of the first boundary conditiof®)] must have a non-

passes through an extremubh=U,,: the solution describ-
ing this mode reaches at the poldt=U,,, the limit of its

trivial solution. In other words, one should consider the ho-existence regioriwhich is U=U,, or, respectivelyU<U,,
mogeneous problem as an eigenvalue one, the role of an the cases of minimum or maximypand then turns back.

eigenvalue parameter being played by the voltage dipp

Strictly speaking, however, the mode in question is described

which is the only control parameter of the homogeneousn the vicinity of the extremum by two different solutions

problem for a cathode and a plasma given.

simultaneously existing dtf above(or below U,,, one of

The above-described homogeneous problem allows one these solutions corresponding to the falling branch of the
separate the azimuthal variable, i.e., it admits solutions in th€VC and another corresponding to the growing branch. In

form
Pa(r,e,2)=1(e)F(r,2). (10
Functionsf(¢) andF(r,z) satisfy
d?f
— +Kk?f=0, (12
de?
FPF1oF K +a2F_0 15
a T e Y 2
A S 13
Mo gt =0 e F=0 (13

wherek? is a separation constant, andy, are generatrices
of the revolution surfacek, andI'., respectivelylines in

the plane (,z) which produce, on being rotated around the

axis, surfaced’, andI'], andn; is a direction in the plane

(r,2) locally orthogonal toy,, and directed outside the cath

ode.
In order that the functionf(¢) [and, consequently,
Y1(r,¢,2)] be single valuedk must be integer or, without

other words, a solution in the vicinity of the extremum is
nonunique and the extremum represents a bifurcation point;
a fold (saddle-nodgbifurcation.

It follows that the above-described procedure of finding
bifurcation points must predict bifurcations wiki+0 at ev-
ery extremum of the CVC of any axially symmetric mode.
However, no solutions branch off at such points.

If eigenvalues of the eigenvalue problefh2),(13) are
simple, then associated with=0 eigenvalues of the homo-
geneous problem corresponding to the probl@n(9) are
simple and those associated wkk1 are doubly degener-
ate. Hence, one solution branches off at each bifurcation
point associated witlhk=0 (except at extrema of the CYC
A one-parameter family of solutions branches off at each
bifurcation point associated wilte=1; since, however, these
solutions are identical to the accuracy of a rotation, they can
be considered as a single solution with an arbitrary azimuthal
position of the spot system.

It is of interest to compare the above-described technique
of finding bifurcation points with that employed in R¢L0].

In Ref.[10], cathodes have been considered in the form of a
right cylinder, not necessarily circular, with an electrically
and thermally insulating lateral surface. In this case, the dif-
fuse mode is described by a one-dimensional solutfon

losing the generality, natural. Thus, finding bifurcation points= ¢(z), and bifurcation points positioned on this solution

of the original (three-dimensional problem is reduced to

can be found by separation of the variablieEom r and ¢ in

solving the linear axially symmetric eigenvalue problemthe homogeneous problem corresponding to the prol&m

(12),(13) for k=0,1,2 . . ., therole of an eigenvalue param-

eter again being played by the voltage dtdp. This eigen-

(9). In the present work, axially symmetric cathodes are con-
sidered, and bifurcation points positioned on solutiahs

value problem may be solved numerically without major dif- = (r,z) describing axially symmetric modes are found by
ficulties. In this work, a finite-difference numerical schemeseparation of the variable from r and z. One can check
was used. The grid equations were solved by means of @asily that in the particular case of a cathode in the form of a

variant of LU (Lower/Upper triangulardecomposition; see,
e.g., Ref[20].
Different values ok in the problem(12),(13) correspond

right circular cylinder with an electrically and thermally in-
sulating lateral surface variableandz in the problem(12),
(13) can be separated and the present theory gives analytical

to branching of solutions describing different modes of cur-results identical to those of Rdf10].

rent transfer: solutions branching off at bifurcation points
associated withk=0 are axially symmetric, solutions

branching off at points associated wkk1 describe modes

with an off-center spotor, in more general terms, with a

system of spots which is aperiodic i@ on the interval

B. Results and discussion

In this section, we present results of calculation of bifur-
cation points corresponding k=0,1,2 positioned on diffuse

[0,27r]), and solutions branching off at points associatedand axially symmetric spot modes of arc discharge on a tung-
with k=2 describe modes with systems of spots which aresten cathode in the atmospheric-pressure argon plasma. Cath-

periodic in ¢ with the period 27/k.

odes in the form of a circular cylinder are considered, so the

The uniqueness of a solution is violated not only ingeometry is specified by the cathode radRiand the cath-
branching points, at which essentially different solutions joinode heighh. Note that a cathode should be not too thin for a
(branch off from one another, but also at turning points, atbifurcation withk=2 to occur in the voltage range consid-
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FIG. 5. Solid: distributions of perturbations branching off from
FIG. 4. CVC's and bifurcation points. Solid line: CVC of the the diffuse-mode solutiofarbitrary unit3. Dashed: distributions of
diffuse mode. Dashed line: CVC of the first axially symmetric spotthe heat flux potential corresponding to the respective bifurcation
mode. Dotted lines: schematics of CVC's of three-dimensional spoPOints. Argon plasmap=1 atm, R=2 mm, h=10 mm.

modes. Circles: bifurcation points. Argon plasnzs1 atm, R ) ]
=2 mm, h=10 mm. can expect therefore that solutions branching off from the

diffuse-mode solution at bifurcation points associated with
) k=1 andk=2 describe modes with a spot at the edge or,
ered (U<40). Therefore, cathodes witR=2 mm andh  egpectively, with two opposite spots at the edge.
=10 mm are treated in this section. In the case of the axially symmetric spot modég. 6),
CVC'’s of the diffuse mode and of the first axially sym- the function, has two maxima, one at the center of the
metric spot mode are depicted in Fig. 4 by the solid andront surface and the other at the edge of the cathode. The
dashed lines, respectivelyA detailed discussion of these function #1(r,¢,2) has two maxima. In the case=1, one
solutions can be found elsewhd@; here we only note that of the maxima is positioned at the edge and the other is
the solution describing the first axially symmetric spot modepositioned opposite the first one somewhere between the
Comprises two branCheS, a IOW-VOItage branch and a hlgrbdge and the center. In the cdse 2 the maxima are posi_
voltage branch. Bifurcation points detected on these solu- tioned at the edge of the cathode opposite to each other. One
tions by means of the approach developed in Sec. IV A argan expect therefore that solutions branching off from the
depicted by circles. There is one bifurcation point associate@xially symmetric spot-mode solution at the bifurcation
with each value ok on both solutions. It is interesting to points associated witk=1 or, respectivelyk=2 describe
note that the sequences of bifurcation points on the two somodes with two opposite spots, one of them being at the
lutions are differentlJ,<U;<U, for the bifurcation points  edge and another somewhere between the edge and the cen-
positioned on the diffuse-mode solutiéhere Uy, U;,U;  ter, or, respectively, both spots being positioned at the edge.
are voltages corresponding to bifurcation points associated |t js of interest to consider also cathodes with an electri-

with k=0, k=1, andk=2, respectively, while Uy<U,  cally and thermally insulating lateral surface. CVC’s of the
< U, for the bifurcation points positioned on the spot-mode

solution. Bifurcation points associated wikt+0 found for 1.2 w4
each solution coincide with the point of minimum of the f (105 wim)|.
respective CVC. This conforms to what has been said in Sec. 1 Lo
IVA, and no branching occurs at these points. Three- 0 '
dimensional solutions branching off at other bifurcation i
points are schematically shown in Fig. 4 in accordance with 1 3.6
qualitative considerationdl 0] (the dotted lines -
The distributions over the cathode surface of perturba- -1.27 3.4
tions branching off at bifurcation points associated wkth I U A -t L
=1 andk=2 are shown in Figs. 5 and(&ithout account of 55
the azimuthal factor jointly with the distributions ofy, the -2.4 '
heat flux potential corresponding to the respective bifurca- k=1 N
tion points. The range €r+z<R in these figures corre- : 1! ; (e 2 (mm) 3 s

sponds to the front surface of the cathodes=R,z=0},
while the ranger +z=R corresponds to the lateral surface, g 6. Solid: distributions of perturbations branching off from
{r=R,z=0}. In the case of the diffuse mod€&ig. 5), the  the axially symmetric spot-mode solutiarbitrary unit3. Dashed:
function y(r,z) has a maximum at the edge of the cathode gistributions of the heat flux potential corresponding to the respec-
The functiony, (r,¢,z) has one or two maxima at the edge tive bifurcation points. Argon plasmap=1 atm, R=2 mm, h

of the cathode in the cade=1 or k=2, respectively. One =10 mm.

056407-6



BIFURCATION POINTS IN THE THEORY OF AXIALLY . .. PHYSICAL REVIEW E68, 056407 (2003

axially symmetric spot mods). In the case of a cathode with

an insulated lateral surface, this means that secondary bifur-
cations are present: three-dimensional spot-mode solgtion
branch off from axially symmetric spot-mode solutien
which in turn branch off from the one-dimensional diffuse-
mode solution.

The general structure of steady-state solutions shown in
Figs. 4 and 7 is similar to that established in Héf0], but
even more complex due to three-dimensional spot-mode so-
lutions branching off from the axially symmetric spot-mode
solution.

20 _"."-
UERY
18 %

16

14—

12 H

10 T L V. STABILITY CONSIDERATIONS
10° L(A) 108
The following statement concerning cathodes having the

FIG. 7. CVC’s and bifurcation points for a cathode with an form of a right cylinder with an insulated lateral surface can
insulated lateral surface. Solid line: CVC of the diffuse mode.be made on the basis of what has been said in Sec. lll: in
Dashed line: CVC of the first axially symmetric spot mode. Dotteddiffuse regimes belonging to the fallirigr rising) section of
lines: schematics of CVC's of three-dimensional spot modesthe CVC, the temperature of the front surface corresponds to
Circles: bifurcation points. Argon plasmp=1 atm,R=2 mm, h the rising(or falling) section of the dependence @bn T, .
=10 mm. Thus, the falling section of the CVC of the diffuse mode is

associated with the rising section of the dependenas @i

diffuse mode and of the first axially symmetric spot mode areT,, and vice versa. This statement, being exact for cathodes
shown in Fig. 7 by the solid and dashed lines, respectivelyhaving the form of a right cylinder with an insulated lateral
Most of the low-voltage branch of the CVC of the spot modesurface, remains approximately valid also for cathodes with
in this figure coincides, to the graphical accuracy, with thean active lateral surfad®].
CVC of the diffuse mode. The axially symmetric spot mode It follows that there is a positive feedback in diffuse re-
in this case branches off from the diffuse mdde., a point gimes belonging to the falling section of the CVC: since
exists at which both solutions become exactly identical 9q/dT,,>0, a local increase of the surface temperature will
Also shown in Fig. 7 are bifurcation points determined byresult in an increase of the local energy flux from the plasma.
means of the approach developed in Sec. IV A; note that th&he latter will cause a new increase of the local temperature,
numerically determined positions of bifurcation points be-etc., i.e., the thermal instability may develop. The positive
longing to the diffuse mode coincide with those calculatedfeedback, however, is opposed by thermal conduction, which
analytically by means of the theofit0], in accord to what tends to smooth out perturbations, i.e., produces a stabilizing
has been said at the end of Sec. IV A. effect. One can expect, in accordance with Rgffd,15, that

In contrast to the case of a cathode with an active laterathermal conduction prevails in diffuse regimes corresponding
surface, there are two bifurcation points associated With to the section of the CVC between the point of minimum and
=0 on the diffuse-mode solution. One of these points cointhe first bifurcation point and these regimes are stable; in
cides with the point of minimum of the CVC and no branch- diffuse regimes corresponding to the section of the CVC to
ing occurs at this point. The other is the one at which thehe left from the first bifurcation point, the positive feedback
axially symmetric spot mode branches off from the diffuseprevails and these regimes are unstable. Diffuse regimes be-
mode(i.e., it coincides with a point at which both solutions longing to the rising section of the CVC are stable since the
become exactly identicalAs it could be expected, there are feedback is negative in such regimgse derivativedg/dT,,
two bifurcation points associated with=0 on the axially is negative at the hottest point of the cathode sujface
symmetric spot mode, one of them coinciding with the point The above considerations may be summarized as follows.
of minimum of the CVC and another coinciding with the Let us designate by, the value of the arc current corre-
bifurcation point at which the axially symmetric spot mode sponding to the bifurcation point belonging to the diffuse
branches off from the diffuse mode. No bifurcations with mode and associated wik= 1 (for example| ;~430 A un-
=1 have been detected on the axially symmetric spot modeler the conditions of Fig.)4 In accordance with the above,
There is a bifurcation point associated with 2, which co-  this value is likely to represent the limit of stability of the
incides with the point of minimum of the CVC. Three- diffuse discharge, i.e., the current below which the diffuse
dimensional solutions branching off from the diffuse and axi-mode becomes unstable. In other words, one can expect that
ally symmetric spot-mode solutions are schematicallya current-controlled discharge which burns at high currents
depicted in Fig. 7 by dotted lines. in the diffuse mode will switch to a spot mode when the

The above results confirm the hypothesis that for axiallycurrent has been decreased dowri to
symmetric cathodes three-dimensional solutions describing The question which mode will occur at currents below
spot modes branch off from thexially symmetri¢ solution  requires an analysis of stability of the spot modes, which is
describing the diffuse mode. In fact, three-dimensional spotnot an easy task. One can try to apply quantitative consider-
mode solutions branch off also from solutighdescribing ations related to the sign of the derivativg/JT,, at the
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hottest point of the cathode surface. These points for several 409 pr

values ofU are shown in Fig. @) for the low- and high- uw | § o - E f i ?2m
voltage branches of the first axially symmetric spot mode, as I TR - R=11mm
well as for the diffuse mode. One can see that the derivative 32 - \‘ Vo e R =0.985 mm
is negative on the high-voltage branch of the first axially \ \ R =0.975mm

symmetric spot and at highy also on the low-voltage ]
branch, which may be an indication of stability.

One can try to apply also theoretical indications concern-
ing stability in the vicinity of bifurcation point$15]. Ac- T
cording to these considerations, the first spot m@He one
branching off at the bifurcation point belonging to the diffuse
mode and associated wilt=1; in other words, the mode 1
with one spokis stable if it is supercritical and is unstable if 8
it is subcritical. In other words, if the first spot mode bifur- T )
cates into the regioh> 1, as depicted in Fig. 4, meaning that 10 10 10
it is subcritical, then it is probably unstable in the vicinity of 15 g cyc's of the diffuse mode and limits of its stability for
the blfurcatlon point. _The_ SW't(?hmg betwee_n the diffuse anddifferent values of cathode radius. Lines: CVC's. Circles: stability
the first _spot modes is o_llscon_t|nuoUmn_sta}tlonaryand ac- Jjimits. Argon plasmap=1 atm, h=14 mm.
companied by hysteresis. This scenario is discussed in Ref.

[10]; one can say that the system experiences a hard loss of _ . .

stability in this case. If the first spot mode bifurcates into thecathOde materialhere A |s.the W.OF" functioh. A sma_ll de-
region| <I,, as depicted in Fig. 7, meaning that it is Super_creas_e of th(_a wqu function originates a weak shift of the
critical, the switching is likely to be continuoys soft loss CVCin the'(.jlre'ctlt')n of lower voltages and a strong decrease
of stability). of th_e stab|l|t_y limit.

It should be emphasized that the above-discussed stabilitg Figure 11 |Ilustrate§ the effects .Of the plasma pressure and
limit refers to cathodes with an ideally uniform surface and f the plasme_l-prodgcmg gas. An increase of_thg argon pres-
to infinitely small perturbations. In fact, the switching to a Sure results in an Increase of the stability I|m|_t, th? effect
spot mode may occur at somewhat higher currents due tBroducgd on th_e C\./C being rather weghe CVC is shifted
surface nonuniformities and/or finite perturbations. In othetWeakly in the direction of lower voltaggsThe changes from_
words, the diffuse-spot transition occurs in reality not alwaysargon to xenon an_ql fr(_)m_ Xenon to mercury result in an in-
at the same current value but rather in a certain current ranggfease .Of the ;tab|llty limit. o .
and the present theory gives, presumably, the low-current It is interesting to note that distributions of pgr.turt.)atllons
boundary of this range. over th_e pathode surface ca[culated at the st_ablh_ty I|m|§ are

quite similar for all the conditions considered in this section;
see Fig. 12. This can be attributed to the fact that the cath-

VI. LIMIT OF STABILITY OF THE DIFFUSE MODE odes considered are rather narrow.

Let us proceed to the comparison with the experiment.

In t.h'S section, the effect is studied Wh!Ch_ IS produ.c_ed bYinteraction of high-pressure arc plasmas with thermionic
variations of control parameters on the limit of stability of

he diff isch h in the f ¢ o cireul cathodes has been studied for many decades. In particular,
the diffuse discharge on cathodes in the form of a circulagi ot gnservations of the diffuse attachment go back to 1950s
cylinder. The effect of the cathode geometry is illustrated by

Figs. 8 and 9. One can see from Fig. 8 that the circles rep-

resenting the stability limit are rapidly shifted in the direction 40
of lower currents with a decrease of the cathode radius, i.e., Uv)]
the stability limit decreases rapidly. When the stability limit

is positioned in the range of low currentiigh U), it is 32

much more sensitive to a variation Bfthan, e.g., the CVC.
Indeed, the lines representing the CVC’s #®+0.985 mm
and forR=0.975 mm are hardly distinguishable, which is 24
natural given the smallness of variation Rf However, the
circles representing the respective stability limits are posi-
tioned quite apart; in fact, the stability limit has decreased 16 -
from 6.5 Ato 3.0 A.
Figure 9 shows that an increased height of the cathode i
results in a decrease of the stability limit. Again, the stability
limit, when positioned in the range of low currents, is much
more sensitive to a variation of the cathode height than the
CVC: the CVC's forh=13 mm and forh=14.45 mm are FIG. 9. CVC's of the diffuse mode and limits of its stability for

close while the stability limit has decreased considerably. different values of cathode height. Lines: CVC's. Circles: stability
Figure 10 illustrates the effect of the work function of the limits. Argon plasmap=1 atm,R=1 mm.
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FIG. 10. CVC'’s of the diffuse mode and limits of its stability for FIG. 12. Distributions of perturbations branching off from the

different values of work function of the cathode material. Lines: it se_mode solution at the stability limit under conditions of Figs.
CVC’s. Circles: stability limits. Argon plasmap=1 atm, R 8—11 (arbitrary units.

=1 mm, h=14 mm.

) ) A survey of early observations of the diffuse-spot transi-

(Ref.[21]; see also Ref12]). However, reliable experimen- tion is given in Ref[12]. According to this survey, a reduc-
tal data on electrical and thermal characteristics of arction of the front area of the cathode results in a decrease of
cathode interaction appeared only recentl.g., Refs. the stability limit. The same effect is present in this model-
[13,22—24). Unfortunately, the recent data refer to eithering: a decrease of the cathode radius results in a decrease of
diffuse or spot mode; no quantitative information on the tran-the stability limit; see Fig. 8. According to Rdf12], a de-
sition from the diffuse mode to the spot mode has been reerease of the stability limit may be achieved also by an in-
ported. Hence, a comparison of the present theory with exereased heat resistance of the cathode. The same effect is
perimental data may be performed only on a qualitativepresent in this modeling: an increase of the cathode height
level. results in a decrease of the stability limit; see Fig. 9. A lower

Note that the absence of reliable quantitative experimentaivork function of the cathode material also results in a de-
information on the diffuse-spot transition stems mainly fromcrease of the stability limit12]. The same effect is present in
this transition being difficult to reproduce. This conforms to this modeling; see Fig. 10. The stability limit in mercury is
the conclusion of the present theory that the limit of stabilityigher than that in xenof21]. As one can see from Fig. 11,
of the diffuse mode is much more sensitive to variations oftiS €ffect is also described by the modeling. An effect of the
control parameters than the CVC or the thermal regime oflas pressure on the diffuse-spot transition has been studied in

the diffuse mode. One can hope that the present theory C%ﬁe recent experimenf43]. It was found that an increase of

provide a useful guide in collecting reproducible experimen- € gas pressure resultg IN an increase of the ‘?’tat_)'“ty I|m_|t.
tal data Again, the same effect is present in the modeling; see Fig.

11. Thus, trends in the variation of the stability limit pre-
dicted by the theory conform to experimental observations.

18 v

Ar, 1 atm

\
uMvfvl® Ar, 2 atm VIl. CONCLUSIONS
1T - Ar, 5 atm

\‘\‘ — - - Xe,latm Axially symmetric cathodes heated by dc arc plasmas are
considered. An approach has been developed to calculate the
bifurcation points in which three-dimensional solutions
branch off from axially symmetric solutions. Calculation re-
sults are given for the case of a tungsten cathode in the form
of a circular cylinder in high-pressure plasmas. It is found
that three-dimensional solutions branch off not only from the
(axially symmetrig solution describing the diffuse mode of
current transfer, but also from that describing the first axially
symmetric spot mode. Two branching points have been de-
tected on each solution. Three-dimensional solutions that
branch off at these points describe modes with a spot at the
FIG. 11. CVC's of the diffuse mode and limits of its stability for €dge of the front surface of the cathode, or with two opposite
different plasma pressures and plasma-producing gases. Linespots at the edge, or with two opposite spots, one of them
CVC's. Circles: stability limitsR=1 mm, h=14 mm. being positioned at the edge and another somewhere between

8 16 24 32 40 1 (A) 48
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the edge and the center. In general, the pattern of solutions fellowing changes have been introduced, in addition to the
rather complex. changes described in R¢8].

The value of arc current corresponding to the first bifur-  Under conditions in which the lowering of the work func-
cation point positioned on the axially symmetric solution de-tion due to the presence of an electric figtle Schottky
scribing the diffuse mode is likely to represent the limit of effect is appreciable, it is logical to assume that the energy
stability of the diffuse mode, i.e., a current below which thegained by an emitted electron on crossing the space-charge
diffuse mode becomes unstable. The effect of variation osheath iseUp—AA, whereUp is the voltage drop in the
control parameter&athode radius and height, work function sheath and\A is the Schottky correction. The same is the
of the cathode material, and plasma-producing gas and itsnergy gainedlost) by a singly charged ioriplasma elec-
pressurgon the limit of stability of the diffuse mode is ana- tron) moving to the cathode. Hence, it is appropriate to re-
lyzed and found to agree with trends observed experimerplaceeUp by eUp—AA in the equation of balance of the
tally. It is found that the stability limit is much more sensitive electron energy in the ionization layer, E47) of Ref.[17],
to variations of control parameters than the CVC or the therand in the expression for the density of the plasma-related
mal regime of the diffuse mode, the strongest effect beingnergy flux to the cathode surface, Ef0) of Ref.[8]. In
produced by the cathode dimensions and the work functioparticular, the latter equation assumes the form
of the cathode material. This agrees with the general trend
that the transition from the diffuse mode to the spot mode is .
difficult to reproduce in the experiment. qp=jU-— ]—(A+ 3.XT,), (A1)

One can hope that the approach developed in this work €
will provide a useful guide for experimentalists. The conclu-

sion that the stability limit is much more sensitive to varia- wherej is the current density arifl, is the electron tempera-
tions of control parameters than the CVC or the thermal reg .o in the near-cathode layer. Note tig}, should be re-
gime of the diffuse mode may be of technological placed byA in Eq. (13) of Ref [é]

Importance. Another modification introduced in the present work was

Th? approach FO calculation OT the st.ability limit devel- as follows. The dependence of the ion flux to the cathode
oped in this work is not computationally intense and can besurface on the ratia of the ionization length to the mean

easily realized on a PC, thus being suitable for engineeringree path for collisions of ions with neutral atoms was de-
practice. scribed in the moddl8] by means of Eq(50) of Ref.[25].
The latter equation is used also in the present work, with the
ACKNOWLEDGMENTS difference that the coefficier@; in this equation is replaced

The work was performed within activities of the project by the coefficientC, determined by Eq(37) of Ref. [26].
Theory and modelling of plasma-cathode interaction in high-Note that the new equation gives an exact value of the ion
pressure arc dischargesf the program POCTI of Fungac diffusion flux in the I_|m|F|ng_ case of larger not only for.a
para a Ciacia e a Tecnologia and FEDER, of the projectP|a$m§‘ close to full ionization but for a plasma of arbitrary
NumeLiTeof the fifth Framework program ENERGIE of the i0nization degree. S
EC, and of the action 529 of the program COST of the EC. AlS0 the source of data on emissivity of tungsten neces-
The authors are grateful to L. Dabringhaus¢Ruhr-  Sary for calculation of the radlatl_on Iqsses has been changed:
Universita Bochum for making available to them his re- the data from Reff27] are used in this work.
view on material data of tungsten. One of the authors 1he density of the energy flux to the cathode surface,
(M.S.B) appreciates support of the Alexander von Humboldtcalculated for fixedJ and variable cathode surface tempera-

Foundation. ture, is depicted in Fig. 2. Also shown are data obtained by
means of the model used in R¢8] [Figs. 2b) and Zc)].
APPENDIX: DENSITY OF ENERGY FLUX One can see that_ the changes introduced in the present work
TO THE CATHODE SURFACE produce only a minor effect. In fact, we have recalculated all

our theoretical data which have been compared with the ex-
Functionsq=q(¢,,U) andj=j(T, ,U) are calculated in periment in Refs[8,24]; the respective variations are not
this work by means of the mod¢l7] into which also the visible on the graphs.
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