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Bifurcation points in the theory of axially symmetric arc cathodes

M. S. Benilov and M. D. Cunha
Departamento de Fı´sica, Universidade da Madeira, Largo do Municı´pio, 9000 Funchal, Portugal

~Received 22 April 2003; revised manuscript received 18 August 2003; published 20 November 2003!

Steady-state current transfer from arc plasmas to axially symmetric cathodes is treated in the framework of
the model of nonlinear surface heating. An approach is developed to calculate the bifurcation points at which
three-dimensional spot-mode solutions branch off from solutions describing the diffuse mode and axially
symmetric spot modes. In particular, the first bifurcation point positioned on the diffuse-mode solution has
been calculated, and thus its stability limit, i.e., the current below which the diffuse mode becomes unstable.
Calculation results are given for the case of a tungsten cathode in the form of a circular cylinder in high-
pressure plasmas. The effect produced on the stability limit by variations of control parameters~cathode
dimensions, work function of the cathode material, plasma-producing gas, and its pressure! is studied and
found to conform to trends observed experimentally. The stability limit is found to be much more sensitive to
variations of control parameters than characteristics of the diffuse mode are, the strongest effect being pro-
duced by variations of cathode dimensions and of the work function of the cathode material. This finding
conforms to the fact that the diffuse-spot transition is difficult to reproduce in the experiment.

DOI: 10.1103/PhysRevE.68.056407 PACS number~s!: 52.40.Hf, 52.80.Mg
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I. INTRODUCTION

Very few phenomena in gas discharge physics have g
erated a number of hypotheses, models, and theore
frameworks comparable to the number of those devote
arc-cathode interaction~e.g., Ref.@1#!. Advances achieved
recently in the theory of current transfer to refractory ca
odes of high-pressure arc discharges~see Ref.@2# and also
Refs. @3–9#! have been attained by means of the model
nonlinear surface heating. In the framework of this mod
the equation of thermal conduction in the cathode body
solved with the nonlinear boundary condition specifying t
density of the energy flux from the plasma to the catho
surface as a function of the local value of the surface te
perature and of the voltage drop across the near-cath
plasma layer. The latter function is obtained from a treatm
of processes on the plasma side.

In particular, it has been proved@10# that multiple solu-
tions may exist for a given set of input conditions, some
these solutions describing the diffuse mode of cathode op
tion, when the current is distributed over the front surface
the cathode in a more or less uniform way and the oth
describing spot modes, when nearly all the current is loc
ized in regions occupying only a small fraction of the ca
ode surface~cathode spots!. In the case of an axially sym
metric cathode, the diffuse mode is described by an axi
symmetric solution, while spot modes are described by a
ally symmetric or three-dimensional solutions. At prese
steady-state axially symmetric solutions describing both
fuse and spot modes have been understood relatively
@8,9,11#.

An important question arising in problems with multip
solutions is whether these solutions branch off from~join!
one another, or, in other terms, whether bifurcations oc
As far as the model of nonlinear surface heating is c
cerned, this question has been studied@10# by means of the
bifurcation theory for the case of cathodes having the form
a right cylinder with an insulating lateral surface. The so
1063-651X/2003/68~5!/056407~11!/$20.00 68 0564
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tion describing the diffuse mode is one dimensional in t
case. It was found that multidimensional solutions describ
spot modes branch off from the one-dimensional diffu
mode solution. In agreement with this finding, the numeri
modeling @9# has shown that axially symmetric spot-mod
solutions for circular-cylinder cathodes with an insulati
lateral surface branch off from the one-dimensional diffu
mode solution.

The model of a cathode having the form of a right cyli
der with an insulating lateral surface, while providing resu
which are qualitatively correct in many respects, is har
suitable for practical purposes. As far as axially symme
cathodes with an active surface are concerned, the t
dimensional numerical modeling@9,11# has revealed no bi-
furcations, i.e., the spot- and diffuse-mode solutions do
join. This is not surprising since the diffuse-mode solution
axially symmetric for such cathodes, as well as the sp
mode solutions calculated in Refs.@9,11#, and one would not
expect to encounter bifurcations if breaking of symme
does not occur. On the other hand, one would not exclude
possibility of three-dimensional solutions describing sp
modes to branch off from axially symmetric solutions d
scribing the diffuse mode~and maybe also spot modes!.

In the present work, bifurcation points in which thre
dimensional solutions describing spot modes branch off fr
axially symmetric solutions describing diffuse or spot mod
are found numerically. Such calculation is essential, in p
ticular, for understanding the general pattern of curre
voltage characteristics~CVC’s! of various modes of curren
transfer. Besides, it will provide reference points for thre
dimensional numerical simulations.

Apart from being of theoretical interest, finding bifurca
tion points in which three-dimensional solutions branch
from axially symmetric solutions may be also of conside
able technological interest due to the following. In ma
applications, the diffuse mode of operation of a hig
pressure arc cathode is preferred. The experiment indic
that the diffuse mode is stable at large values of the
©2003 The American Physical Society07-1
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M. S. BENILOV AND M. D. CUNHA PHYSICAL REVIEW E 68, 056407 ~2003!
current~‘‘the diffuse mode is favored by high current;’’ see
e.g., Refs.@12,13#!. There are also similar indications of
theoretical character@14,15#; note that the diffuse mode i
probably the only one possible at high currents@9,10#. As the
current decreases, the diffuse mode becomes unstable.
can expect, according to Refs.@14,15#, that the loss of sta-
bility occurs at the first bifurcation point, at which a thre
dimensional solution describing the first spot mode branc
off from the diffuse-mode solution. Thus, the value of a
current corresponding to the first bifurcation point is likely
represent the limit of stability of the diffuse mode, i.e., t
current below which the diffuse mode becomes unstable

It should be emphasized that numerical calculations
quired for finding bifurcation points at which three
dimensional solutions branch off from axially symmetric s
lutions are two~rather than three! dimensional. Thus, the
approach developed in this work for calculation of the s
bility limit of the diffuse mode is not computationally intens
and can be easily realized on a PC, thus being suitable
engineering practice.

The outline of the paper is as follows. The model of no
linear surface heating is described in Sec. II. General asp
of the multiplicity of solutions are discussed in Sec. III. A
approach to calculation of bifurcation points is described
Sec. IV, where also calculation results are given and
cussed. Stability of solutions is discussed in Sec. V. The
fect of variation of control parameters on the limit of stab
ity of the diffuse discharge is analyzed in Sec. VI. Sect
VII contains concluding remarks.

II. THE MODEL

The model of nonlinear surface heating goes back to 1
@16# and may be briefly described as follows~see Refs.
@8,17# for a more detailed description!. The problem of cal-
culation of a steady-state arc-cathode interaction is divi
into three steps. At the first step, one calculates charact
tics of the near-cathode plasma layer in which the ene
flux to the cathode surface is formed. In particular, one fin
dependencesqp5qp(Tw ,U) and j 5 j (Tw ,U) describing
densities of the energy flux and of the electric current fr
the plasma to the current-collecting part of the cathode
face as functions of the local cathode surface temperatureTw
and of the voltage drop across the near-cathode plasma
U ~which is assumed to be constant along the curre
collecting part of the cathode surface!. At the second step
the functionqp is corrected in such a way as to describe
low Tw heat exchange of the inactive part of the catho
surface with the cold gas and/or radiation losses from
part. The resulting dependence will be designatedq
5q(Tw ,U). At the third step, the steady-state therm
conduction equation in the cathode body is solved.

In this work, only the last step is dealt with. We consid
a cathode~see Fig. 1! made of a substance with the therm
conductivityk which is a known function of the temperatur
k5k(T). Joule heat production inside the cathode body
neglected. The baseGc of the cathode is maintained at
fixed temperatureTc by external cooling. The rest of th
cathode surface,Gh , is in contact with the plasma or the co
05640
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gas and can exchange energy with it. Under these assu
tions, the steady-state temperature distribution in the cath
is governed by the nonlinear boundary-value problem for
Laplace equation

]2c

]r 2
1

1

r

]c

]r
1

1

r 2

]2c

]w2
1

]2c

]z2
50, ~1!

Gh :
]c

]n
5q~cw ,U !, Gc : c50. ~2!

Here r ,w,z are cylindrical coordinates,n is a direction lo-
cally orthogonal to the cathode surface and directed out
the cathode,c is the heat flux potential related to the tem
perature by the equation

c5E
Tc

T

k~T!dT, ~3!

and q(cw ,U) is a function obtained from the above
described functionq(Tw ,U) by replacing the local surface
temperatureTw with respective valuescw of the heat flux
potential.

After the problem~1!,~2! has been solved forU given, one
will know the temperature distribution over the cathode s
face and will be able to calculate, using the dependencj
5 j (Tw ,U), the distribution of the current density over th
surface. Integrating the latter, one will find the arc currenI
corresponding to the value ofU being considered.

Control parameters of the model are cathode geome
thermal conductivity and work function of the cathode m
terial, the plasma pressurep, and species of the plasma
producing gas. Numerical results given in this work refer
cathodes made of tungsten. Data on thermal conductivity

cΓ  

         cathode 

arc 

r 

z 
hΓ  

ϕ

FIG. 1. Schematic of the model.Gc : base of the cathode, which
is externally cooled by a fluid.Gh : front and lateral surfaces of th
cathode, which are in contact with the plasma or the cold gas.
7-2
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BIFURCATION POINTS IN THE THEORY OF AXIALLY . . . PHYSICAL REVIEW E68, 056407 ~2003!
tungsten have been taken from Ref.@18# and the value of
4.55 eV was assumed for the work function of tungsten.

Functionsq(Tw ,U) and j (Tw ,U) have been calculated a
described in Ref.@17# with modifications introduced in Ref
@8# and in the Appendix of the present work. Functio
q(Tw ,U) for the atmospheric-pressure argon plasma~and a
tungsten cathode! is shown in Fig. 2~a!. In Figs. 2~b! and
2~c!, q is shown as a function ofcw ~by the solid lines!. One
can see that the dependences ofq on Tw and oncw are quite
similar.

The model described, being of a purely thermal natu
does not take into account effects such as changes o
cathode form as a consequence of melting, Joule heatin
the cathode body, and effects produced on the arc by s
induced magnetic field. However, these effects come
play at high current densities and are not supposed to pl
role under conditions treated in this work.

III. GENERAL

It was established in recent years that the problem con
ered has multiple solutions, some of them describing the
fuse mode of cathode operation and the others descri
spot modes. This multiplicity stems from the nonmonoto
of the dependence ofq on Tw , which can be seen in Fig. 2
~A detailed discussion of this nonmonotony can be fou
elsewhere@8#; here we only mention the mechanisms that
responsible, respectively, for the maximum of the dep
dence ofq on Tw at low voltages and for the first and seco
maxima at high voltages: overcoming of the increase of co
bined ion and plasma electron heating by an increase of t
mionic cooling which occurs when the plasma approac
full ionization; nonmonotony of the dependence of the i
current on the electron temperature which is caused b
deviation of the ion current from the diffusion value; rap
increase of the plasma electron heating which is sub
quently overcome by thermionic cooling.!

The occurrence of the multiplicity may be best understo
if one starts with the particular case of a cathode having
form of a right cylinder, not necessarily circular, with a the
mally and electrically insulating lateral surface, which w
studied in Ref.@10#. Choose the origin at the front surface
the cathode with thez axis directed normally to the surfac
into the cathode body. The solution describing the diffu
mode is one dimensional,c5c(z), and has the form

c5S 12
z

hDcw , ~4!

whereh is the height of the cathode andcw5cw(U) is the
temperature of the front surface of the cathode. This te
perature is governed by the transcendental equation

cw

h
5q~cw ,U !. ~5!

As an example, the left-hand side of Eq.~5! for h
510 mm is shown in Fig. 2~b! by the dotted line. One can
see that Eq.~5! has two positive roots, provided thatU ex-
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FIG. 2. Density of the net energy flux to the cathode surface

the local value of the surface temperature~a! or of the heat flux
potential~b!,~c!. Solid lines: calculation by means of the model
the present work. Dashed lines: calculation by means of the m
used in Ref.@8#. Points: hottest points of the surface of a circula
cylinder cathode withR52 mm andh510 mm operating in the
diffuse mode ~full circles! and on the low- and high-voltage
branches of the first axially symmetric spot mode~triangles and
open circles, respectively!. Argon plasma,p51 atm.
7-3
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M. S. BENILOV AND M. D. CUNHA PHYSICAL REVIEW E 68, 056407 ~2003!
ceeds a certain minimal value which is somewhere betw
10 V and 12 V. The smaller root is positioned on the growi
section of the functionq while the bigger root is positioned
on the falling section. Apart from the positive roots, Eq.~5!
has also a trivial rootcw50 which exists for allU @one can
assume to a very good accuracy thatq(Tc ,U)50] and cor-
responds to the situation in which no current flows to
cathode.

The CVC of the diffuse mode is depicted by the line 1
Fig. 3 for the case where the cathode is a circular cylinde
radiusR52 mm and heighth510 mm. The CVC is non-
monotonic, the falling section being associated with
smaller positive root of Eq.~5! and the rising section with
the bigger root. Apart from this line, the CVC on the who
includes also a branch coinciding with the axis of voltag
which is associated with the zero root of Eq.~5!. Thus, the
CVC described by the one-dimensional solution is bista
~N-shaped!, and one should expect that apart from the o
dimensional solution describing the diffuse mode, multi
mensional solutions describing spot modes may exist.
latter hypothesis was confirmed by the bifurcation analy
of Ref. @10#, in which it was shown that multidimensiona
spot-mode solutions exist and branch off from the o
dimensional solution, and also by the numerical model
@9#.

In the case of a cathode of an arbitrary shape, the diff
mode is no longer described by a one-dimensional solut
However, the respective CVC remains qualitatively simi
and bistable. An example can be seen in Fig. 3, where
CVC of the diffuse mode is depicted for the case where
cathode is a circular cylinder with a current- and ener
collecting lateral surface withR52 mm andh510 mm.
Hence, the existence of other solutions is likely. Such so
tions have indeed been detected; see, e.g., Refs.@9,11#.

Consider now an axially symmetric cathode and cho
the origin at the center of its front surface with thez axis
directed along the axis of symmetry from the surface into
cathode body. The problem considered has axially symme
solutions,c5c(r ,z), which describe diffuse or spot mode
of current transfer to the cathode, and three-dimensional

101 102 10 3 10 4 10 5

10

20

30

40

I (A )

U  (V )

1 2

FIG. 3. CVC’s of the diffuse mode. 1: cathode with an insulat
lateral surface. 2: cathode with an active lateral surface. Ar
plasma,p51 atm, R52 mm, h510 mm.
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lutions, c5c(r ,z,w), which describe spot modes. In con
trast to the case of a cathode having the form of a ri
cylinder with an insulated lateral surface, one should
expect the axially symmetric solutions describing the s
mode to branch off from the diffuse-mode solution, sin
solutions of both types are axially symmetric and one wo
not expect to encounter bifurcations if breaking of symme
does not occur. The modeling@9,11# has indeed revealed n
bifurcations of such kind. However, one would expect th
three-dimensional solutions describing spot modes bra
off from axially symmetric solutions describing the diffus
mode and maybe also spot modes. The present work is
cerned with the calculation of~bifurcation! points at which
this branching occurs.

IV. CALCULATION OF BIFURCATION POINTS

A. The method

Let c0(r ,z;U) be an axially symmetric solution. Desig
nate byUi the value of the voltage drop corresponding to
bifurcation point in which one or more three-dimension
solutions branch off. Solutions in the vicinity of this poin
are sought in the form of a series

c~r ,w,z;U !5c0~r ,z;Ui !1«c1~r ,w,z!1•••. ~6!

Here« is a small parameter related toU2Ui by the equation

U5Ui1«a11
«2

2
a2 , ~7!

where three choices are possible:a151 anda250, a150
and a251, or a150 anda2521. The first choice is ap-
propriate in the case where solutions that branch off in
bifurcation point considered exist both forU below and
above Ui and perturbations described by these solutio
grow in the vicinity of the bifurcation point, proportional t
U2Ui ~a transcritical bifurcation; see, e.g., Ref.@19#!. The
second and third choices are appropriate in the cases w
the solutions that branch off exist in the rangeU>Ui ~or,
respectively,U<Ui), i.e., are supercritical~or subcritical!,
and perturbations described by these solutions grow pro
tionally to AU2Ui ~or to AUi2U) in the vincinity of the
bifurcation point: a pitchfork bifurcation.

The problem governing functionc1 may be obtained by
differentiating Eqs.~1! and ~2! with respect to« and setting
«50:

]2c1

]r 2
1

1

r

]c1

]r
1

1

r 2

]2c1

]w2
1

]2c1

]z2
50, ~8!

Gh :
]c1

]n
2

]q

]cw
c15

]q

]U
a1 , Gc : c150. ~9!

Here derivatives of the functionq5q(cw ,U) at each point
of the surfaceGh are evaluated atcw5c0(r ,z;Ui)uGh

~i.e., at
the local surface temperature taken at the bifurcation po!
and atU5Ui .

n
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BIFURCATION POINTS IN THE THEORY OF AXIALLY . . . PHYSICAL REVIEW E68, 056407 ~2003!
Since a bifurcation occurs in the point considered,
~linear inhomogeneous! problem ~8!,~9! must have non-
unique solutions. The corresponding homogeneous prob
@which is obtained by dropping (]q/]U)a1 on the right-hand
side of the first boundary condition~9!# must have a non-
trivial solution. In other words, one should consider the h
mogeneous problem as an eigenvalue one, the role o
eigenvalue parameter being played by the voltage dropUi ,
which is the only control parameter of the homogeneo
problem for a cathode and a plasma given.

The above-described homogeneous problem allows on
separate the azimuthal variable, i.e., it admits solutions in
form

c1~r ,w,z!5 f ~w!F~r ,z!. ~10!

Functionsf (f) andF(r ,z) satisfy

d2f

dw2
1k2f 50, ~11!

]2F

]r 2
1

1

r

]F

]r
2

k2

r 2
F1

]2F

]z2
50, ~12!

gh :
]F

]n1
2

]q

]cw
F50, gc : F50. ~13!

wherek2 is a separation constant,gh andgc are generatrices
of the revolution surfacesGh andGc , respectively@lines in
the plane (r ,z) which produce, on being rotated around thez
axis, surfacesGh andGc], andn1 is a direction in the plane
(r ,z) locally orthogonal togh and directed outside the cath
ode.

In order that the functionf (w) @and, consequently
c1(r ,w,z)] be single valued,k must be integer or, withou
losing the generality, natural. Thus, finding bifurcation poin
of the original ~three-dimensional! problem is reduced to
solving the linear axially symmetric eigenvalue proble
~12!,~13! for k50,1,2, . . . , therole of an eigenvalue param
eter again being played by the voltage dropUi . This eigen-
value problem may be solved numerically without major d
ficulties. In this work, a finite-difference numerical schem
was used. The grid equations were solved by means
variant of LU ~Lower/Upper triangular! decomposition; see
e.g., Ref.@20#.

Different values ofk in the problem~12!,~13! correspond
to branching of solutions describing different modes of c
rent transfer: solutions branching off at bifurcation poin
associated withk50 are axially symmetric, solution
branching off at points associated withk51 describe modes
with an off-center spot~or, in more general terms, with
system of spots which is aperiodic inw on the interval
@0,2p#), and solutions branching off at points associa
with k>2 describe modes with systems of spots which
periodic inw with the period 2p/k.

The uniqueness of a solution is violated not only
branching points, at which essentially different solutions jo
~branch off from! one another, but also at turning points,
05640
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which a solution reaches a limit of its existence region a
then turns back. The latter situation occurs in the probl
considered when the CVC,U5U(I ), of a certain mode
passes through an extremum,U5Um : the solution describ-
ing this mode reaches at the pointU5Um , the limit of its
existence region~which is U>Um or, respectively,U<Um
in the cases of minimum or maximum!, and then turns back
Strictly speaking, however, the mode in question is descri
in the vicinity of the extremum by two different solution
simultaneously existing atU above~or below! Um , one of
these solutions corresponding to the falling branch of
CVC and another corresponding to the growing branch.
other words, a solution in the vicinity of the extremum
nonunique and the extremum represents a bifurcation po
a fold ~saddle-node! bifurcation.

It follows that the above-described procedure of findi
bifurcation points must predict bifurcations withk50 at ev-
ery extremum of the CVC of any axially symmetric mod
However, no solutions branch off at such points.

If eigenvalues of the eigenvalue problem~12!,~13! are
simple, then associated withk50 eigenvalues of the homo
geneous problem corresponding to the problem~8!,~9! are
simple and those associated withk>1 are doubly degener
ate. Hence, one solution branches off at each bifurca
point associated withk50 ~except at extrema of the CVC!.
A one-parameter family of solutions branches off at ea
bifurcation point associated withk>1; since, however, thes
solutions are identical to the accuracy of a rotation, they
be considered as a single solution with an arbitrary azimu
position of the spot system.

It is of interest to compare the above-described techni
of finding bifurcation points with that employed in Ref.@10#.
In Ref. @10#, cathodes have been considered in the form o
right cylinder, not necessarily circular, with an electrica
and thermally insulating lateral surface. In this case, the
fuse mode is described by a one-dimensional solutionc
5c(z), and bifurcation points positioned on this solutio
can be found by separation of the variablez from r andw in
the homogeneous problem corresponding to the problem~8!,
~9!. In the present work, axially symmetric cathodes are c
sidered, and bifurcation points positioned on solutionsc
5c(r ,z) describing axially symmetric modes are found
separation of the variablew from r and z. One can check
easily that in the particular case of a cathode in the form o
right circular cylinder with an electrically and thermally in
sulating lateral surface variablesr andz in the problem~12!,
~13! can be separated and the present theory gives analy
results identical to those of Ref.@10#.

B. Results and discussion

In this section, we present results of calculation of bifu
cation points corresponding tok50,1,2 positioned on diffuse
and axially symmetric spot modes of arc discharge on a tu
sten cathode in the atmospheric-pressure argon plasma. C
odes in the form of a circular cylinder are considered, so
geometry is specified by the cathode radiusR and the cath-
ode heighth. Note that a cathode should be not too thin fo
bifurcation with k52 to occur in the voltage range consid
7-5
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M. S. BENILOV AND M. D. CUNHA PHYSICAL REVIEW E 68, 056407 ~2003!
ered (U<40). Therefore, cathodes withR52 mm andh
510 mm are treated in this section.

CVC’s of the diffuse mode and of the first axially sym
metric spot mode are depicted in Fig. 4 by the solid a
dashed lines, respectively.~A detailed discussion of thes
solutions can be found elsewhere@9#; here we only note tha
the solution describing the first axially symmetric spot mo
comprises two branches, a low-voltage branch and a h
voltage branch.! Bifurcation points detected on these sol
tions by means of the approach developed in Sec. IV A
depicted by circles. There is one bifurcation point associa
with each value ofk on both solutions. It is interesting t
note that the sequences of bifurcation points on the two
lutions are different:U0,U1,U2 for the bifurcation points
positioned on the diffuse-mode solution~here U0 , U1 ,U2
are voltages corresponding to bifurcation points associa
with k50, k51, and k52, respectively!, while U0,U2
,U1 for the bifurcation points positioned on the spot-mo
solution. Bifurcation points associated withk50 found for
each solution coincide with the point of minimum of th
respective CVC. This conforms to what has been said in S
IV A, and no branching occurs at these points. Thr
dimensional solutions branching off at other bifurcati
points are schematically shown in Fig. 4 in accordance w
qualitative considerations@10# ~the dotted lines!.

The distributions over the cathode surface of pertur
tions branching off at bifurcation points associated withk
51 andk52 are shown in Figs. 5 and 6~without account of
the azimuthal factor!, jointly with the distributions ofc0 the
heat flux potential corresponding to the respective bifur
tion points. The range 0<r 1z<R in these figures corre
sponds to the front surface of the cathode,$r<R,z50%,
while the ranger 1z>R corresponds to the lateral surfac
$r 5R,z>0%. In the case of the diffuse mode~Fig. 5!, the
functionc0(r ,z) has a maximum at the edge of the catho
The functionc1(r ,w,z) has one or two maxima at the edg
of the cathode in the casek51 or k52, respectively. One

10 2 10 3

8

12

16

20

U  (V )

I (A )

k  =  0

0

1

1

2

2

FIG. 4. CVC’s and bifurcation points. Solid line: CVC of th
diffuse mode. Dashed line: CVC of the first axially symmetric sp
mode. Dotted lines: schematics of CVC’s of three-dimensional s
modes. Circles: bifurcation points. Argon plasma,p51 atm, R
52 mm, h510 mm.
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can expect therefore that solutions branching off from
diffuse-mode solution at bifurcation points associated w
k51 andk52 describe modes with a spot at the edge
respectively, with two opposite spots at the edge.

In the case of the axially symmetric spot mode~Fig. 6!,
the functionc0 has two maxima, one at the center of th
front surface and the other at the edge of the cathode.
function c1(r ,w,z) has two maxima. In the casek51, one
of the maxima is positioned at the edge and the othe
positioned opposite the first one somewhere between
edge and the center. In the casek52 the maxima are posi
tioned at the edge of the cathode opposite to each other.
can expect therefore that solutions branching off from
axially symmetric spot-mode solution at the bifurcatio
points associated withk51 or, respectively,k52 describe
modes with two opposite spots, one of them being at
edge and another somewhere between the edge and the
ter, or, respectively, both spots being positioned at the ed

It is of interest to consider also cathodes with an elec
cally and thermally insulating lateral surface. CVC’s of th

t
ot
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FIG. 5. Solid: distributions of perturbations branching off fro
the diffuse-mode solution~arbitrary units!. Dashed: distributions of
the heat flux potential corresponding to the respective bifurca
points. Argon plasma,p51 atm, R52 mm, h510 mm.
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FIG. 6. Solid: distributions of perturbations branching off fro
the axially symmetric spot-mode solution~arbitrary units!. Dashed:
distributions of the heat flux potential corresponding to the resp
tive bifurcation points. Argon plasma,p51 atm, R52 mm, h
510 mm.
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BIFURCATION POINTS IN THE THEORY OF AXIALLY . . . PHYSICAL REVIEW E68, 056407 ~2003!
diffuse mode and of the first axially symmetric spot mode
shown in Fig. 7 by the solid and dashed lines, respectiv
Most of the low-voltage branch of the CVC of the spot mo
in this figure coincides, to the graphical accuracy, with
CVC of the diffuse mode. The axially symmetric spot mo
in this case branches off from the diffuse mode~i.e., a point
exists at which both solutions become exactly identic!.
Also shown in Fig. 7 are bifurcation points determined
means of the approach developed in Sec. IV A; note that
numerically determined positions of bifurcation points b
longing to the diffuse mode coincide with those calcula
analytically by means of the theory@10#, in accord to what
has been said at the end of Sec. IV A.

In contrast to the case of a cathode with an active lat
surface, there are two bifurcation points associated witk
50 on the diffuse-mode solution. One of these points co
cides with the point of minimum of the CVC and no branc
ing occurs at this point. The other is the one at which
axially symmetric spot mode branches off from the diffu
mode~i.e., it coincides with a point at which both solution
become exactly identical!. As it could be expected, there a
two bifurcation points associated withk50 on the axially
symmetric spot mode, one of them coinciding with the po
of minimum of the CVC and another coinciding with th
bifurcation point at which the axially symmetric spot mo
branches off from the diffuse mode. No bifurcations withk
51 have been detected on the axially symmetric spot mo
There is a bifurcation point associated withk52, which co-
incides with the point of minimum of the CVC. Three
dimensional solutions branching off from the diffuse and a
ally symmetric spot-mode solutions are schematica
depicted in Fig. 7 by dotted lines.

The above results confirm the hypothesis that for axia
symmetric cathodes three-dimensional solutions describ
spot modes branch off from the~axially symmetric! solution
describing the diffuse mode. In fact, three-dimensional sp
mode solutions branch off also from solution~s! describing

102 103

10

12

14

16

18

20

U  (V )

I (A )

0 , 2

0

2
1 k =  0

FIG. 7. CVC’s and bifurcation points for a cathode with a
insulated lateral surface. Solid line: CVC of the diffuse mod
Dashed line: CVC of the first axially symmetric spot mode. Dott
lines: schematics of CVC’s of three-dimensional spot mod
Circles: bifurcation points. Argon plasma,p51 atm, R52 mm, h
510 mm.
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axially symmetric spot mode~s!. In the case of a cathode wit
an insulated lateral surface, this means that secondary b
cations are present: three-dimensional spot-mode solutio~s!
branch off from axially symmetric spot-mode solution~s!,
which in turn branch off from the one-dimensional diffus
mode solution.

The general structure of steady-state solutions shown
Figs. 4 and 7 is similar to that established in Ref.@10#, but
even more complex due to three-dimensional spot-mode
lutions branching off from the axially symmetric spot-mod
solution.

V. STABILITY CONSIDERATIONS

The following statement concerning cathodes having
form of a right cylinder with an insulated lateral surface c
be made on the basis of what has been said in Sec. III
diffuse regimes belonging to the falling~or rising! section of
the CVC, the temperature of the front surface correspond
the rising~or falling! section of the dependence ofq on Tw .
Thus, the falling section of the CVC of the diffuse mode
associated with the rising section of the dependence ofq on
Tw and vice versa. This statement, being exact for catho
having the form of a right cylinder with an insulated later
surface, remains approximately valid also for cathodes w
an active lateral surface@9#.

It follows that there is a positive feedback in diffuse r
gimes belonging to the falling section of the CVC: sin
]q/]Tw.0, a local increase of the surface temperature w
result in an increase of the local energy flux from the plasm
The latter will cause a new increase of the local temperat
etc., i.e., the thermal instability may develop. The posit
feedback, however, is opposed by thermal conduction, wh
tends to smooth out perturbations, i.e., produces a stabili
effect. One can expect, in accordance with Refs.@14,15#, that
thermal conduction prevails in diffuse regimes correspond
to the section of the CVC between the point of minimum a
the first bifurcation point and these regimes are stable
diffuse regimes corresponding to the section of the CVC
the left from the first bifurcation point, the positive feedba
prevails and these regimes are unstable. Diffuse regimes
longing to the rising section of the CVC are stable since
feedback is negative in such regimes~the derivative]q/]Tw
is negative at the hottest point of the cathode surface!.

The above considerations may be summarized as follo
Let us designate byI 1 the value of the arc current corre
sponding to the bifurcation point belonging to the diffu
mode and associated withk51 ~for example,I 1'430 A un-
der the conditions of Fig. 4!. In accordance with the above
this value is likely to represent the limit of stability of th
diffuse discharge, i.e., the current below which the diffu
mode becomes unstable. In other words, one can expect
a current-controlled discharge which burns at high curre
in the diffuse mode will switch to a spot mode when t
current has been decreased down toI 1.

The question which mode will occur at currents belowI 1
requires an analysis of stability of the spot modes, which
not an easy task. One can try to apply quantitative consi
ations related to the sign of the derivative]q/]Tw at the

.

.
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M. S. BENILOV AND M. D. CUNHA PHYSICAL REVIEW E 68, 056407 ~2003!
hottest point of the cathode surface. These points for sev
values ofU are shown in Fig. 2~a! for the low- and high-
voltage branches of the first axially symmetric spot mode
well as for the diffuse mode. One can see that the deriva
is negative on the high-voltage branch of the first axia
symmetric spot and at highU also on the low-voltage
branch, which may be an indication of stability.

One can try to apply also theoretical indications conce
ing stability in the vicinity of bifurcation points@15#. Ac-
cording to these considerations, the first spot mode~the one
branching off at the bifurcation point belonging to the diffu
mode and associated withk51; in other words, the mode
with one spot! is stable if it is supercritical and is unstable
it is subcritical. In other words, if the first spot mode bifu
cates into the regionI .I 1 as depicted in Fig. 4, meaning th
it is subcritical, then it is probably unstable in the vicinity
the bifurcation point. The switching between the diffuse a
the first spot modes is discontinuous~nonstationary! and ac-
companied by hysteresis. This scenario is discussed in
@10#; one can say that the system experiences a hard los
stability in this case. If the first spot mode bifurcates into t
region I ,I 1, as depicted in Fig. 7, meaning that it is sup
critical, the switching is likely to be continuous~a soft loss
of stability!.

It should be emphasized that the above-discussed stab
limit refers to cathodes with an ideally uniform surface a
to infinitely small perturbations. In fact, the switching to
spot mode may occur at somewhat higher currents du
surface nonuniformities and/or finite perturbations. In oth
words, the diffuse-spot transition occurs in reality not alwa
at the same current value but rather in a certain current ra
and the present theory gives, presumably, the low-cur
boundary of this range.

VI. LIMIT OF STABILITY OF THE DIFFUSE MODE

In this section, the effect is studied which is produced
variations of control parameters on the limit of stability
the diffuse discharge on cathodes in the form of a circu
cylinder. The effect of the cathode geometry is illustrated
Figs. 8 and 9. One can see from Fig. 8 that the circles r
resenting the stability limit are rapidly shifted in the directio
of lower currents with a decrease of the cathode radius,
the stability limit decreases rapidly. When the stability lim
is positioned in the range of low currents~high U), it is
much more sensitive to a variation ofR than, e.g., the CVC.
Indeed, the lines representing the CVC’s forR50.985 mm
and for R50.975 mm are hardly distinguishable, which
natural given the smallness of variation ofR. However, the
circles representing the respective stability limits are po
tioned quite apart; in fact, the stability limit has decreas
from 6.5 A to 3.0 A.

Figure 9 shows that an increased height of the cath
results in a decrease of the stability limit. Again, the stabi
limit, when positioned in the range of low currents, is mu
more sensitive to a variation of the cathode height than
CVC: the CVC’s forh513 mm and forh514.45 mm are
close while the stability limit has decreased considerably

Figure 10 illustrates the effect of the work function of th
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cathode material~hereA is the work function!. A small de-
crease of the work function originates a weak shift of t
CVC in the direction of lower voltages and a strong decre
of the stability limit.

Figure 11 illustrates the effects of the plasma pressure
of the plasma-producing gas. An increase of the argon p
sure results in an increase of the stability limit, the effe
produced on the CVC being rather weak~the CVC is shifted
weakly in the direction of lower voltages!. The changes from
argon to xenon and from xenon to mercury result in an
crease of the stability limit.

It is interesting to note that distributions of perturbatio
over the cathode surface calculated at the stability limit
quite similar for all the conditions considered in this sectio
see Fig. 12. This can be attributed to the fact that the c
odes considered are rather narrow.

Let us proceed to the comparison with the experime
Interaction of high-pressure arc plasmas with thermio
cathodes has been studied for many decades. In partic
first observations of the diffuse attachment go back to 19

101 102 103
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R  = 2  m m
R  = 1 .5 m m
R  = 1 .1 m m
R  = 0 .985 m m
R  = 0 .975 m m

U  (V )

I (A)

FIG. 8. CVC’s of the diffuse mode and limits of its stability fo
different values of cathode radius. Lines: CVC’s. Circles: stabi
limits. Argon plasma,p51 atm, h514 mm.
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FIG. 9. CVC’s of the diffuse mode and limits of its stability fo
different values of cathode height. Lines: CVC’s. Circles: stabil
limits. Argon plasma,p51 atm, R51 mm.
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BIFURCATION POINTS IN THE THEORY OF AXIALLY . . . PHYSICAL REVIEW E68, 056407 ~2003!
~Ref. @21#; see also Ref.@12#!. However, reliable experimen
tal data on electrical and thermal characteristics of a
cathode interaction appeared only recently~e.g., Refs.
@13,22–24#!. Unfortunately, the recent data refer to eith
diffuse or spot mode; no quantitative information on the tra
sition from the diffuse mode to the spot mode has been
ported. Hence, a comparison of the present theory with
perimental data may be performed only on a qualitat
level.

Note that the absence of reliable quantitative experime
information on the diffuse-spot transition stems mainly fro
this transition being difficult to reproduce. This conforms
the conclusion of the present theory that the limit of stabi
of the diffuse mode is much more sensitive to variations
control parameters than the CVC or the thermal regime
the diffuse mode. One can hope that the present theory
provide a useful guide in collecting reproducible experime
tal data.

3 6 9 12

15

20

25

30

35
A  = 4 .55 eV
A  = 4 .5  eV
A  = 4 .45 eV

U  (V )

I (A )

4 .45 eV

4 .5

4.55

FIG. 10. CVC’s of the diffuse mode and limits of its stability fo
different values of work function of the cathode material. Line
CVC’s. Circles: stability limits. Argon plasma,p51 atm, R
51 mm, h514 mm.
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H g, 1  a tm
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FIG. 11. CVC’s of the diffuse mode and limits of its stability fo
different plasma pressures and plasma-producing gases. L
CVC’s. Circles: stability limits.R51 mm, h514 mm.
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A survey of early observations of the diffuse-spot tran
tion is given in Ref.@12#. According to this survey, a reduc
tion of the front area of the cathode results in a decreas
the stability limit. The same effect is present in this mod
ing: a decrease of the cathode radius results in a decrea
the stability limit; see Fig. 8. According to Ref.@12#, a de-
crease of the stability limit may be achieved also by an
creased heat resistance of the cathode. The same effe
present in this modeling: an increase of the cathode he
results in a decrease of the stability limit; see Fig. 9. A low
work function of the cathode material also results in a d
crease of the stability limit@12#. The same effect is present i
this modeling; see Fig. 10. The stability limit in mercury
higher than that in xenon@21#. As one can see from Fig. 11
this effect is also described by the modeling. An effect of t
gas pressure on the diffuse-spot transition has been studi
the recent experiments@13#. It was found that an increase o
the gas pressure results in an increase of the stability li
Again, the same effect is present in the modeling; see
11. Thus, trends in the variation of the stability limit pr
dicted by the theory conform to experimental observation

VII. CONCLUSIONS

Axially symmetric cathodes heated by dc arc plasmas
considered. An approach has been developed to calculat
bifurcation points in which three-dimensional solutio
branch off from axially symmetric solutions. Calculation r
sults are given for the case of a tungsten cathode in the f
of a circular cylinder in high-pressure plasmas. It is fou
that three-dimensional solutions branch off not only from t
~axially symmetric! solution describing the diffuse mode o
current transfer, but also from that describing the first axia
symmetric spot mode. Two branching points have been
tected on each solution. Three-dimensional solutions
branch off at these points describe modes with a spot at
edge of the front surface of the cathode, or with two oppos
spots at the edge, or with two opposite spots, one of th
being positioned at the edge and another somewhere betw

:

es:

0 1 2 3
0

0.4

0.8

1.2

(r +  z) / R

F

FIG. 12. Distributions of perturbations branching off from th
diffuse-mode solution at the stability limit under conditions of Fig
8–11 ~arbitrary units!.
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M. S. BENILOV AND M. D. CUNHA PHYSICAL REVIEW E 68, 056407 ~2003!
the edge and the center. In general, the pattern of solutio
rather complex.

The value of arc current corresponding to the first bif
cation point positioned on the axially symmetric solution d
scribing the diffuse mode is likely to represent the limit
stability of the diffuse mode, i.e., a current below which t
diffuse mode becomes unstable. The effect of variation
control parameters~cathode radius and height, work functio
of the cathode material, and plasma-producing gas and
pressure! on the limit of stability of the diffuse mode is ana
lyzed and found to agree with trends observed experim
tally. It is found that the stability limit is much more sensitiv
to variations of control parameters than the CVC or the th
mal regime of the diffuse mode, the strongest effect be
produced by the cathode dimensions and the work func
of the cathode material. This agrees with the general tr
that the transition from the diffuse mode to the spot mode
difficult to reproduce in the experiment.

One can hope that the approach developed in this w
will provide a useful guide for experimentalists. The conc
sion that the stability limit is much more sensitive to var
tions of control parameters than the CVC or the thermal
gime of the diffuse mode may be of technologic
importance.

The approach to calculation of the stability limit deve
oped in this work is not computationally intense and can
easily realized on a PC, thus being suitable for enginee
practice.
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APPENDIX: DENSITY OF ENERGY FLUX
TO THE CATHODE SURFACE

Functionsq5q(cw ,U) and j 5 j (Tw ,U) are calculated in
this work by means of the model@17# into which also the
ics
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following changes have been introduced, in addition to
changes described in Ref.@8#.

Under conditions in which the lowering of the work func
tion due to the presence of an electric field~the Schottky
effect! is appreciable, it is logical to assume that the ene
gained by an emitted electron on crossing the space-ch
sheath iseUD2DA, whereUD is the voltage drop in the
sheath andDA is the Schottky correction. The same is th
energy gained~lost! by a singly charged ion~plasma elec-
tron! moving to the cathode. Hence, it is appropriate to
placeeUD by eUD2DA in the equation of balance of th
electron energy in the ionization layer, Eq.~17! of Ref. @17#,
and in the expression for the density of the plasma-rela
energy flux to the cathode surface, Eq.~10! of Ref. @8#. In
particular, the latter equation assumes the form

qp5 jU 2
j

e
~A13.2kTe!, ~A1!

wherej is the current density andTe is the electron tempera
ture in the near-cathode layer. Note thatAeff* should be re-
placed byA in Eq. ~13! of Ref. @8#.

Another modification introduced in the present work w
as follows. The dependence of the ion flux to the catho
surface on the ratioa of the ionization length to the mea
free path for collisions of ions with neutral atoms was d
scribed in the model@8# by means of Eq.~50! of Ref. @25#.
The latter equation is used also in the present work, with
difference that the coefficientC1 in this equation is replaced
by the coefficientC2 determined by Eq.~37! of Ref. @26#.
Note that the new equation gives an exact value of the
diffusion flux in the limiting case of largea not only for a
plasma close to full ionization but for a plasma of arbitra
ionization degree.

Also the source of data on emissivity of tungsten nec
sary for calculation of the radiation losses has been chan
the data from Ref.@27# are used in this work.

The density of the energy flux to the cathode surfa
calculated for fixedU and variable cathode surface tempe
ture, is depicted in Fig. 2. Also shown are data obtained
means of the model used in Ref.@8# @Figs. 2~b! and 2~c!#.
One can see that the changes introduced in the present
produce only a minor effect. In fact, we have recalculated
our theoretical data which have been compared with the
periment in Refs.@8,24#; the respective variations are no
visible on the graphs.
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