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Abstract 

It is shown that small amplitude solitons of a nonlocal sine-Gordon model corresponding to different frequencies of the 
carrier wave can create coupled states. The effect is due to a change of the dispersion originated by a nonlocal nonlinearity. 
Within the framework of the multiscale expansion such pulses are described by a system of nonlinear Schtidinger equations 
which possesses coupled mode solutions in the form of running localized waves (breathers). Such breathers consist of 
modes with different frequencies and are characterized by two internal frequencies. 

PACS: 03.40.kf 

Recently much attention has been paid to various 
nonlinear nonlocal models due to their prominent 

role in the description of the lattice dynamics [ 1,2], 
superconductivity [ 31, and magnetic systems [ 41. 
Those models take into account long-range inter- 

actions which naturally result in new physical phe- 

nomena. One of such systems, the so-called nonlocal 

sine-Gordon (NSG) equation 

%Xx - &I 

=2cos[$4(X,t)] / dy f(x - Y> sin[ $(Y, r) I, 
J 

(1) 

has been introduced in Ref. [5], and can describe a 

1D linear chain of torsionally coupled permanent elec- 

tric dipoles positioned in a narrow gap between two 
parallel infinite earthed conducting planes. The au- 

1 Also at Centro de Ciencias Matemlicas, Universidade da 
Madeira, Praca do Municipio, 9000 Funchal, Portugal. 

thors have studied numerically the existence and dy- 
namical stability of static solutions of ( 1) . It has been 

found that due to the nonlocality kink solutions pos- 
sessing nonzero topological charge can create zero- 

topological-charge localized excitations of odd and 

even parity. These static solutions are shown to be 

stable at L+ > gcr, where u is a parameter character- 
izing the range of interactions (see (6) below) and 

acr is its critical value: in terms of the present paper 
aCr = 1.77/d M 1.25. Being static the mentioned 

solutions differ from another known type of localized 
excitations which are called breathers. Taking this fact 

into account and recalling that the small-amplitude 

breathers of the local sine-Gordon model are governed 
by the nonlinear Schrijdinger (NLS) equation, see e.g. 

Ref. [ 61, it is natural to analyze solutions of the NSG 
model in the limit of a small amplitude. This is the 
main purpose of this work. 

The NLS equation being obtained by means of the 
multiscale expansion represents the general property 
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of small amplitude solutions of the nonlinear Klein- 
Gordon models. Differences appear in the coefficients 
related to both the group velocity dispersion of the lin- 
ear waves and nonlinearity. More precisely, the effects 
discussed below are caused by nontrivial dependences 
of the mentioned coefficients on the carrier wave num- 
ber. In particular, it will be shown that the nonlocal- 
ity introduces qualitative changes in small amplitude 
soliton dynamics. The most interesting of them is the 
possibility of creating coupled states of modes. Such 
excitations are localized in space, move with finite ve- 
locity, and are characterized by internal frequencies 
(because of this last property we call them breathers). 
Though we particularize the consideration to the NSG 
Eq. ( 1) , the results are naturally generalized to any 
nonlocal model generated by the action as follows, 

-44TuC~r)l J dyf(x-y)@[uCy,r)l 9 (2) > 
where @[u] is a function on U. 

Being interested in the small amplitude limit we 
make use of the method of multiple scales [ 61. It im- 
plies that the wave field is represented in the form of 
the series u =EUi+E%2+..., where the small pa- 
rameter E is introduced in explicit form. The functions 
u,, are assumed to be varying on different space (x, = 
8’~) and time (t, = Pt) scales, where x,, and r, are 
considered as independent variables. 

The behavior of the nonlocal system depends essen- 
tially on the characteristic scale of the kernel f(x) . 
So, for instance, we have the exactly integrable sine- 
Gordon equation in the limit f(x) + 6(x) (S(x) 
being the Dirac delta). Bearing in mind the findings 
of Ref. [5] we restrict the consideration to the case 
when the characteristic scale off(x) is of the order of 
one. In other words, it will be assumed that in terms of 
the scaled variables the function f(x) depends only 
on the “rapid” spatial coordinate xc. This allows us 
to develop u( x, t) in the integrand of ( 1) in a series 
with respect to the slow independent variables {x,,} 

(n > 1). 
Then proceeding in the usual manner, i.e., collecting 

the terms containing equal powers of E, we find the 
set of equations of the form Lu,, = F,, where the linear 
integro-differential operator L is given by 

Lu=$-$- dyf(y)u(xo-y,ro) s (3) 
0 0 

(hereafter in the arguments of functions we indicate 
only the most “rapid” variable) and F,, for the second 
and third orders are given in the appendix. It is not 
difficult to find the dispersion relation associated with 
the linear operator L. It reads 

w2(k) = k2 -t f(k), (4) 

where p(k) is the Fourier transform of f(x). 
First, let us concentrate on the conventional single- 

mode solution of the first order system (Fl = 
0), which can be represented in the form u1 = 
A(x I,... ;tj,. . .)eie + c.c., where 0 = kxo - w(k) to. 
As is customary the condition of the absence of sec- 
ular terms in the second order leads to the conclusion 
that A depends on xi and tt only through the combi- 
nation 3 = XI - Ugr( k) tl where ugr( k) = dw/dk is the 
group velocity of the carrier wave. Finally, consider- 
ing the solutions independent of x2 in the third order 
of the small parameter E we obtain the NLS equation 

2ig + 6~“$ + ,y[Al*A = 0, 
2 

(5) 

where WI’ = d2w/dk2 and x = ( 1/2w)f( k). Let us 
now analyze the features of the problem using as an 
example the non-local kernel introduced in Ref. [ 51, 

f(x) = &eer’/4d, 

where cr is a parameter characterizing the range of in- 
teractions. The first characteristic feature of the prob- 
lem follows from (5), (6). The nonlinearity coeffi- 
cient x goes to zero with k and has a maximum at 
k = 0. This means that localized (i.e. soliton) solu- 
tions are available only in the limited region ) kJ < l/a 
of the wave numbers. Then, with the kernel (6), we 
have the group velocity in the form 

(7) 

Its dependence on the wave number is sketched in 
Fig. 1. The peculiarity of the case at hand is the N- 
shape form of the curve ugr( k) for the interaction of 
a sufficiently long range, more precisely, when (T > 
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Fig. 1, Dependence of the group velocity on the carrier wave num- 
ber. The curves correspond to three different situations: u < c#‘, 
C$’ < v < ~2:’ and &) < cr. 

a(‘) = 1. First of all this means the existence of soli- CT 
tons of different types at different wave numbers. In 
particular, in the vicinity of k = 0, where the group 
velocity dispersion is negative, there can exist a dark 
soliton, while at [kl > ko (ko being the wave number 
corresponding to the minimum of I ) the group 
velocity dispersion is positive, which means the exis- 
tence of bright soliton solutions. It is to be mentioned 
here that the similar phenomenon of co-existence of 
bright and dark solitons in nonlinear lattices with long 
range interactions has been reported in Ref. [ 21. Fur- 
ther increasing u leads to linear waves appearing with 
velocity more than one (i.e. than the “light” velocity). 
This happens when the range of interactions exceeds 
the second critical value, u > al:), where a$) = 
2e’14 (M 2.568). One more peculiarity displayed in 
Fig. 1 is the existence of waves with different fre- 
quencies and group velocity dispersions but with the 
same group velocity. Such waves can create travelling 
bound states due to the nonlinearity. 

In order to illustrate the last effect let us consider the 
propagation of two modes having the same velocity 
ugr( k) . The respective solution can be represented as 
follows, 

u1 =Al(xl,... ;tl,... )ei8’ 

+ A~(xI, _ . . ; fir. . .)ei8* + c.c., (8) 

hereafter we use the designation B,, = knxO - w( k,) to. 

Thus it is assumed that Ugr( kl ) = ugr( k2) = ugr (this 
can be called a matching condition) though the fre- 
quencies of both modes are different, 01 # 02. There- 
fore equations for both mode amplitudes Al and A2 
in the second order coincide. This means that A,,2 
depends only on the running variable 5. The explicit 
form (8) of ur in the third order leads to 

+ hIAd +,m)Az12)A~ 

+ (x21 14411~ + x221A212M2 

= 0, (9) 

where xjj = if(kj), xij = i[f(ki) + J(kj)] (i # 
j), w, = w(k,), and w’,‘= w”(k,,). 

It is to be mentioned here that in fact the matching 
condition explored above is not a necessary require- 
ment for the derivation of the system (9). Indeed, let 
us consider a wave with wave number i& = k2 -t EK (K 
being of the order of k2). This results in the change of 
the frequency of the second mode by EKU~~+ ~E~K~w$’ 

and therefore in the change of the running phase: & = 
02 + KJ - iK2uyt2 (the tilde stands for the func- 

tions in the point i2). The above modification can be 
taken into account by simple renormalization of A:! 
and therefore leads to the renormalization of both the 
velocity and the phase of the coupled mode solution 
(if any). In this way we found that the solutions rep- 
resented below are structurally stable with respect to 
a small (or order E) deviation from the matching con- 
dition. 

The system of equations (9) is well known and can 
be solved in a number of particular cases. Moreover, 
it has already been studied in the context of coupled 
mode dynamics (see e.g. Refs. [ 7,8] ). However, the 
coupling considered here is essentially different from 
the situation treated elsewhere. So, for example, in 
Ref. [ 71 the tied states of two modes with close wave 
vectors have been described and in Ref. [8] it has 
appeared at the same frequency in the system having 
two branches of the spectrum. In our case k2 - kl = 
O( k1.2) and both values of the wave numbers belong 
to the same branch and the modes are characterized by 
different frequencies and wave numbers. Also it is to 
be emphasized that the effect is a direct consequence 
of the nonlocality and disappears at u -+ 0, which is 
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explicitly seen from Fig. 1. Our model, where non- 
locality originates “material” dispersion, allows cou- 
pling of modes in the form of a running bright pulse, 
which is demonstrated below. 

Now we concentrate on two particular cases. First, 
we analyze the situation when the group velocity dis- 
persion of one of the modes is zero. More precisely, 
we consider the points kl, k2 such that WY = 0, ~7 > 
0 (i.e. k2 = +ko). This requirement can be fulfilled in 

a finite range of the nonlocality parameter cr. Namely, 

there must be aif ) < u < @. If c < a;,!) the group 
velocity is a monotonic function of the wave number, 
while at (T > rri,‘) the group velocity at the point when 

a” = 0 exceeds one (see Fig. 1) . Then a solitary wave 

solution (we call it breather) of the system (9) can 

be written as follows, 

AI = LyeiRrz sech(/?l), 

A2 = ~ei~(3)r2 sech( p&), (10) 

where 

J2= ~~I’p2, +5(&g = 
x11 +2x22 cY2 - 2. 

2 cosh2 PI ’ 

P= J 2x11 +x22 (y, 
2wtw’l 

(11) 

and cy is the constant amplitude of the breather. The 
ansatz ( 10) is based on the solution of the NLS equa- 
tion since in the case at hand the second of Eqs. (9) 

does not contain the derivative with respect to CJ and 

is resolved directly subject to the supposition that the 

modula of Ai,2 depend only on 5. The solution ( lo), 
( 11) exists in a range of parameters which is interme- 

diate between regions where there exist stable pairs of 

coupled bright solitons and unstable coupled pairs of 

bright and dark solitons [ IO]. In the respective region 

one of the modes (the second one in the case at hand) 

displays dispersionless propagation and being alone it 
should require taking into account higher dispersion. 
The coupling, however, introduces dispersion in the 
system of the two linked modes which now cannot 
be considered independently. Looking for an explicit 

formofui, weget 

ui = ---&{cos[k,r + (0 - o11rl 

+ cos[b + (445) - ~2)tl). (12) 

Thus the breather, moving with group velocity ugr, is 
characterized by the amplitude and two internal fre- 
quencies depending on the spatial coordinate. Such a 

solution has been numerically obtained in Ref. [9] 
where a stable structure was observed for quite a long 

time. 
Another interesting coupled mode solution appears 

when c > g$). Then one can consider the coupling 

of two modes having unit velocity. If one of them 

corresponds to WY > 0 and another is characterized 

by rather large Ik21, for which WY = i(k2) = O(E), 
then the system (9) is degenerated, 

JAI 
2oIix + wtwl “aZAl+~~,(,A,/2+12)A, =O. 

2 a% 
(13) 

Here 12 = IA212 is the intensity of the sec- 
ond mode. Since now the mode 2 is associ- 

ated with linear dispersionless propagation, A2 = 

Jf;exp[i(x,l/2w2)IA,12t2], the intensity Z2 may 

depend on 5 in an arbitrary way. Thus we have dy- 
namics when the first mode is driven by the second 

one. In particular, if the mode 2 is a monochromatic 

wave of a constant amplitude (i.e. 12 does not de- 
pend on t.~) then there exists a breather of the NSG 

which is exactly the NLS soliton with the frequency 

determined by (xi 1/2wl> I;?. 
The effects of coupling discussed above are caused 

by a nonmonotonic dependence of the group velocity 
on the wave number. This is a rather general character- 

istic feature of nonlocal models rather than a peculiar- 
ity of the problem at hand. In order to illustrate this, 

in Fig. 2 we depict the group velocity for our model 
withadifferentkernel [5],f(x) = l/(x4+c4),and 
for another NSG model [ 111, 

ulr +sinu = 
s 

dyf,(x - y) u,(y,f), (14) 

which describes the propagation of signals in certain 
nonlinear transmission lines. Also, as it has been found 
recently [ 121, all the above effects are observed in the 
dynamics of nonlinear chains with long-range interac- 

tions of Kac-Baker type. 
To conclude we have shown that in the limit of 

small amplitudes there exist coupled localized states 
originated by long range interactions. In the case of 
the NSG ( 1 ), (6) the properties of the system are 
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f(x - y) u, = f(z) ( u, - ,z$ - c2z2 
I 2 2a2un + p z -j-p+26 z 

1 
3 2-$-& :&t$$, 

-ma I , 1 , I , I , / 

000 2w 4.00 6.W 803 low 
waenuntxr 

Fig. 2. The group velocity versus wave number for the model ( I ) 
at S(x) = 1/(x4 + a4) (dashed line) and for the model (18) 
at f(x) = ( I /2,.&r) exp( -x2/42) (solid line). Both curves 
correspond to g z 0.565. 

characterized by two critical values of the nonlocality 
parameter (+. One of them, u:~), is close to the critical 
value found numerically in Ref. [ 51 for the excitations 

of large amplitudes. As is evident the coupled mode 

dynamics is much richer and is not exhausted by the 

phenomena described here. In particular, it is possible 

to have coupling of three running modes, as well as 
more sophisticated multimode dynamics, which will 
be reported elsewhere. 
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Appendix 

The multiscale analysis for our model differs from 

the conventional approach in the analysis of the nonlo- 

cal kernel. Expansion of the last depends on the scale 
associated to the kernel. In our case, the scale of the 
kernel is taken to be of order one. This allows one 
to develop un (in the operator L given by (3)) as a 
function of the slow variables as follows, 

(A.1) 

where z = x - y. Then the functions F, used in the 

calculations take the form 

F2 = -2% + 2a2u’ - /dxu f(xc) x0*, 
0 atoat, ax1 

(A.2) 

F3=-$+$+; 
I s a2U, 

1 

dxo f(xo) xi3 
1 

&4, 
-2- 

d%l, 

axoaxz 
+2-- 

&g&2 J 
dxo f(xo) xas 

2 

- & dxaf(xa)u; - $u: dxof(xo) ~1. 
s s 

(A.3) 
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