
 

 
 

 

 
Sustainability 2022, 14, 15220. https://doi.org/10.3390/su142215220 www.mdpi.com/journal/sustainability 

Article 

Multi-Response Design Optimisation of a Combined Fluidised 

Bed-Infrared Dryer for Terebinth (Pistacia atlantica L.) Fruit 

Drying Process Based on Energy and Exergy Assessments by 

Applying RSM-CCD Modelling 

Iman Golpour 1,*, Mohammad Kaveh 2, Ana M. Blanco-Marigorta 3, José Daniel Marcos 4, Raquel P. F. Guiné 5,*, 

Reza Amiri Chayjan 6, Esmail Khalife 7 and Hamed Karami 8 

1 Department of Mechanical Engineering of Biosystems, Urmia University, Urmia 57561-51818, Iran 
2 Department of Petroleum Engineering, College of Engineering, Knowledge University, Erbil 44001, Iraq 
3 Department of Process Engineering, University of Las Palmas de Gran Canaria,  

35017 Las Palmas de Gran Canaria, Spain 
4 Department of Energy Engineering, National Distance Education University, UNED, 28040 Madrid, Spain 
5 CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu,  

3504-510 Viseu, Portugal 
6 Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University,  

Hamedan 65178-33131, Iran 
7 Department of Civil Engineering, Cihan University-Erbil, Kurdistan Region, Erbil 44001, Iraq 
8 Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran 

* Correspondence: imangolpour@gmail.com (I.G.); raquelguine@esav.ipv.pt (R.P.F.G.) 

Abstract: The present investigation aimed to perform an optimisation process of the 

thermodynamic characteristics for terebinth fruit drying under different drying conditions in a 

fluidised bed-infrared (FBI) dryer using response surface methodology (RSM) based on a central 

composite design (CCD) approach. The experiments were conducted at three levels of drying air 

temperature (40, 55, and 70 °C), three levels of drying air velocity (0.93, 1.765, and 2.60 m/s), and 

three levels of infrared power (500, 1000, and 1500 W). Energy and exergy assessments of the 

thermodynamic parameters were performed based on the afirst and second laws of 

thermodynamics. Minimum energy utilisation, energy utilisation ratio, and exergy loss rate, and 

maximum exergy efficiency, improvement potential rate, and sustainability index were selected as 

the criteria in the optimisation process. The considered surfaces were evaluated at 20 experimental 

points. The experimental results were evaluated using a second-order polynomial model where an 

ANOVA test was applied to identify model ability and optimal operating drying conditions. The 

results of the ANOVA test showed that all of the operating variables had a highly significant effect 

on the corresponding responses. At the optimal drying conditions of 40 °C drying air temperature, 

2.60 m/s air velocity, 633.54 W infrared power, and desirability of 0.670, the optimised values of 

energy utilisation, energy utilisation ratio, exergy efficiency, exergy loss rate, improvement 

potential rate, and sustainability index were 0.036 kJ/s, 0.029, 86.63%, 0.029 kJ/s, 1.79 kJ/s, and 7.36, 

respectively. The models predicted for all of the responses had R2-values ranging between 0.9254 

and 0.9928, which showed that they had good ability to predict these responses. Therefore, the 

results of this research showed that RSM modelling had acceptable success in optimising 

thermodynamic performance in addition to achieving the best experimental conditions. 

Keywords: terebinth; hybrid fluidised bed infrared drying; exergy assessment; optimisation;  
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1. Introduction 

Terebinth (Pistacia atlantica) is a specific  fruit with a sour taste, a spherical shape, and 

a dark green colour, which is extensively grown in  the cold regions of Iran, particularly 

in provinces such as Kurdistan, West Azerbaijan, Ilam, and Kermanshah, and it is also 

grown in other countries, including Armenia, Turkey, Syria, and Iraq [1,2]. This particular 

fruit not only contains a rich source of vitamins (A, B, and D), carbohydrates, protein, 

minerals, and nutrients, but is also rich in flavonoid compounds, anthocyanin, fatty acids, 

total phenolic content, and fundamental oils, which can be applied in medicine to treat 

cancer and inflammatory bowel disease, to strengthen the nerves, to prevent osteoporosis 

and anaemia, and to treat chapped lips. Besides, it can be used in the mineral, chemical, 

and wood processing industries [3,4]. To prevent microbial spoilage and the diverse 

physical, chemical, and nutritional alterations in fresh agricultural crops after harvesting, 

due to their high moisture content, different ways and technologies are utilised to extend 

their shelf life while also preserving their quality for usage and for chemical, physical, and 

microbiological applications [5–7]. 

Preservation methods, such as the drying process, are commonly used to reduce 

moisture content, which reduces the volume and mass parameters of food products to 

help decrease the prices of packaging process, storage stage, and transportation system 

[6,8]. Some technologies of drying systems in the food industries, including hot-air 

convection, microwave, infrared radiation, vacuum drying, freezing, and solar drying, 

have been utilised to dry agricultural crops [9–11]. Convective drying is known as the 

earliest way of removing moisture from foods and fresh agricultural products, such as 

fruits and vegetables. Various parameters, including thermophysical characteristics, air 

temperature, air velocity, and relative humidity, can affect the drying process when 

convective dryers are used in the food industries [8,12]. 

One of the most important advantages of applying a fluidised bed dryer (FBD), 

among all convective dryers, is the uniform drying of agricultural products. Still, this 

technique requires a large drying time because of the lower drying rate [13]. This kind of 

dryer, among different industrial or commercial dryers, also has specific disadvantages, 

including low efficiency, long time of drying process, great rate of energy consumption, 

and reduced final quality of products. This leads to the use of other types of equipment 

for drying agricultural products [14,15]. These issues could be majorly resolved by using 

hybrid dryers with a combination of infrared radiation and convective drying methods to 

obtain dried fruits and vegetables with high final quality. Infrared radiation (IR) drying is 

used as one of the most potent techniques for drying products with great moisture content 

(MC). This process involves the transfer of IR energy straight from an IR lamp as the 

energy source to the product surface without influencing the air temperature around the 

samples [16,17]. The use of hybrid IR-convective dryers in the food industries has 

advantages, such as saving drying time, rapid transient response, great coefficient of heat 

transfer, and especially short energy consumption and high energy efficiency, and can 

resolve the problems related to convective dryers to produce final dried products with 

better quality for consumption [16,18]. 

Although the use of energy assessment based on the first law of thermodynamics in 

energy facilities, including industrial drying systems, is important, it does not provide 

any information regarding the energy quality and locations of improvement because of 

irreversibility, exergy losses, and surrounding conditions in the related processing 

system. In addition, it could not be used for optimisation aims and sustainable design in 

the food industries [19,20]. From the viewpoint of the second law of thermodynamics, 

exergy analysis as a maximum work obtained in a system can overcome the 

aforementioned shortcomings; thus, it is extensively utilised as a required instrument for 

surmounting the deficiency of energy analysis, improving energy systems, designing 

suitable process and operation procedures, analysing and optimising heating systems, as 

well as enabling the identification of the locations, kinds, and real magnitudes of energy 

and exergy losses [20–24]. Several investigations have been conducted based on the 
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energy and exergy assessments of a forced convection cabinet dryer for the drying process 

of okra [9], a convective dryer for paddy drying [22], a fluidised dryer for drying eggplant 

[25], a microwave dryer for mulberry drying [26], a multi-stage, semi-industrial 

continuous dryer for onion drying [27], and an infrared-convective dryer for walnut 

drying [28]. 

In recent decades, not only the prices of energy, global warming, and world 

population are increasing, but also fossil fuel recourses are decreasing over the world. 

This makes the optimal use of energy in heating systems, such as diverse dryers, of 

particular importance [21]. The optimisation process of energetic and exergetic 

parameters is regularly conducted in the food industries to resolve ongoing problems and 

related challenges in energy systems to improve efficiencies and increase the quality of 

the final products, or to optimise the cost factor of the production process [29]. Response 

surface methodology (RSM) as a statistical–mathematical method is employed to predict 

and optimise multivariate statistical modelling equations in multiple regression analyses 

and optimisation investigations. RSM helps experimenters and designers make efficient 

identification of a process or system through the application of quantitative data acquired 

from accurately designed experiments [30]. Benhamza et al. [31] conducted an 

optimisation process of the exergy parameters of a solar air heater for food drying using 

RSM. They concluded that the optimal outlet temperature, IP , and thermal efficiency 

were 52 °C, 1397.34 W, and 51.78%, respectively. The optimal design improved the IP  by 

19.33% and thermal efficiency by 15.76%. Majdi et al. [8] applied RSM to optimise the 

convective drying of apple slices, and the maximum value of the desirability function was 

reported to be 0.781 to obtain optimal conditions and responses. 

Although there are several studies on the energy and exergy assessments of several 

systems for drying agricultural crops, a literature review shows no sufficient information 

regarding the optimisation of thermodynamic properties of terebinth fruit drying in a 

hybrid fluidised bed-infrared dryer by applying CCD-RSM. As a consequence, the main 

aims of this study were to develop a predictive RSM optimisation model to forecast the 

optimal drying conditions for terebinth drying in a hybrid fluidised bed-infrared dryer, 

as well as to apply a comprehensive exergy analytical technique to the energetic and 

exergetic parameters under investigation, including energy utilisation (EU), energy 

utilisation ratio (EUR), exergetic efficiency, exergetic loss rate, improvement potential 

rate, and sustainability index. 

2. Materials and Methods 

2.1. Terebinth Samples 

Fresh samples of terebinth fruit were harvested from the local forests located in the 

city of Sardasht, West Azerbaijan, Iran. After manually washing, cleaning, and removing 

defective fruits and foreign particles, the terebinth samples prepared for the experiments 

were kept in a polyethylene plastic to maintain their original quality in a refrigerator at 4 

± 1 °C. The average primary moisture content (MC) of the fresh terebinth samples was 

obtained at 1.16 ± 0.5% (d.b.%) using a standard oven method (Memmert, UFB 500, 

Schwabach, Germany) at 70 ± 2 °C for 24 h [2]. 

2.2. Equipment Description and Experimental Configuration 

A schematic of the experimental setup of a laboratory-scale hybrid fluidised bed-

infrared (FBI) dryer that was used to conduct the drying experiments is shown in Figure 

1. The main parts of the FBI dryer consisted of an electrical air heating chamber (2.4 kW), 

an adjustable centrifugal blower, a drying chamber, four infrared lamps (Philips, Belgium) 

with 2000 W power, a thermostat (Atbin, Mega, Tehran, Iran), an inverter (LS, Seoul, 

Republic of Korea), and a tray sample. The FBI dryer was fixed for 30 min before starting 

each drying experiment to reach stable conditions. To equilibrate the sample temperature 

with the ambient temperature, a certain amount of the terebinth samples was taken out of 
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the refrigerator one hour before starting the drying experiments. A total of 40 g of the 

fresh terebinth samples (1.16% M.C.) was utilised to conduct the drying experiments at 

three levels of air temperature (40, 55, and 70 °C), three levels of drying air velocity (0.93, 

1.76, and 2.60 m/s), and three levels of infrared power (500, 1000, and 1500 W) in the FBI 

dryer. The value of relative humidity was found to be in the range of 24–29%. The 

terebinth samples were weighed during the FBI drying process using a digital balance 

(AND GF6000, Tokyo, Japan) with an accuracy of 0.01 g. The drying experiments of the 

terebinth samples were performed in three replications. 

 

Figure 1. A schematic of the hybrid fluidised bed-infrared dryer. 

2.3. Comprehensive Energy and Exergy Analyses 

In this study, the conservation principles of mass and energy and the general 

equation of exergy balance were utilised for a comprehensive exergy assessment to 

analyse the exergy rate of streams under the process of general steady flow in the hybrid 

infrared drying system. Table 1 demonstrates the general equations utilised to calculate 

the performance parameters as well as the inflow, outflow, and exergy loss rate. 

Table 1. General equations applied to calculate the relevant parameters in conventional energy and 

exergy analyses [32]. 

Parameter Equation Equation No. 

Mass balance in outm m=    (1) 

Energy balance in outEn En=    (2) 

Exergy balance , ,( ) ( )ph ph

Tein a in IR Teout a out eva LossEx Ex Ex Ex Ex Ex Ex+ + − + =  (3) 

Energy utilisation, EU, was obtained with respect to the principle of energy 

conservation using the following formula [33]: 

( ) ( )da dcin dcout te tein teoutEU m h h m h h= − + −  (4) 

The energy utilisation ratio (EUR) of the hybrid infrared dryer was computed as 

follows [34]: 

( ) ( )

( )

da dcin dcout te tein teout

da Pda tein teout

m h h m h h
EUR

m c T T

− + −
=

−
 

(5) 

The enthalpy of drying air (hda) and the enthalpy of the terebinth samples (hte) were 

determined using Equation (6) [35] and Equation (7) [33]: 

0( )da pa fgh c T T h= − +
 (6) 

0( )te Pte teh c T T= −  (7) 
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The average specific heat of drying air (cpa) and the specific heat of fresh and dried 

terebinth (cte) were obtained using Equation (8) [35] and Equation (9) [36]: 

1.004 1.88pac = +  (8) 

4.187 1.424 1.459 1.675 0.837te m c pr f ac X X X X X= + + + +
 (9) 

The exergy rate of air inlet and outlet of the drying chamber were obtained using the 

following Equation [19,37]: 

0 0
0 0

0
0

0

( )( ) ( ) ln ( ) ln

1 1.6078
( ) ln 1.6078 ln

1 1.6078

a
da da a a a a

da a a

PT
Ex m c c T T T c c R R

T P

m T R R R

  



  

 
 

 

      
= + − − + − + +     

       

   +   
+ +    

+      

 (10) 

The mass flow rate of drying air was obtained using Equation (11) [34]: 

a a a am u A=
 (11) 

In Equation (10), the humidity ratio of air ( a ) is calculated using Equation (12) [38]: 

,

,

0.622
vs a

da vs a

P

P P





=

−
 (12) 

The exergy input rate of the IR source was calculated using the following Equation 

[19,39]: 

4 3 4

0 0

4 1

3 3
IR IR IR IR IREx T T T T A 

 
= − +    
   

(13) 

The rate of exergy transfer for the evaporation section of the FBI dryer was defined 

using the following Equation [40]: 

1
fgevp a

a

T
Ex m h

T


 

= − 
   

(14) 

The latent heat of vaporisation of moisture on the basis of absolute temperature was 

determined at saturation state using the Equation below [41]: 
6 3

1

12 7 2 2

2.503 10 2.386 10 ( 273.16) 273.16 ( ) 338.72

(7.33 10 1.60 10 ) 338.72 ( ) 533.16

  −  −  


= 
  −   

fg

T T K
h

T T K

 (15) 

The exergy rate of the wet terebinth samples could be identified using the following 

formula [42]: 

( ) lnph te

te te pte te

T
Ex m c T T T

T
 



  
= − −  

   
 (16) 

The exergetic efficiency of the drying chamber ( ex
) was computed using Equation 

(17) [9]: 

(1 ) 100loss

eff

in

Ex
Ex

Ex
= − 

 
(17) 

The improvement potential rate ( IP ) was obtained as follows [43]: 

( )( )1 eff in outIP Ex Ex Ex= − −  (18) 
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Moreover, the sustainability index (SI) was computed using the following formula 

[9]: 

1

1 eff

SI
Ex

=
−

 (19) 

Some assumptions were made in the analysis, including the following: 

1. The system of the drying process and related main components were supposed to 

run in steady-state conditions. 

2. Kinetic and potential energies were considered negligible during the process. 

3. The temperature gradient available inside the terebinth samples was considered 

negligible. 

4. The temperature and the relative humidity of the ambient air during the drying 

experiments were assumed to be constant. 

5. The reference state temperature and pressure were 20 °C and 101.325 kPa, 

respectively. 

6. The change in the pressure of the inlet and outlet flows of the FBI dryer was 

considered negligible. 

7. There was no reaction in the calculation of mass balance. 

2.4. Uncertainty Analysis 

Uncertainty analyses of the results of the drying experiments in this research work 

were divided into two special categories, namely uncertainty in the direct measurement 

of the independent factors and uncertainty in the results obtained from multiple factors. 

The first category of related uncertainties was evaluated by iterating each drying 

experiment at least three times and computing their standard deviation. The second 

category for the results obtained from multiple factors was assessed using the Taylor 

series method for propagation of uncertainties. Each test was performed at least three 

times and the maximum uncertainty of the independent factors was computed. For the 

dependent factors, the maximum propagated uncertainties were approximated using the 

Tree Calculator Release 0.9.9 software. The accuracy of the drying experiments could be 

obtained by applying the measurements of uncertainty using the following formula [44]: 

1/2
2 2 2

1 2

1 2

...F n

n

F F F
U u u u

z z z

        
 = + + +     
           

(20) 

2.5. RSM Modelling 

2.5.1. Multivariate Design of Experiment 

In this study, a central composite experimental design (CCD) with five central points 

in standard RSM was applied to model the response surface and to optimise the hybrid 

infrared dryer during the drying of terebinth fruit. The operating ranges, the different 

levels of the independent factors used in this study, and the related responses of the 

hybrid fluidised bed-infrared dryer (FBI) experiments are presented in Table 2. The 

analysis applied the parameters of the drying process coded to compare the relative 

significance of factors and to identify the independent factors. In this investigation, as 

shown in Table 3, on the basis of the face-centered CCD with RSM modelling, a total of 

20 runs were accomplished with three independent factors, namely drying air 

temperature, air velocity, and infrared power. The relevant responses were energy 

utilisation, energy utilisation ratio, exergetic efficiency, exergetic loss rate, improvement 

potential rate, and sustainability index (Table 3). An analysis of variance (ANOVA) was 

employed to assess model adequacy and to identify coefficients of regression and 

statistical significance. Statistical assessment was also performed using RSM in the 

Design–Expert software (Version 13.0.0., Trial) (Stat-Ease, Minneapolis, MN, USA). The 
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relevant results for the independent variables were statistically evaluated at the 

significance level of 95% (p = 0.05). The model adequacy was appraised using 

determination coefficient (R2), model p-value, and lack of fit testing. Moreover, the 

prediction accuracy of the relevant response factors was examined using diagnostic plots, 

including the plots of the normal probability, the plots of the residual response factors, 

the plots of externally studentised residuals against the run number, and determination 

coefficient (R2). In addition, the adequacies of the models were examined using adjusted-

R2, predicted R2, and variation coefficient (CV). It should be noted that the reliability and 

validity of the models in predicting the experimental data were considered as a function 

of the Lambda value for each response factor. The flowchart and procedure of the 

response surface method employed to optimise the energetic and exergetic parameters in 

the hybrid fluidised-bed infrared dryer are shown in Figure 2. 

 
Figure 2. The flowchart of the RSM used in the hybrid fluidised bed-infrared drying process. 

Table 2. Experimental layout of the independent factors, related levels, criteria, and goals of the 

randomised polynomial treatment design for the numerical optimisation process. 

   Symbol   Range and Levels    

 Parameters Units Uncoded  Coded Targets Coded Actual Importance 

Input parameters 

     −1 500  

Infrared power  W P A In range 0 1000 3 

     1 1500  

     −1 40  

Air temperature °C T B In range 0 55 3 

     1 70  

     −1 0.93  

Air velocity  m/s V C In range 0 1.76 3 

     1 2.60  

Responses 

Energy utilisation kJ/s EU  Minimum  0.021–0.143 3 

Energy utilisation ratio - EUR  Minimum  0.173–0.553 3 

Exergy loss rate kJ/s Exloss  Minimum  0.010–0.100 3 

Exergy efficiency % Exeff  Maximum  50.58–87.57 3 
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Exergetic improvement potential 

rate 
kJ/s IP   Maximum  0.64–6.65 3 

Sustainability index - SI  Maximum  2.02–8.05 3 

Twenty experimental points of the CCD were defined to attain the relevant responses 

under various combinations of the three variables, as shown in Table 3. 

Table 3. Experimental central composite design (CCD) of the input and response factors for drying 

terebinth under different hybrid fluidised bed-infrared drying conditions. 

 Input Variables Output Responses 

Run 
T 

°C 

V 

m/s 

P 

W 

EU 

kJ/s 

EUR 

- 

Exloss 

kJ/s 

Exeff 

% 
IP  

kJ/s 

SI 

- 

1 40 0.93 1500 0.059 0.259 0.031 74.00 3.01 3.85 

2 55 1.765 1500 0.109 0.432 0.067 63.91 4.24 2.77 

3 70 2.6 1500 0.143 0.553 0.100 60.39 6.65 2.52 

4 55 1.765 500 0.063 0.324 0.032 73.82 2.46 3.82 

5 55 1.765 1000 0.093 0.420 0.053 67.71 3.47 3.10 

6 55 2.6 1000 0.100 0.450 0.065 72.96 4.28 3.70 

7 40 2.6 1500 0.093 0.361 0.065 81.12 4.41 5.30 

8 55 1.765 1000 0.093 0.420 0.053 67.71 3.47 3.10 

9 70 2.6 500 0.085 0.421 0.047 74.23 4.87 3.88 

10 55 1.765 1000 0.093 0.420 0.053 67.71 3.47 3.10 

11 70 0.93 1500 0.120 0.454 0.072 50.58 3.98 2.02 

12 40 2.6 500 0.026 0.234 0.019 87.57 1.50 8.05 

13 55 1.765 1000 0.093 0.420 0.053 67.71 3.47 3.10 

14 55 0.93 1000 0.083 0.376 0.039 65.52 2.90 2.90 

15 55 1.765 1000 0.093 0.420 0.053 67.71 3.47 3.10 

16 40 1.765 1000 0.033 0.240 0.020 80.06 2.08 5.02 

17 70 0.93 500 0.068 0.380 0.027 62.43 2.90 2.66 

18 40 0.93 500 0.021 0.173 0.010 79.05 0.64 4.77 

19 55 1.765 1000 0.093 0.420 0.053 67.71 3.47 3.10 

20 70 1.765 1000 0.110 0.446 0.068 64.02 4.76 2.78 

A second-order polynomial model was fitted to the experimental data and evaluated 

using the Design–Expert statistical software package. The general formula for a second-

degree polynomial model with three independent factors is as follows [45]: 

1
2

0

1 1 1 1

k k k k

i i ii i ij i j

i i i j

Y x x x x    
−

= = = =

= + + + +   
 

(21) 

In the next step, five second-order polynomial equations were fitted to the 

experimental data based on the least-squares optimisation approach. The 3-D response 

surface plots were drawn using the function of two factors while keeping the others 

constant, and were applied in the prediction of the results. 

A numerical assessment of the optimisation process of the independent factors 

according to multiple responses, with the desired goals to maximise exergy efficiency, 

exergetic improvement potential rate, and sustainability index and to minimise energy 

utilisation, energy utilisation ratio, and exergy loss rate, were conducted. Additionally, a 

desirability function (Dx) as an overall composite function was estimated for the 

optimisation process of multiple responses to select the optimal conditions using Equation 

(22) [8]: 
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( )
1

1 2( ) ... n
iD x Y Y Y=   

 
(22) 

2.5.2. Model Performance Evaluation 

In this study, the coefficient of determination (R2), the adjusted coefficient of 

determination (R2), and the prediction error sum of squares (PRESS) were used to evaluate 

the experimental data and related results to predict the drying process [46]. The obtained 

values of R2 and 2

AdjR  are the indicators of how well a model of regression fits the 

observation data. Moreover, the values of PRESS and pred R2 are considered the indicators 

of how well a model of regression predicts new observations. 

2 1 residual

total

SS
R

SS
= −

 
(23) 

2 /
1

/

residual residual

Adj

total total

SS DF
R

SS DF
= −

 
(24) 

2

1

( )
i

n

iPRESS y y= −
 

(25) 

2 1

total

pred

PRESS
R

SS
= −

 
(26) 

3. Results and Discussion 

In this study, the impacts of the independent factors, consisting of drying air 

temperature, air velocity, and infrared power, in a hybrid fluidised bed-infrared dryer, on 

the responses, namely energy utilisation (EU), energy utilisation ratio (EUR), exergetic 

efficiency, exergy loss rate, exergetic improvement potential rate, and sustainability index, 

were investigated. The optimal values of these parameters were determined using CCD-

RSM modelling. An ANOVA test was performed to analyse the model fitness and identify 

significant impacts of the independent variables on the responses, and to fit the second-

order polynomial models to the obtained experimental data. 

3.1. Experimental Uncertainty 

An analysis of uncertainty was performed on the experimental measurements of 

relevant factors and the desired overall uncertainties of the predicted values resulting 

from measurement errors to confirm the repeatability and reliability of the experimental 

data. The results related to the analysis of uncertainty are presented in Table 4. Values of 

uncertainty that are less than 5% are commonly considered admissible to replicate an 

experiment [40,42]. 

Table 4. Uncertainties of the measured parameters and overall uncertainties of predicted values 

during the drying of terebinth in the fluidised bed-infrared dryer. 

Parameter Unit Uncertainty (%) 

Experimental measurements   

Inlet–outlet air temperature in fluidised bed-infrared dryer °C ±0.22 

Ambient air temperature °C ±0.22 

Drying cabinet inlet temperature °C ±0.22 

Drying cabinet outlet temperature °C ±0.22 

Weight loss of dried product g ±0.401 

Relative humidity of drying air RH ±0.80 

Drying air velocity m/s ±0.05 
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Calculated parameters   

Uncertainty in energy utilisation ratio (EUR) − ±0.0005 

Uncertainty in energy utilisation  kJ/s ±0.004 

Uncertainty in exergy loss rate kJ/s ±0.0004 

Uncertainty in exergy efficiency % ±1.23 

Uncertainty in exergetic potential improvement rate kJ/s 0.20 

Uncertainty in sustainability index − 0.05 

3.2. Evaluation of EU and EUR 

3.2.1. The Model Analysis and Assessment for EU and EUR 

Table 5 presents the results of the ANOVA test of the response surface quadratic 

models for the responses of energy utilisation and energy utilisation ratio. The ANOVA 

results for the RSM quadratic model of energy utilisation (EU) identified an F-value of 

48.31, p-value < 0.0001, and a coefficient of variation (CV) = 7.64%, showing that the 

quadratic model to predict this parameter was highly significant and the drying 

experiments were extremely accurate and reputable (Table 5). The great Fisher’s “F” value 

depicts whether the application of a regression equation can predict most of the related 

changes in the responses, while the probability value is applied to determine if F is great 

enough to illustrate statistical meaning. The model is statistically significant if p-value is 

less than 0.05 [29]. The significance of the regression model for the response of EUR was 

apparent from the approximated Fisher’s “F” value of 106.93 and a value of probability 

(P) lower than 0.0001, with a CV value of 3.37%. The results showed that the model was 

fitted to the experimental data, as illustrated in Table 5 (p < 0.01).The reliability of an 

experiment commonly declines as the coefficient of variation (CV) becomes greater [45]. 

Both two responses (EU and EUR) showed low values of CV (<10), which showed the high 

reliability of the experiments. These results were in agreement with the results reported 

by Soltani et al. [45]. 

Moreover, the ANOVA test distinctly indicated that EU was remarkably affected by 

the linear terms of drying air temperature (A), drying air velocity (B), and infrared power 

(C) (p < 0.01), whereas the interaction terms of AB, AC, and BC did not have significant 

effects on EU (p > 0.05). Regarding the square terms of the EU response, it was concluded 

that, except for the quadratic-degree effect of drying air temperature (A2) (p < 0.05), the 

rest of the quadratic-degree terms (B2 and C2) had no significant effects on energy 

utilisation (EU) (Table 5). In the present study, according to the results for EUR, the 

variable A (drying air temperature) was found to be very significant with a p-value < 

0.0001, followed by B (drying air velocity) and C (infrared power). In addition, the model’s 

interaction terms (AB and AC), except for AC, were not significant in predicting EUR 

during the drying process (p > 0.05). Among the quadratic terms of the model to predict 

EUR, the term A2 had a highly significant effect with p < 0.0001, and the term C2 with p = 

0.02 also had a significant influence on EUR. Additionally, it was not affected by the 

quadratic term of drying air velocity (B2) (p > 0.05), as shown in Table 5. 

Table 5. ANOVA results of the quadratic model factors of the RSM on the responses of energy 

utilisation and energy utilisation ratio. 

  EU    EUR   

Source SS MS F-Value p-Value SS MS F-Value p-Value 

Model 0.0177 0.0020 48.31 <0.0001 ** 0.1588 0.0176 106.93 <0.0001 * 

A 0.0087 0.0087 212.23 <0.0001 ** 0.0974 0.0974 590.31 <0.0001 * 

B 0.0009 0.0009 22.01 0.0009 ** 0.0143 0.0143 86.41 <0.0001 * 

C 0.0068 0.0068 166.22 <0.0001 ** 0.0277 0.0277 168.11 <0.0001 * 

AB 5.029 × 10−8  5.029 × 10−8 0.0012 0.9727 ns 0.0001 0.0001 0.4495 0.5178 ns 

AC 4.155 × 10−6 4.155 × 10−6 0.1019 0.7562 ns 5.665 × 10−6 5.665 × 10−6 0.0343 0.8567 ns 

BC 0.0002 0.0002 3.72 0.0828 ns 0.0012 0.0012 7.34 0.0219 * 
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A2 0.0007 0.0007 18.33 0.0016 * 0.0083 0.0083 50.53 <0.0001 ** 

B2 0.0000 0.0000 0.9071 0.3633 ns 0.0006 0.0006 3.61 0.0865 ns 

C2 0.0000 0.0000 0.2896 0.6023 ns 0.0011 0.0011 6.49 0.0290 * 

Residual 0.0004 0.0000   0.0016 0.0002   

Lack of Fit 0.0004 0.0001 3.70 0.0885 ns 0.0016 0.0003 1.65 0.2980 ns 

Pure Error 0.0000 0.0000   0.0000 0.0000   

Cor Total 0.0181    0.1604    

C.V. % 7.64    3.37    

Note: *, **, and ns denote 5% and 1% levels of significance and not significant, respectively. 

Moreover, an analysis of the tests was performed using the Design–Expert software 

to obtain the most suitable mathematical model for the prediction of the responses, such 

as EU and EUR. Cubic polynomial, linear, dual-factor (2F1), and quadratic model 

interactions were examined. To evaluate the adequacy of the model, the values of the 

statistical parameters of R2, Pre-R2, and Adj-R2, and the adequate precision were all 

identified. Among the available models, the quadratic model was selected as the best 

model to predict the parameters of EU and EUR using RSM modelling. Table 6 shows that 

the three important coefficients of regression (R2 > 0.97, predicted R2 > 0.78, and adjusted 

R2 > 0.95, with (adjusted R2-predicted R2) <0.2, for the prediction of EU, and R2 > 0.98, pred. 

R2 > 0.95, adj. R2 > 0.98, with (adjusted R2-predicted R2) <0.2, for the prediction of EUR) 

prove that these models are able to explain most of the observed variation. In addition, 

the high value of R2 = 0.9775 implied that only 2.25% of the total variation could not be 

explained by the quadratic model for EU, while this value was 1.03% for EUR. EU and 

EUR had an adequate precision higher than 4, representing sufficient discrimination of 

the models. Adequate precision evaluates the signal to the ratio of noise that is reasonably 

higher than 4 [47]. The values of adequate precision for EU and EUR were 28.75 and 41.64, 

respectively, while the values of PRESS for the selective model were found to be 0.0038 

and 0.0078, respectively (Table 6). The ratios of 28.75 and 41.64 for EU and EUR 

represented an adequate signal, so these models could be utilised to navigate the space of 

design [47]. 

Table 6. Summarised statistical data of the predictive models for energy utilisation and energy 

utilisation ratio. 

Source Std. Dev. R2 Adj. R2 Pred. R2 PRESS Adeq Precision  

EU      28.75  

Linear 0.0106 0.9003 0.8816 0.8364 0.0030   

2FI 0.0113 0.9089 0.8669 0.5754 0.0077   

Quadratic 0.0064 0.9775 0.9573 0.7878 0.0038  Suggested 

Cubic 0.0039 0.9950 0.9843 −5.1028 0.1107  Aliased 

EUR      41.64  

Linear 0.0363 0.8689 0.8443 0.7907 0.0336   

2FI 0.0390 0.8769 0.8201 0.4186 0.0933   

Quadratic 0.0128 0.9897 0.9805 0.9515 0.0078  Suggested 

Cubic 0.0161 0.9903 0.9692 −10.9502 1.92  Aliased 

Through the utilisation of multiple regression assessment on the drying experimental 

data, the following quadratic polynomial equations were found to indicate energy 

utilisation and energy utilisation ratio: 

20.0911 0.0294 0.0095 0.0260 0.0165EU A B C A= + + + −  (27) 

2 20.4111 0.0987 0.0378 0.0527 0.0123 0.0535 0.0197EUR A B C BC A C= + + + + − −  (28) 
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where A, B, and C are the coded values of drying air temperature, drying air velocity, and 

infrared power in the equations. The positive and negative coefficients of the model terms 

depict synergistic and antagonistic effects on the energy utilisation and energy utilisation 

ratio of terebinth drying, respectively. In these cases, A, B, C, and A2 are the significant 

terms of the quadratic model for predicting EU, whereas BC and C2 are the significant 

terms of this model to predict EUR in addition to the terms A, B, C, and A2. The quadratic 

term of drying air temperature has an affirmative effect on EU and EUR, with the highest 

positive values of coefficient equal to 0.0294 and 0.098, respectively, whereas drying air 

velocity has the lowest effect on EU and EUR among the independent variables. 

As illustrated in Figure 3a,c, the plots of normal probability for residual distribution 

of the given responses (EU and EUR) are used to benchmark the RMS model accuracy. 

The external residuals commonly decline in a straight line, showing that the residual 

distribution is in the range of normal, and the least-squares fitting adequacy is confirmed 

(Figure 3a,c). In addition, it shows that the relevant models are suitable for predicting the 

responses. Moreover, Figure 3b,d demonstrate that the values of Lambda, which signify 

the power given to the values corresponding to the response variables, are −0.54 and 0.60, 

respectively, which then have a Lambda value of 1.0 after power transformation. Overall, 

the plots in Figure 3 identify which of the developed regression models of energy 

utilisation and energy utilisation ratio with good performance in the goodness of fit test 

align with the predictions of the ANOVA test during a fluidised bed-infrared drying 

process of terebinth fruit. Similar findings have been observed by Gorji and Ranjbar [48] 

while optimising a nanofluid-based direct absorption solar collector. 

  



Sustainability 2022, 14, 15220 13 of 29 
 

  

Figure 3. Diagnostic plots for the optimisation process of the FBI dryer during terebinth drying: (a) 

normal probability plot of residuals for EU, (b) Box–Cox plot after power transformation of EU, (c) 

normal probability plot of residuals for EUR, and (d) Box–Cox plot after power transformation of 

EUR.   

3.2.2. Impact of Drying Conditions on EU and EUR 

To assess the interactions between drying air temperature, drying air velocity, and 

infrared power on the responses of EU and EUR, three-dimensional plots of the response 

surface were constructed for each of the relevant models on the performance of the three 

independent parameters (Figure 4a–d). This distinct surface supplies the system’s EU and 

EUR at any point of the suggested range for the experiment’s factors. 

Figure 4a implies that EU is a function of drying air temperature, drying air velocity 

and infrared power. In Figure 4a,b, it can be shown that these independent variables 

simultaneously have a significant effect on EU. EU increases with rising drying air 

temperature, drying air velocity, and infrared power, and decreases with drying time. 

Enhancing drying air temperature increases the rate of heat transfer from wall to gas and 

from gas to solid, which leads to a rise in the rate of moisture evaporation that results in 

more energy utilisation in a dryer [49]. In Figure 3a,b, the red colour shows that the 

maximum value of EU (0.142 kJ/s) occurs at a drying air temperature of 70 °C, drying air 

velocity of 2.60 m/s, and infrared power of 1500 W, whereas the lowest value (0.021 kJ/s) 

occurs at 40 °C drying air temperature, 0.93 m/s drying air velocity, and 500 W infrared 

power. The EU of the terebinth samples in the FBI dryer of this study is lower than that of 

a microwave dryer in the study conducted by Motevali and Minaei [50] to dry sour 

pomegranate arils. The same findings in terms of the influences of drying air temperature 

and air velocity on EU have been reported by Beigi [51] for drying kiwifruit slices. 

However, it can be observed that the minimum EU occurs near high air temperatures at a 

constant air velocity value of 1.76 m/s for all levels of infrared power. Furthermore, the 

drying air temperature has a greater effect on EU than other independent variables. As 

presented in Figure 4c,d, it can be seen that EUR also increases with the three independent 

variables, including drying air temperature, drying air velocity, and infrared power. The 

influences of drying air temperature and infrared power are more significant than the 

influence of air velocity on EUR. The minimum value of EUR is 0.172 kJ/s for terebinth 

drying at a drying air temperature of 40 °C, a drying air velocity of 0.93 m/s, and infrared 

power of 500 W. The maximum value of 0.552 kJ/s is obtained at 70 °C with a drying air 

velocity of 2.60 m/s and infrared power of 1500 W (Figure 4c,d). Moreover, the results 

obtained in this study are similar to those of Golpour et al., [22], Corzo et al., [52], and 

Aghbashlo et al., [34], who found that EU rises with increasing drying air temperature 

and air velocity. 
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Figure 4. Response surface plot interaction between (a) air velocity and drying air temperature on 

energy utilisation, (b) infrared power and air temperature on energy utilisation, (c) air velocity and 

drying air temperature on energy utilisation ratio, and (d) infrared power and drying air 

temperature on energy utilisation ratio. 

3.3. Evaluation of EXeff and Exloss 

3.3.1. The Model Analysis and Assessment for EXeff and Exloss 

Table 7 shows the results of the variance analysis regarding the statistical significance 

of linear, quadratic, and interactive influences of the independent factors (drying air 

temperature, drying air velocity, and infrared power) on EXeff and Exloss. The results show 

that the values of “Prob. > F” confirm the predicted EXeff and Exloss relationships. The F-

value for the models of the responses (exergetic efficiency and exergy loss rate) were 

152.74 and 66.17, respectively, while the values of the lack of fit test were not significant 

and the coefficient of determination (R2) was acceptable for both of the responses, showing 

that the extracted models were suitable (Table 7). The p-values of the models for predicting 

EXeff and Exloss were less than 0.0001, showing that the terms of the models were highly 

significant (Table 7). With such high values of F in the prediction of EXeff and EXloss, there 

was only a possibility of 0.01% that this could have been because of noise [53]. Overall, 

the greater F-value demonstrates the higher reliability of the models, whereas the 

significance of the models is identified with lower p-values [54,55]. In the present study, 

the obtained results of the ANOVA test of exergetic efficiency (EXeff) and exergy loss rate 

(Exloss), as illustrated in Table 7, affirm that the independent parameters of drying air 

velocity, air temperature, and infrared power are statistically significant with p < 0.01. 
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According to the results of Table 7, it can be shown that only A2 and AC are significant in 

addition to the linear terms with p-value < 0.05.There are no significant effects for the rest 

of the terms of the model in the prediction of exergetic efficiency (p > 0.05) (Table 7). This 

shows that drying air temperature (A) has a stronger influence on EXeff optimisation. 

Moreover, only the linear terms are significant in predicting the exergy loss rate, and other 

interactive and quadratic terms (AB, AC, BC, A2, B2, and C2) have no significant effects on 

the exergy loss rate. 

Table 7. ANOVA results of the quadratic model factors of the RSM on the responses of exergetic 

efficiency and exergy loss rate. 

  EXeff    EXloss   

Source SS MS F-Value p-Value SS MS F-Value p-Value 

Model 1313.73 145.97 152.74 <0.0001 ** 0.0083 0.0028 66.17 <0.0001 ** 

A 812.94 812.94 850.63 <0.0001 ** 0.0029 0.0029 69.27 <0.0001 ** 

B 199.78 199.78 209.05 <0.0001 ** 0.0014 0.0014 33.26 <0.0001 ** 

C 221.79 221.79 232.08 <0.0001 ** 0.0040 0.0040 95.99 <0.0001 ** 

AB 4.46 4.46 4.66 0.0562 ns     

AC 25.18 25.18 26.35 0.0004 **     

BC 1.43 1.43 1.50 0.2487 ns     

A2 25.37 25.37 26.54 0.0004 **     

B2 0.1576 0.1576 0.1649 0.6933 ns     

C2 0.0529 0.0529 0.0553 0.8188 ns     

Residual 9.56 0.9557   0.0007 0.0000   

Lack of 

Fit 
9.56 1.91 1.59 0.3110 ns 0.0007 0.0001 3.54 0.871 ns 

Pure 

Error 
0.0000 0.0000   0.0000 0.0000   

Cor Total 1323.29    0.0089    

C.V. % 1.40    13.13    

Note: ** and ns denote 1% level of significance and not significant, respectively. 

The statistical values of the best-fitting models according to the ANOVA test are 

presented in Table 8 in the prediction of exergetic efficiency and exergy loss rate. As 

shown in Table 8, the quadratic model for exergetic efficiency, with R2 = 0.9928, an 

adjusted coefficient of R2 = 0.9863, and a predicted coefficient of R2 = 0.9584, has better 

performance than the other models, due to this model having a value difference between 

the adjusted and predicted coefficients of less than 0.20 [56]. The linear model is the best 

to predict the exergy loss rate with the values of 0.9254, 0.9114, and 0.8581 for the 

parameters of R2, Adj. R2, and Pred. R2, respectively (Table 8). According to the R2 

obtained, only 0.82% and 8.46% of the total variation cannot be explained by the RSM 

model for EXeff and EXloss, respectively. The fit of the models was tested using ANOVA, 

and the obtained results demonstrated that the corresponding equation correctly 

reproduced the real relationship between a set of independent parameters and the 

responses (Table 8). Although the predicted sum of squares (PRESS) of 55.09 and 0.0013 

were optimal for the selected model, the relatively low value of CV indicated that the test 

data had good reliability (Table 8). Moreover, the values of adeq. precision for Exeff and 

Exloss were 52.64 and 33.78, respectively. Adeq. precision values show the proportion of 

experimental input factors and noise, and a proportion > 4 is satisfactorily acceptable [57]. 
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Table 8. Summarised statistical data of the predictive models for exergetic efficiency and exergy 

loss rate. 

Source Std. Dev. R2 Adj. R2 Pred. R2 PRESS Adeq Precision  

Exeff      52.64  

Linear 2.36 0.9329 0.9203 0.8777 161.90   

2FI 2.11 0.9564 0.9363 0.8022 261.80   

Quadratic 0.9776 0.9928 0.9863 0.9584 55.09  Suggested 

Cubic 0.9575 0.9958 0.9868 −4.1073 6758.38  Aliased 

Exloss      33.78  

Linear 0.0064 0.9254 0.9114 0.8581 0.0013  Suggested 

2FI 0.0056 0.9543 0.9332 0.7816 0.0019   

Quadratic 0.0046 0.9763 0.9549 0.7637 0.0021   

Cubic 0.0018 0.9979 0.9934 −1.5465 0.0227  Aliased 

A predictive regression model was developed using RSM to correlate the responses 

of exergetic efficiency and exergy loss rate with the input factors, and their regression 

coefficients in coded terms are presented in Equations (29) and (30): 

268.23 9.02 4.47 4.71 1.77 3.04effEX A B C AC A= − + − − +
 (29) 

0.0491 0.0170 0.0118 0.0200LEX A B C= + + +  (30) 

Equation (29) states the second-order quadratic model of exergy efficiency. In this 

case, T, V, and P are highly significant model terms that are statistically significant at p < 

0.05. Therefore, from Equation (29), infrared power with the lowest negative coefficient of 

−4.71 among the independent terms is the most ineffective factor for increasing exergy 

efficiency. Based on Equation (30), the most effective factor for decreasing the exergy loss 

rate is infrared power, which has the highest positive coefficient of 0.0200. In addition, the 

square and interactive effects of the independent factors are not significant in the 

prediction of exergy loss rate according to this model (p ≥ 0.05). 

The plots in Figure 5a,c illustrate the adequacy of the models in the prediction of 

exergetic efficiency and exergy loss rate, respectively. The results show that the vicinity of 

the observed data to the line of fitting illustrates a considerable relationship between the 

estimated and observed data (Figure 5a,c). Thus, the extracted relation of the models to 

predict the responses has the ability to predict the observed data accurately with a 

satisfactory normal distribution. Indeed, it can be seen in Figure 5a,c that the residuals fall 

in a straight line, which depicts that the obtained errors are commonly distributed. The 

Box–Cox plots validate the prediction accuracy of the corresponding models through the 

power transformation of exergetic efficiency and exergy loss rate to the value of Lambda 

= 1.00, with residual dispersion randomly between −3 to 3 in the related domain. The 

values of Lambda, which specify the power given to the variables of response, are 3.00 

and 0.88 for EXeff and Exloss after power transformation with a value of Lambda = 1, as 

shown in Figure 5b,d. Thus, the developed relations for EXeff and Exloss have the ability to 

faithfully predict the observed data. 
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Figure 5. Diagnostic plots for the optimisation process of the FBI dryer during terebinth drying: (a) 

normal probability plot of residuals for EXeff, (b) Box–Cox plot after power transformation of EXeff; 

(c) normal probability plot of residuals for Exloss, and (d) Box–Cox plot after power transformation 

of EXloss. 

3.3.2. Impact of Drying Conditions on EXeff and Exloss 

The 3D plots of the responses, namely exergy efficiency and exergy loss rate under 

the interactions of drying air temperature, drying air velocity, and infrared power, during 

the drying process of the terebinth samples are shown in Figure 6a–d. The exergy 

efficiency for the hybrid convective drying of terebinth for the different conditions was 

obtained in the range of 50.57–87.57% (Figure 6a,b). The obtained results showed that 

exergy efficiency declined with rising drying air temperature from 40 °C to 70 °C and 

infrared power from 500 W to 1500 W, while this response increased with rising air 

velocity from 0.93 to 2.60 m/s. Exergetic efficiency can be computed using Equation (17) 

on the basis of exergy inflow, outflow, and losses. The drying air temperature difference 

between the FBI dryer and the environment was great, causing low exergy efficiency [58]. 

On the other hand, exergy efficiency declined with rising drying air temperature because 

of the great exergy losses. Thus, the highest value of exergy efficiency obtained was 

87.57% at 40 °C drying air temperature, 2.60 m/s air velocity, and 500 W infrared power, 

and the lowest value of this response was 50.57% at drying air temperature of 70 °C, 

drying air velocity of 0.93 m/s, and infrared power of 1500 W (Figure 6a,b). However, the 
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obtained value for exergy efficiency in the present study was less than the exergy 

efficiency of dried carrot samples in a semi-industrial continuous band dryer reported by 

Aghbashlo et al. [34]. Therefore, these values for exergy efficiency clearly specify the 

outflow of the FBI dryer system as the main site of thermodynamic inefficiency, 

illustrating that a great proportion of thermal exergy provided is lost in the outlet air and 

dryer frame in the case of the dryer in this study. The results of this study show that great 

exergetic efficiency is due to low drying air velocity. Hence, the exergy inflow to the FBI 

dryer comes out again as an outflow of exergy along with air velocity, which is named 

low exergy consumption [58]. 

Moreover, the graphical results in Figure 6c show that exergy loss rate increases with 

an increase in all three independent factors, including drying air temperature, drying air 

velocity, and infrared power, showing that these factors have an effective influence on the 

related responses. According to the extracted results, the maximum value of exergy loss 

rate (0.100 kJ/s) occurred at a drying air temperature of 70 °C, a drying air velocity of 2.60 

m/s, and infrared power of 1500 W during the FBI drying process of terebinth (Figure 6c). 

Exergy loss increases with higher air velocity because of an increase in gas–solid heat 

transfer rate, leading to more evaporation of moisture. This enhances the available energy 

at the outlet of the dryer, so raising the exergy outlet of the dryer. Moreover, in the present 

study, exergy loss rate rose with an increase in drying air temperature during the drying 

process of terebinth. The same observations were found in the study by Corzo et al. [52] 

during the drying of corobo slices in a micro-oven. The exergy loss rate was found to be 

greater at the beginning of the drying process due to the evaporation of more moisture 

from the terebinth samples and then declined with respect to drying time [49]. Hence, the 

exergy loss rate from the FBI dryer frame could be decreased by prohibiting heat transfer 

rate across the system’s boundary. Sealing the FBI dryer body, insulating the FBI dryer 

frame, designing and selecting suitable components, and supplying the optimal drying 

conditions could assist in diminishing exergy loss rate and raise the efficiency of 

thermodynamics for this kind of industrial dryer. 
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Figure 6. Response surface plot interaction between (a) air velocity and air temperature on 

exergetic efficiency, and (b) infrared power and air temperature on exergetic efficiency. (c) Linear 

plot of air temperature, air velocity, and infrared power on exergy loss rate. 

3.4. Evaluation of IP  and SI 

3.4.1. The Model Analysis and Assessment for IP  and SI 

Table 9 shows the variance analysis of the linear and interaction effects of the 

independent variables on IP  and SI. From the results in this Table, it is clear that the 

lower the p-value, the more important the model terms are. The F-value for the IP  and 

SI models were 297.95 and 64.67, respectively, and the p-value for all the selected models 

was <0.0001, suggesting that the models were significant (Table 9). As shown in Table 9 for 

IP  and SI, the p-values of the fitted models are significant, indicating their importance in 

relation to the input parameters of drying air temperature, drying air velocity, and 

infrared power. Furthermore, in Table 9, the results of IP  for terebinth drying indicate 

the significance of the linear terms A, B, and C, and the interactive terms AB, AC, and BC 

(p-value < 0.01). In contrast, other terms, including all the quadratic terms A2, B2, and C2, 

are not significant, so reducing the model could have a positive effect on improving the 

model [59] (p > 0.05) (Table 9). In addition, due to the lack of fit and its non-significance, 

the coefficient of variation for this statistical analysis of IP  and SI and the input 

parameters were 3.83% and 6.61%, respectively, showing that the obtained models have 

good performance in predicting IP  and SI. In addition, from Table 9 for the response of 

SI, it can be observed that the linear coefficients of these input factors and the interaction 

terms, except for AC, have a highly significant effect on the RSM model of SI with p-value 

< 0.01,  whereas the second-order coefficients (B2 and C2) have p-values greater than 0.05, 

showing that they are not significant (p > 0.05) (Table 9). Moreover, considering the p-

values for optimisation, it can be shown that the interaction effects of AB and BC have a 

higher impact on SI, whereas the p-value in the term coefficient of AC is >0.05 (Table 9). 

Generally, based on the results obtained and the model, drying air temperature (A), 

drying air velocity (B) and infrared power (C) have a very significant effect on IP  (p-

value < 0.0001), showing the functions of these responses are validated from the view 

point of statistical approach [48]. 

Table 9. ANOVA results of the 2FI model factors of the RSM on the responses of exergetic 

improvement potential rate and sustainability index. 

  IP     SI   

Source SS MS F-Value p-Value SS MS F-Value p-Value 

Model 31.60 5.27 297.95 <0.0001 ** 33.52 3.72 64.67 <0.0001 ** 

A 13.29 13.29 751.91 <0.0001 ** 17.18 17.18 298.39 <0.0001 ** 



Sustainability 2022, 14, 15220 20 of 29 
 

B 6.87 6.87 388.62 <0.0001 ** 5.24 5.24 91.06 <0.0001 ** 

C 9.81 9.81 555.25 <0.0001 ** 4.51 4.51 78.36 <0.0001 ** 

AB 0.7059 0.7059 39.94 <0.0001 ** 1.13 1.13 19.58 0.0013 ** 

AC 0.7306 0.7306 41.34 <0.0001 ** 0.3534 0.3534 6.14 0.0327 * 

BC 0.1886 0.1886 10.67 0.0061 ** 0.8064 0.8064 14.00 0.0038 ** 

A2 - -   1.51 1.51  0.0005 ** 

B2 - -   0.0554 0.0554  0.3499 ns 

C2 - -   0.0521 0.0521  0.3640 ns 

Residual 0.2298 0.0177   0.5759 0.0576   

Lack of Fit 0.2298 0.0287 2.56 0.1582 ns 0.5759 0.1152 2.84 0.1380 ns 

Pure Error 0.0000 0.0000   0.0000 0.0000   

Cor Total 31.82    34.10    

C.V. % 3.83    6.61    

Note: *, ** and ns denote 5 and 1% levels of significance and not significant, respectively. 

Table 10 demonstrates that the 2FI and quadratic models result in a better prediction 

of exergetic improvement potential rate and sustainability index in relation to other 

models. The selected model (2FI) for exergetic improvement potential rate evaluates the 

determination (R2) coefficient, adjusted R2, predicted R2, and adequate precision. The R2 

value of 0.9928 shows that the model could affirm 99.28 % of the variation in the 

experimental data but does not affirm 0.72% of the overall differences (Table 10). For a 

suitable model, the R2 values should not be lower than 0.75 [60]. The values of adj-R2 = 

0.9894, pred-R2 = 0.9758, and Adeq Precision = 75.57 show the acceptable performance of 

the 2FI model in the prediction of exergetic improvement potential rate, as illustrated in 

Table 10. These results are in agreement with the results reported by Benhamza et al. [31] 

for a IP  model in a solar air heater for food drying. Furthermore, the quadratic model 

selected for sustainability index has a determination coefficient (R2) of 0.9831, adj-R2 of 

0.9679, and pred-R2 of 0.8001, which are in acceptable agreement as their difference is 

lower than 0.20 [61,62]. Additionally, a high value of determination coefficient (R2 = 

0.9831) in the range of the desired model shows that 1.69% of the total variation cannot be 

explained by the RSM model. Furthermore, the adequate precision value of 31.90 is more 

than 4, indicating that the relevant SI model has adequate signal to noise and could be 

utilised to navigate the space of design [61]. Moreover, the obtained values of pred-sum 

of square (PRESS) of 0.7689 and 6.82 are favourable for predicting IP  and SI, 

respectively. 

Table 10. Summarised statistical data of the predictive models for exergetic improvement potential 

rate and sustainability index. 

Source Std. Dev. R2 Adj. R2 Pred. R2 PRESS Adeq Precision  

IP       75.57  

Linear 0.3405 0.9417 0.9308 0.8680 4.20   

2FI 0.1329 0.9928 0.9894 0.9758 0.7689  Suggested 

Quadratic 0.1283 0.9948 0.9902 0.9588 1.31   

Cubic 0.0204 0.9999 0.9998 0.9039 3.06  Aliased 

SI      31.90  

Linear 0.6687 0.7902 0.7508 0.5929 13.88   

2FI 0.6118 0.8573 0.7914 0.0384 32.78   

Quadratic 0.2400 0.9831 0.9679 0.8001 6.82  Suggested 

Cubic 0.0449 0.9996 0.9989 0.5650 14.83  Aliased 

Equations (31) and (32), which encode the independent parameters of air 

temperature (A), air velocity (B), and infrared power (C), are the final equations for the 
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regression model representing the responses to exergetic improvement potential rate and 

sustainability index, respectively. These obtained models were mainly used to determine 

the optimal drying conditions in the evaluation of the optimisation modelling, which 

included the linear, quadrative and interactive effects of the independent variables on 

these responses. The positive signs in the obtained models showed synergetic influences, 

whereas the negative signs demonstrated antagonistic influences of the variables. In this 

way, the 2FI and quadratic models were obtained with good fit and could be used to 

describe the changes in IP  and SI, in which air temperature with the highest positive 

coefficient (1.15) was the most important factor in predicting this response, and air 

velocity had less significance among the independent factors with a coefficient value of 

0.8287 in the IP  model. Infrared power, with the greatest negative coefficient of −0.671, 

was the most effective factor in increasing the sustainability index. 

.

3.47 1.15 0.8287 0.9906 0.2970 0.3022 0.1535IP A B C AB AC BC= + + + + − +  (31) 

23.12 1.31 0.7242 0.6718 0.3755 0.2102 0.3175 0.7398SI A B C AB AC BC A= − + − − + − +  (32) 

The pattern of the distributing data was assessed for IP  and SI by examining the 

plots of two parameters, namely the normal % probability and related studentised 

residuals (Figure 7a,c). The plots demonstrate that the obtained experimental values are 

closely equal to the predicted values in a straight line and validate the suitability of the 

developed models to predict IP  and SI. The accuracy of prediction for the obtained 

models of IP  and SI was examined using the Box–Cox plots (Figure 7b,d) after the 

transformation of power for Lambda value equal to 1 for these parameters. It was obvious 

that the 2FI and quadratic models had the ability to predict nearly perfectly the 

experimental data and could clarify 99.28% and 98. 31% of the changes in the IP  and SI 

of the terebinth samples in the hybrid infrared dryer. 
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Figure 7. Diagnostic plots for the optimisation process of the FBI dryer during terebinth drying: (a) 

normal probability plot of residuals for IP , (b) Box–Cox plot after power transformation of IP , (c) 

normal probability plot of residuals for SI, and (d) Box–Cox plot after power transformation of SI. 

3.4.2. Impact of Drying Conditions on IP  and SI 

Three-dimensional surface plots of T, V, and P were examined to visualise the 

combined influence of the important factors of the drying process of terabinth on IP  and 

SI, as shown in Figure 8a–d. According to the obtained results, amongst the input factors, 

drying air temperature was the most significant parameter of the drying process that 

influenced the response of IP . Accordingly, at a high temperature (70 °C), the greatest 

IP  attained was 6.646 kJ/s when drying air velocity and infrared power were 2.60 m/s 

and 1500 W, respectively, whereas the lowest value of IP  was predicted to be 0.639 kJ/s 

at 40 °C drying air temperature, 0.93 m/s drying air velocity, and 500 W infrared power 

for the FBI dryer. However, the values of the improvement potential rate varied from 

0.639 kJ/s to 6.646 kJ/s under the operating conditions, which were comparable to the 

results reported by Alhanif et al. [58] for drying papaya seeds (0.001 to 4.45 kJ/kg). 

Moreover, the positive coefficients of T, V, and P in Equation (31) suggest that IP

increases with an increase in the three independent factors (drying air temperature, air 

velocity, and infrared power) (Figure 8a,b). Aghbashlo et al. [63] and Okunola et al. [9] 

reported similar findings on the drying of encapsulated fish oil and okra, respectively. 

One approach to enhance the value of exergy improvement potential rate is to diminish 

the irreversible process in the form of exergy consumption, which can be practically 

performed by applying lower drying air temperatures. In addition, pinch technology to a 

heat exchanger can be another application to improve this exergy parameter. Anyway, 

existing small temperature difference (∆T) between hot and cold flows can decline the 

parameter of irreversibility, which enhances the amount of exergy that can be used [58]. 

The effects of the air parameters and infrared power of the FBI dryer on the 

sustainability index of the drying chamber for drying terebinth fruit are demonstrated in 

Figure 8c,d. The value of SI enhanced with air velocity. It decreased with rising drying air 

temperature and infrared power. The sustainability index ranged from 2.023 to 8.045, 

while drying air temperature, air velocity, and infrared power varied in the range of 40–

70 °C, 0.93–2.60 m/s, and 500–1500 W, respectively. The index in the study by Beigi [51] 

for drying kiwifruit slices in a convective tray dryer varied from 2.27 to 6.30. The minimum 

value of SI was 2.023 at a drying air temperature of 70 °C, drying air velocity of 0.93 m/s, and 

infrared power of 1500 W. The maximum value of this parameter was found to be 8.045 at 40 
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°C, 2.60 m/s, and 500 W, respectively (Figure 8c,d). Moreover, the effects of the independent 

variables on the SI and exergetic efficiency of the drying chamber were the same. Thus, 

the exergetic efficiency of the drying process as an intensive operation of energy must be 

processed to diminish the environmental impact [51]. A great exergetic sustainability 

index depicts that a system has a significant effect on exergy savings and a low 

environmental impact because of exergy losses to the environment, which then has an 

effect on its economic value [58]. 

  

  

Figure 8. Response surface plot interaction between (a) air velocity and air temperature on IP , (b) 

infrared power and air temperature on IP , (c) air velocity and air temperature on SI, and (d) 

infrared power and air temperature on SI. 

3.5. Multi-Objective Optimisation Process 

A numerical procedure of optimisation was applied in the present study to obtain 

the optimised values of the input factors and relevant responses, along with the desired 

consequence. Moreover, the objective functions for this optimisation process were 

developed to minimise EU, EUR, exergy loss, and to maximise exergy efficiency, 

improvement potential rate, and sustainability index, which were also evaluated at the 

level of importance (3) to the variables. With respect to the results, the value of the 

desirability function after the optimisation process for this research was 0.670, as 

illustrated in Figure 9. This obtained result was almost above average values since the 

desirability function commonly ranged between 0 and 1, which showed the vicinity of the 

obtained output to the desired output [56,64]. Figure 9 shows that the optimised values of 

the input factors are air drying temperature at 40 °C, drying air velocity at 2.60 m/s, and 

infrared power at 633.65 W, and the obtained optimal values of related responses are 0.036 
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kJ/s for energy utilisation, 0.254 for energy utilisation ratio, 86.630% for exergy efficiency, 

0.029 kJ/s for exergy loss rate, 1.793 kJ/s for improvement potential rate, 7.366 for 

sustainability index, and a desirability function of 0.670 at the end of the optimisation 

process. Figure 10 shows that the desirability function values for drying air temperature, 

drying air velocity, and infrared power are in the range of the optimisation process; 

therefore, the value of the desirability function is exactly 1, while the values for EU, EUR, 

EXeff, EXloss, IP , and SI are 0.881, 0.785, 0.787, 0.974, 0.192, and 0.887, respectively. 

Furthermore, it should be noted that the overall combined desirability for this optimisation 

process is 0.670 (Figure 10). 

 
Figure 9. Ramp function graph of the desirability of the optimisation process drying conditions for 

the relevant responses using RSM. 
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Figure 10. The values of individual desirability parameters for the independent and dependent 

variables and combined optimisation. 

4. Conclusions 

A procedure of CCD-RSM along with numerical modelling was utilised to 

investigate and assess the influence of various variables corresponding to the drying 

conditions of terebinth in a FBI dryer on the parameters of thermodynamics according to 

the objective functions. The optimisation process was performed to maximise exergy 

efficiency, improvement potential rate, and sustainability index, and to minimise energy 

utilisation, energy utilisation ratio, and sustainability index. The drying air temperature 

(40–70 °C), drying air velocity (0.93–2.60 m/s), and infrared power (500–1500 W) were in 

the range of the optimisation procedure. Variance analysis affirmed that the regression 

models of the RSM procedure had a great accuracy degree, showing that they could be 

applied to optimise the design of thermodynamic parameters and the drying operating 

conditions of terebinth. The results showed that energy utilisation, energy utilisation ratio, 

exergy efficiency, exergetic loss rate, improvement potential rate, and sustainability index 

were estimated to be 0.036 kJ/s, 0.254, 86.630%, 0.029 kJ/s, 1.793 kJ/s, and 7.366, 

respectively, while the optimal values for the drying conditions were specified as drying 

air temperature of 40 °C, drying air velocity of 2.60 m/s, and infrared power of 633.653 W. 

It is worth mentioning the developed statistical models of the multivariate RSM as an 

applied procedure could be helpful and trustworthy tools to estimate and optimise the 

thermodynamic performances during the drying of terebinth in the food industries. This 

is of utmost importance given the prominent need to minimise energy consumption in 

modern industrial processes. 
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Nomenclature 

Notations  

MC moisture content (% dry weight) 

T temperature (°C) 

P atmospheric pressure (kPa) 

V air velocity (m/s) 

A area (m2) 

m  mass flow rate (kg/s) 

c specific heat (kJ/kg°C) 

R  gas constant (8.3143 kJ/ mol) 

h enthalpy (kJ/kg) 

EU energy utilisation (kJ/s) 

EUR energy utilisation ratio (kJ/s) 

Q heat transfer (kJ/s) 
.

En  
energy rate (kJ/s) 

EX exergy rate (kJ/s) 

ex  specific exergy (kJ/ kg) 

IP  improvement potential rate (kJ/s) 

SI sustainability index 

RSM response surface method 

D total desirability function   

Y desirability function of each response in RSM 

x coded variable of model in RSM 

n number of responses 

y experimental value 

y  predicted value 

HCI hybrid convective infrared 

PRESS predicted sum of squares 

d.b. dry basis 

SS sum squares 

CCD central composite design 

z independent variables 

U total uncertainty 

F function of the independent variables 

ADJ adjusted 

PRED predicted 

X components of product (%) 

Greek letters  
   density (kg/m3) 

  random error  
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  emissivity factor 
   exergy efficiency (%) 
   relative humidity of air (%) 

   humidity ratio (kg water/ kg dry air) 

  Stefan–Boltzmann constant (W/m2·K4) 

  regression coefficient term of RSM’s model 

  constant volume 

Subscripts  

0 ambient 

a   air 

IR irradiation 

fg latent heat of vaporisation  

vs saturated vapour 

loss heat loss 

ij   numerator 

in   inlet 

out outlet 

pred predicted 

te terebinth 

ex exergy 

dc drying chamber 

da drying air 

evp evaporation 

p pressure 

m moisture  

c carbohydrate  

pr protein  

f fat  

a ash  
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