Computers & Security 123 (2022) 102949

Contents lists available at ScienceDirect = 2%"353:.%;5

Computers & Security

journal homepage: www.elsevier.com/locate/cose

An automated closed-loop framework to enforce security policies from @ n

anomaly detection

Check for
updates

Jodo Henriques®"<, Filipe Caldeira®"<, Tiago Cruz®* Paulo Simdes?

aUniversity of Coimbra, CISUC, Department of Informatics Engineering, Coimbra 3030-290, Portugal
b Informatics Department, Polytechnic of Viseu,Viseu 3504-510, Portugal
€CISeD - Research Centre in Digital Services, Polytechnic of Viseu, Portugal

ARTICLE INFO

Article history:

Received 13 June 2022

Revised 11 September 2022
Accepted 5 October 2022
Available online 8 October 2022

Keywords:

Automation

Policy as code

Decision trees

Machine learning

Zero-touch network and service
management (ZSM)

ABSTRACT

Due to the growing complexity and scale of IT systems, there is an increasing need to automate and
streamline routine maintenance and security management procedures, to reduce costs and improve pro-
ductivity. In the case of security incidents, the implementation and application of response actions re-
quire significant efforts from operators and developers in translating policies to code. Even if Machine
Learning (ML) models are used to find anomalies, they need to be regularly trained/updated to avoid be-
coming outdated. In an evolving environment, a ML model with outdated training might put at risk the
organization it was supposed to defend.

To overcome those issues, in this paper we propose an automated closed-loop process with three stages.
The first stage focuses on obtaining the Decision Trees (DT) that classify anomalies. In the second stage,
DTs are translated into security Policies as Code based on languages recognized by the Policy Engine (PE).
In the last stage, the translated security policies feed the Policy Engines that enforce them by converting
them into specific instruction sets. We also demonstrate the feasibility of the proposed framework, by
presenting an example that encompasses the three stages of the closed-loop process.

The proposed framework may integrate a broad spectrum of domains and use cases, being able for in-
stance to support the decide and the act stages of the ETSI Zero-touch Network & Service Management

(ZSM) framework.

© 2022 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Due to the growing complexity and scale of IT systems, there
is an increasing need to automate and streamline routine mainte-
nance and security management procedures, to reduce costs and
improve productivity. As a result, approaches such as the European
Telecommunications Standards Institute (ETSI) Zero-touch network
& Service Management (ZSM) (ETSI, 2019) are becoming increas-
ingly popular.

Such approaches enable greater consistency and uniformity and
contribute to significantly enhancing the efficiency of Operations
& Maintenance (O&M) activities. Moreover, they may result in cost
savings and a significant reduction in human errors. Similar ap-
proaches also occur in software development practices, with the

* Corresponding author at: University of Coimbra, CISUC, Department of Infor-
matics Engineering, Coimbra 3030-290, Portugal.
E-mail addresses: jpmh@dei.uc.pt (J. Henriques), tjcruz@dei.uc.pt (T. Cruz).

https://doi.org/10.1016/j.cose.2022.102949

widespread adoption of agile techniques for reducing the time al-
located to the software development cycle and IT operations, lead-
ing to the well-known concept of DevOps (Bass et al., 2015). The
addition of security management as a third pillar, complementing
development and operations, characterizes the emerging field of
DevSecOps.

In the scope of DevSecOps methodologies, policies are a funda-
mental instrument to accelerate the application of best practices,
since they potentially enable the automated adaptation of code and
operations to cope with new threats, changes in the network topol-
ogy, new services, etc. Policies can express the desired system be-
havior in high-level general terms, and be later translated into spe-
cific lower-level rules applicable to the configuration of each spe-
cific component of the system.

Once security holes are found, the design, implementation and
application of specific security policies require significant efforts
from operators and developers. They need to design the policies
and translate them to rules, code or other artifacts. This burden in-

0167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2022.102949
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102949&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jpmh@dei.uc.pt
mailto:tjcruz@dei.uc.pt
https://doi.org/10.1016/j.cose.2022.102949
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Henriques, E Caldeira, T. Cruz et al.

creases even more in the case of large organizations. Also, the veri-
fication of policies by humans is time-consuming, and the required
time significantly increases with the complexity of the infrastruc-
ture. This is aggravated by the fact that rules may not exist a priori,
being created and evolved as data becomes available (Decker et al.,
2020).

Frequently, policies are enforced by directly embedding them in
source code. Many existing policies or Access Control Lists (ACLs)
are set by the use of options in user interfaces, which is not an eas-
ily repeatable or versionable task. This is inefficient and makes it
difficult to keep up to date inventories, also hampering automated
testing. Moreover, ACLs usually lack support for auditing or check-
ing if policies are being violated.

Translating policies expressed in natural language into formal-
ized documents, in formats understandable by both humans and
machines, can be challenging. Such formalized documents pro-
vide guidance and enhance readability, testability and reportability.
However, such documents are still high-level, lacking the specific
mappings into the configurations and tools used in the target do-
main, making it difficult to directly convert them into actionable
actions.

A possible approach to overcome this problem is to take the
concept of putting code in a high-level language to manage and
automate the enforcement of policies, known as Policy as Code
(PaC). This is a relatively new concept that helps decoupling the
enforcement decisions from business logic policies. Describing pol-
icy logic directly in code, rather than depending on a natural lan-
guage, may help documenting the reasons for those policies, by
extending them using comments. PaC may help converting con-
figuration policies into readable formats easily editable, auditable
and reproducible by IT managers. Further, they can be trans-
lated into intermediate languages recognized by Policy Engines
(PEs). PaC offers the opportunity to have policies incrementally
refined and versioned, to support automating activities. Similar
to code, it is possible to include in PaC the programming con-
structs that determine decisions, helping to automate the enforce-
ment of policies. Moreover, PaC may be reviewed and checked by
automated tests, reducing the need of human-based testing op-
erations. The PaC concept can be applied to different domains,
such as security, software development and IT operations rules and
processes.

In general, ML may help generating source code (Hireche
et al, 2022; Murali et al, 2017; Riftadi et al, 2019; Yuan
and Banzhaf, 2018). Specifically in domain of anomaly detection,
Decker et al. (2020) described a real-time evolving solution based
on a fuzzy rule-based classification model for log-based anomaly
detection. Henriques et al. (2020) also highlighted how ML mod-
els can generate sets of rules at scale from unknown data. Overall,
these works inspired the approach presented in this paper.

It is evident that the evolving threat landscape requires the in-
troduction of new approaches for deployment, monitoring and as-
sessment of security policies. Inspired by ZSM Zero-touch prin-
ciples and the aforementioned works, we propose a continu-
ous automated closed-loop relying on three stages. Firstly, to ex-
tract the Decision Trees (DTs) from ML models to identify the
anomalies. Secondly, translating them to policies. Thirdly, enforcing
them along with the different system components. This continuous
closed-loop makes it possible update policies along time with the
most recent data. The ML model produces DTs that identify the
anomalies to be translated to PaC in a language recognized by the
PE. This way, it is possible to reduce the human effort associated
to defining and writing the policies to be enforced.

The remainder of this paper is organized as follows.
Section 2 introduces the background and related concepts.
Section 3 addresses related work. Section 4 presents the proposed
closed-loop framework. Section 5 describes a proof-of-concept

Computers & Security 123 (2022) 102949

implementation of the proposed framework. Section 6 describes
the experiments we performed to assess the proposed framework.
Section 7 provides an overall discussion of the framework and
validation experiments. Finally, Section 8 concludes the paper.

2. Background

This section starts by presenting base concepts such as policies
and PaC, followed by a discussion of several technologies that sup-
port PEs.

In our framework, policies specify the conditions under which
particular activities should be allowed, to enable logic-based en-
forcement decisions. Policies include conditions such as rules pro-
viding fine-grained control and governing activities for a specific
domain (e.g., network security policies; periods under which de-
ployments are allowed), representing the conduct to be evaluated

Policies may cover a large number of use cases. For example, to
follow the best practices of data security according to the Payment
Card Industry Data Security Standard (PCI-DSS) Payment Card In-
dustry Security Standards Council (2022), or to enforce the best
secure coding practices, such as the Open Web Application Se-
curity Project OWASP (2022), the Computer Emergency Response
Team (CERT) C Secure Coding Standard Seacord (2008), the Com-
mon Weakness Enumeration CWE (2022) and the Common Vul-
nerabilities and Exposures (CVE) CVE (2022) recommendations,
the Defense Information Systems Agency’s National Vulnerability
Database (DISA NVD) NIST (2022a) and the Common Vulnerability
Scoring System (CVSS) NIST (2022b).

The PaC concept was inspired by Donald Knuth’s notion of lit-
erate programming (Knuth, 1984), driven by the need to document
programs to non-technical people. PaC also takes the best prac-
tices from Infrastructure as Code (IaC) on the automatic configu-
ration of system dependencies (Rahman et al., 2019). Conceptually
speaking, IaC relies on scripted workflows that are used to con-
figure software systems and cloud instances at scale, in a secure
manner. However, despite the evident potential of IaC for security
purposes, recent literature reviews (Rahman et al., 2019) found no
works specifically addressing security applications.

PaC should be learnable and writable by humans with no pro-
gramming skills, including those responsible for implementing, up-
dating and auditing them. PAC’s machine-readable language can
be applied programmatically to improve efficiency along with the
development and deployment cycles. PaC allows to automatically
audit the deployed systems and check their compliance, to detect
gaps and quickly apply fixes. This efficiency results from the use
of libraries of policies as templates for new applications and in-
frastructure environments. PaC also reduces the number of errors,
because code and deployments can be tested before being run, de-
creasing implementation/deployment risks and costs. With a test
sandbox, IT managers can also check policy changes against the
entire policy stack, to ensure (i) modifications do not break the
existing rules and (ii) there are no situations not covered by any
rules.

Moreover, PaC leverages the application of consistent and ac-
countable processes over time. Since policies are encoded in text
files, it is possible to manage their lifecycle by using a Version Con-
trol System (VCS) such as git, taking advantage of features such
as history, diffs, pull requests, and a central location for storing
policies across platforms and applications. The VCS contributes to
reusing code and helps to define modular policies that can be ag-
gregated into comprehensive Policy Engines, to test policies on an
isolated test or development environment before deploying them
to production systems. The policies maintained by VCS can inte-
grate the existing CI/CD development pipelines to automate ap-
proval, to ensure software compliance and to enable a tight feed-
back loop between developers and reviewers.

J. Henriques, E Caldeira, T. Cruz et al.

PaC can help documenting policies (which become self-
documented), controls and best practices. It can be used to define
the security policies to be enforced, including firewall rules, ap-
plications, resources or data access controls, data encryption rules,
and code provenance restrictions. Thus, PaC also helps Software
Bill of Materials assessment and tracking, in the scope of software
supply chain risk management.

Enforcing policies is as important as defining and documenting
them. Similarly to software compilers, PEs translate PaC into imple-
mentations (e.g., network security configuration, autorization con-
trol policies or Kubernetes cluster parameters) in different environ-
ments. PEs provide the capability to systematically check if a rule
is broken. A PE includes the mechanisms to automatically check
logical inconsistencies, syntax errors, and missing dependencies.
The PE takes decisions by evaluating inputs against policies and
data. PEs should be generic enough to be applied to different sce-
narios, combining context-specific data with the higher-level poli-
cies, to enforce them according to each specific context.

PaC and PE can be used in IaC platforms to enforce infrastruc-
ture provisioning and deployment policies such as container clus-
ter parameters and constraints in workload placement. [aC soft-
ware might query the PE to take decisions before provisioning (e.g.
depending on the type of node, storage, network dependencies,
and application being targeted) - thus, they also help restricting
access to infrastructure and enforcing rationalization policies.

Several tools are available for implementing PEs.
Kyverno (2022a), for instance, is designed specifically for Ku-
bernetes, managing policies as Kubernetes resources which can be
generated, validated and mutated. Pulumi Crossguard (2022) works
with cloud management tools for AWS, Azure, Google Cloud and
Kubernetes. The Open Policy Agent (2022) is open-source and
includes a high-level declarative language for writing PaC.

Azure PaC Microsoft (2022) is one of the few PaC software
tools currently available for cloud environments. It can be used
to define policies affecting firewall rules, application, resource or
data access limits, data encryption rules, or code provenance con-
straints (among others), which are stored on a VCS and tested
upon change.

Sentinel Kyverno (2022b) is a policy language and a framework
designed to be integrated into applications, providing an auto-
mated test framework enabling continuous integration. HashiCorp
Consul (2022), Nomad (2022), Terraform Liyanage et al. (2022), and
Vault Project (2022) rely on Sentinel functionalities.

A recent example of a standard built upon a closed-loop man-
agement approach is ETSIs Zero-touch Network and Service Man-
agement (ZSM) ETSI (2019); Liyanage et al. (2022), an End-to-End
(E2E) reference architecture that uses feedback-driven processes to
achieve intelligent automated and management functionalities.

3. Related work

This section discusses previous work addressing automated and
dynamic policy-based approaches somehow related with the scope
of our proposal.

Moore and Childers (2013) presented a ML solution to automat-
ically generate program affinity policies that consider program be-
havior and the target machine. Similarly, Quiroz et al. (2010) relied
on unsupervised algorithms to capture the dynamic behavior of
systems and the hidden relationship between the high-level busi-
ness attribute space, and the low-level monitoring space. Similarly,
Pelaez et al. (2016) used supervised models to capture the dynamic
behavior.

Johansen et al. (2015) proposed a mechanism for expressing
and enforcing security policies for shared data expressed as state-
ful meta-code operations defined in scripting languages interposed
in the filesystem.

Computers & Security 123 (2022) 102949

Next Iteration

e 1
! 1
¥ S
Stage 1 Decision Stage 2 —_— Stage 3
n Trees as
Classify ©Ts) Translate Code Translate
Anomalies to PaC _(PaC) | to Code
Model Data Labels Code

Fig. 1. Proposed Framework.

Gheibi et al. (2021) reviewed the state of the art on
the use of ML in self-adaptive systems based in the tradi-
tional Monitor-Analysis-Planning-Executing (MAPE) Kephart and
Chess (2003) feedback loop. Weyns et al. (2021) presented an ap-
proach combining MAPE and Control Theory to produce better
adaptive systems.

Finally, the more recently contributions on use of ML mod-
els supporting the automation of self-adaptive IT operations has
emerged a new field (AlOps) IBM (2022); Litoiu et al. (2021) while
their contributions have been organized in a taxonomy by
Notaro et al. (2021).

Out proposal suggests going a step further in the AIOps au-
tomation approach, by extending it to the security field (AlSec-
Ops). As explained next, it introduces a translation stage integrated
within a closed feedback loop pipeline for simultaneously filling
the gap and leveraging the benefits of decoupling ML model train-
ing and the security policies to be enforced.

4. Proposed framework

This section presents the proposed closed-loop framework that
allows to create a workflow that automates the end-to-end process
that goes from the classification of anomalies to translational pol-
icy rule generation and subsequent enforcement. As illustrated in
Fig. 1, the proposed continuous closed-loop model S" relies on a
three-stage loop which is applied along n iterations, as formulated
in (1).

$" = {51,353} (1)

The adoption of a closed-loop helps reducing the security risks
arising from organizations with outdated security rules. The con-
tinuous workflow keeps deployed rules updated, by taking into
account the most recent monitoring data to adjust the notion of
anomaly, and to automatically adjust deployed rules based on the
retrained ML models (more specifically DTs, in the case of our pro-
posal) generated in this way.

The first stage (S;), automatically takes into consideration new
incoming data to classify security anomalies. A DT model fits the
data to classify the anomalies. At the second stage (S,), the pre-
viously generated DTs are translated into PaC rules in a format
recognized by the PE. These rules bring together the conditional
logic and the granular controls. Finally, at the third stage (S3), the
produced PaC is enforced by PE. The next cycle may be triggered
periodically or based on specific events which, by their nature,
might require rule adjustments. Next, we discuss in more detail
each stage.

4.1. First stage
The first stage (S;) takes as input: the DT ML family of algo-

rithms Mpr() (e.g. Random Forest, XGBoost); input data Ds orga-
nized according to the schema S; and optional labels J (e.g., in case

J. Henriques, E Caldeira, T. Cruz et al.

of supervised learning models) to obtain the DTs as Ts, according
to (2).

S1: (Mpr.Ds.]) — Ts (2)

The realization of this first stage can be based, for in-
stance, on the unsupervised learning model proposed in
Henriques et al. (2020). This model identifies the DTs classi-
fying the anomaly R4, and non anomaly R, events from unlabeled
data. as denoted in Algorithm 1. Therefore, the overall list of DTs

Algorithm 1 Unsupervised Learning Model.
INPUT: Dg, Data

clusters < 2
K < KMEANS(clusters)
Y <« K.TRAIN(Ds)
X <« XGBoost(Ds, Y)
X.TRAIN()
ypred < X.PREDICT(Ds)
R1, Ry < X.DECISIONTREES()
for all i € ypred do
if ypred; > 0.5 then
ypred! <1
k2 <« k2+1
else
ypred! <0
k1 < k1+1
end if
end for
if k1 > k2 then
Ra <~ Rz
Rn <~ Rl
else
Ru <~ Rl
Rn <~ R2
end if

OUTPUT: R4, Anomaly Decision Trees
OUTPUT: R,;, Non Anomaly Decision Trees

Ts combines the R, and R, to be included as input for the second
stage, according to (3).

Ts = Re | Rn- (3)

It should be noted that our framework does not propose to sep-
arate the rules and then to gather them again. Instead, the union
presented in (3) denotes the ability of the framework to integrate
classification models. This is achieved by integrating the resulting
rules from an unsupervised learning model into the framework De-
cision Tree (Ts) set. In this case, we highlight that Tg can plug a
binary classification model by integrating the anomalies (R;) and
non-anomalies (R,) rules into the T set.

4.2. Second stage

The second stage represents the key contribution of the pro-
posed framework. A mapping function S, () receives as input the
DTs Ts produced by the first stage and outputs policies P, accord-
ing to (4).

52 : TS — Pg (4)
Each policy Ps is defined by a set of rules, as per (5).
P= {Ri}L] (5)

Computers & Security 123 (2022) 102949

Each policy has associated an identification, a name, a descrip-
tion, and a level of enforcement PU:™ [t denotes a logical dis-
junction of n Boolean rules R;, as described in (6).

n
pi.n.m) =R \/Rz\/"'\/Rn:\/Ri (6)
i=1

According to the circumstances, a rule R; denotes the conjunc-
tion of either positive or negative disjunctions of specific attribute
levels, as denoted by (7).

Ri= /\ Sk (7)
k

The policies P target the domain data Ds (including the events
er € Ds) expressed using the schema S, according to (8). The
schema S is a set of features g, €S.

n
DS = Uek (8)
k=1

A set of logical operators (eg. AND, OR, NOT) helps defining
complex rules R;, and \/ and A\ represent the Boolean algebra oper-
ators OR and AND. Using these operators, it is possible to construct
other operators, such as “CONTAINS”, "IN”, "IS”, or "MATCHES".
Moreover, l{< refers to one of the logical parts of a statement S,
about the jth attribute. Thus, the statement is composed of two
distinct parts (9).

Se=m\/ I 9)
j

The first part is the disjunction of level values with li the
jth level of the attribute a;. The second part is the parameter
ng € [1, =], which allows negating (logical operator NOT) the dis-
junction when set to —. The user enters specific rules specifying
the levels l,fc and the parameters n,, as expressed in (10).

Ri= A\ \/ 1) (10)
k j

A policy P will be checked by function X () with data Ds and a
set of rules or a policy P. This check produces a Boolean classifica-
tion telling whether the Policy is being met or not (11).

X:(P,Ds) > K (11)

It should be noticed that the model can have different levels
of enforcement L = {ly. s, In}. At (default) mandatory level I, the
policy must be complied, regardless of the circumstances and can
not be overridden. In the warning level [, the failure of poli-
cies is allowed and just produces a warning to the user. The in-
termediary soft level [; applies to policies that can be overrid-
den to support the configuration of exceptions. Therefore, the en-
forcement levels [€ L are also input to function X(), as described
in (12).

X:(P.Ds, 1) > Klel (12)

4.3. Third stage

In the third and final stage (S3), the PE translates the policy P
resulted from the previous stage (4) into native code Cp, expressed
in a programming language p to be deployed for enforcement pur-
poses (13).

S3:P—Cp (13)

J. Henriques, E Caldeira, T. Cruz et al.
5. Proof-of-concept implementation

This section presents a Proof-of-concept (PoC) implementation
of the framework, which demonstrates its practical feasibility by
producing PaC rules from the identification of anomalies to be en-
forced by a PE.

This PoC was developed for spam detection use case scenarios,
in email systems. According to these scenarios, an IT manager dic-
tates a high-level rule to block suspect (spam) messages. Neverthe-
less, the objective is not to require the IT manager to specifically
express how messages are classified as spam.

5.1. First stage

First, a DT classification model Mpr() fits the incoming data.
In our PoC, for instance, we used a labeled dataset of emails
Biswas (2022) (originally created from Cohen, 2022) to train the
model, obtaining DTs from the anomaly classification process.

Function Mpr() is used to train a ML model with the email
dataset as input data Ds and corresponding labels | in schema S,
to obtain Tg (cf. Eq. (2)). The resulting DTs Tg provide the log-
ical steps for classifying anomalous emails (label 0) and non-
anomalous emails (label 1), as illustrated in Listing 1.

5.2. Second stage

Next, Sentinel Kyverno (2022b) is used as the domain-agnostic
policy language. A mapping function was implemented to translate
the previous DTs Tg into Sentinel policies P, therefore filling the
role of the S, function from (4). These Sentinel policies are sets of
rules defined with key-value pairs, with the main rule with a test.

Listing 2 shows the Sentinel policy to classify class 0 (spam
email), while Listing 3 represents the Sentinel policy to classify
class 1 (regular email).

In our PoC we «created an instance of the
sklearn Pedregosa et al. (2011) DecisionTreeClassifier algorithm
and then it was initialized with "maximum depth” set to 20. The

--- feature_13 <= 0.50
|--- feature_916 <= 0.50
| |--- feature_92 <= 0.50

| |--- feature_37 <= 0.50

| |--- feature_418 <= 0.50

| |--- feature_36 <= 0.50

| |--- feature_81 <= 0.50

| |--- feature_104 <= 0.50

| |--- feature_68 <= 0.50

| |--- feature_107 <= 0.50

| |--- feature_1139 <= 0.50
| |--- class: 1
|--- feature_1139 > 0.50
| |--- class: O

--- feature_107 > 0.50
|--- feature_535 <= 0.50
| |l--- class: O
|--- feature_535 > 0.50
| |--- class: 1

Listing 1. Decision Trees for Email Classification.

main = rule {(feature_13 <= 0.50 and feature_916 <= 0.50 and

feature_92 <= 0.50 and feature_37 <= 0.50 and
feature_418 <= 0.50 and feature_36 <= 0.50 and
feature_81 <= 0.50 and feature_104 <= 0.50 and
feature_68 <= 0.50 and feature_107 <= 0.50 and
feature_1139 > 0.50)

or

(feature_13 <= 0.50 and feature_916 <= 0.50 and
feature_92 <= 0.50 and feature_37 <= 0.50 and

feature:418 <= 0.50 and feature_36 <= 0.50 and
feature_81 <= 0.50 and feature_104 <= 0.50 and
feature_68 <= 0.50 and feature_107 > 0.50 and

feature_535 <= 0.50)}

Listing 2. Sentinel Policy for class 0 (spam email).

Computers & Security 123 (2022) 102949

main = rule {(feature_13 <= 0.50 and feature_916 <= 0.50 and
feature_92 <= 0.50 and feature_37 <= 0.50 and
feature_418 <= 0.50 and feature_36 <= 0.50 and
feature_81 <= 0.50 and feature_104 <= 0.50 and
feature_68 <= 0.50 and feature_107 <= 0.50 and
feature_1139 <= 0.50)
or
(feature_13 <= 0.50 and feature_916 <= 0.50 and
feature_92 <= 0.50 and feature_37 <= 0.50 and
feature_418 <= 0.50 and feature_36 <= 0.50 and
feature_81 <= 0.50 and feature_104 <= 0.50 and
feature_68 <= 0.50 and feature_107 > 0.50 and
feature_535 > 0.50)}

Listing 3. Sentinel Policy for class 1 (regular email).

dataset fit to this model was split with 80% for training and 20%
for tests. Each word in the email dataset corresponds to a distinct
feature. The function export_text() provided the rules from the DTs
resulting from the training stage.

5.3. Third stage

Finally, the previously produced PaC P is translated to a lan-
guage Cp recognized by the PE, according to the function S; re-
ferred in (13).

A test folder was created for the policy to be run, and a file
with that policy defined in JavaScript Object Notation (JSON) for-
mat is stored in that folder. Since Sentinel allows to define one
policy per class (anomalies and non-anomalies), two policies were
created. Finally, policies were moved to a Github repository to
streamline the PoC with versioning, continuous deployment and
pull request capabilities.

For real-use scenarios, the PoC can be integrated into CI/CD
tool-chains. Within a continuous integration pipeline, for example,
it is possible to run a specific command translating a Sentinel PaC
into an artifact containing the email rules that the email server
understands.

6. Validation

The validation of the proposed framework is not straightfor-
ward, because its potential benefits result mainly from the oper-
ational gains obtained over time, in terms of cost of keeping rules
updated and (indirect) accuracy improvements - which are not
easy to measure.

To fully assess the performance of the proposed framework, we
would need datasets whose rules had evolved over a significant
period of time (so that new types of cyberattacks or new types of
spam email would start appearing only after some time), so that
we could measure the improvements brought by the automated
adjustment of the rules over time, and also the ability to preserve
(or even increase) the system accuracy.

Since we had no such datasets available, we devised a dif-
ferent but still relevant experiment. Starting with a publicly
available dataset with spam email Biswas (2022) (created from
Cohen, 2022), we performed the following experiment:

« First, we split the dataset in six different blocks with simi-
lar sizes (block 0, block 1, block 2..). These blocks emulate
the emails received during six consecutive periods (e.g., one
week).

We used the block 0 to train both our platform and a base-
line system. This would be similar, for instance, to the ini-
tial training of the system with the emails from the previous
week.

Afterwards, we tested the accuracy of the trained system with
block 1 as input - this could represent, for instance, the first
week of emails with our framework running.

J. Henriques, E Caldeira, T. Cruz et al.

96,00%
Measured accuracy over time

11

94,00%

92,00%

90,00%

88,00%

86,00%

84,00%

82,00%

Block 1 Block 2 Block 3 Block 4 Block 5
M PoC 87,59% 89,79% 91,18% 92,00% 93,85%
M Baseline 87,59% 87,94% 88,05% 87,12% 88,98%

Fig. 2. Measured accuracy over time for PoC and baseline systems.

Next, our PoC performed an automatic readjustment, based on
the original training and on the updates induced by the inputs
from block 1 (i.e. the first week). This corresponds to the first
automatic readjustment of the rules. The baseline system used
for comparison kept using the original training data.

Then, we kept repeating the process for the next blocks, so that
our PoC kept automatically refining the rules. This could cor-
respond, keeping the analogy, to having 5 weeks of operation
with weekly updates.

The accuracy obtained in each of these steps is presented in
Fig. 2. Overall, these results are in line with what we expected. For
the baseline system, accuracy remained stable (with slight natural
fluctuations), around 87-89%. When using our approach, the sys-
tem kept improving accuracy over time, since the data from the
previous period was used to further refine the models. It should
be noted, however, that in real world operations we expect results
to be slightly different: while baseline (i.e. static) systems are ex-
pected to degrade their accuracy over time (due to the appearance
of new types of spam or cyberattacks not present in the original
training data), our approach is expected to preserve accuracy over
time, adjusting to those changes.

7. Discussion

This work was inspired by the ideas of translating policies
to code that are present in several works Decker et al. (2020);
Hireche et al. (2022); Murali et al. (2017); Riftadi et al. (2019);
Yuan and Banzhaf (2018), also aligning with the Zero-touch con-
cept of the ETSI ZSM framework. It supports a closed-loop with
the intelligence and automation of the tasks of monitoring and de-
tecting the ongoing threats, to produce the security policies to be
enforced.

The presented PoC, based on a simple but representative use
case, shows how this approach can be applied in practice, to
streamline the security operations associated with keeping spam
email filters up-to-date. The first stage classifies spam emails as
anomalies, extracting the DTs that identify spam messages as
anomalies. Next, policy rules are generated, by means of translat-
ing those DTs into PaC. Finally, those PaC can be used by email
servers to block new spam emails.

This process is cyclic, and can be triggered at regular time in-
tervals or based on specific events. Emails classified by users (as
spam or not spam) are used to progressively update applied poli-
cies. Automating these process reduces the operators’ burden by
streamlining routine maintenance and security management pro-
cedures.

Computers & Security 123 (2022) 102949

The adopted policy engine in the proposed framework enables
decoupling policies from the applications that will enforce them.
Moreover, it may be integrated with other tools, for instance to
identify threats and take automatic responses on stopping attacks
in progress or introducing defensive actions.

The proposed framework helps automating repetitive operation
tasks related with updating and enforcing policy rules. This poten-
tially improves productivity and reduces the continuous effort of
maintaining the systems’ security up-to-date. Moreover, the time
required to apply new security rules is shortened, reducing the
time the systems are exposed to outdated policies.

Translating DTs into PaC contributes to the readability of those
policy rules by human operators, while not requiring specific pro-
gramming skills. The presented PoC can be generalized to fit
other anomaly detection scenarios requiring frequent updates. The
framework can also be applied to automatically update and enforce
forensics and compliance auditing mechanisms.

Despite the potential benefits of the proposed framework, it
should be noted that some drawbacks may arise. First, relying on
an automatic enforcement from newly generated policies, gener-
ated from ML models, in some cases may result in a significant
number of false positives. This may be attenuated by prior vali-
dation by humans before enforcing those policies, at the cost of
some degradation in the process streamlining levels. Second, de-
spite the benefits brought by PaC, some compromises apply re-
garding performance and flexibility. Performance can be compro-
mised because, typically, PaC does not support unsafe operations
(such as direct memory access) or operations (such as sub-process
execution). In terms of flexibility, PaC may result in a limited offer
in terms of programming languages.

8. Conclusion

This work proposed a closed-loop framework aiming to reduce
the evolving security risks organizations are exposed to, by stream-
lining the routine maintenance and management of security poli-
cies.

The presented PoC demonstrates how it can be applied in prac-
tice. Beyond the PoC scenario, the framework can be applied to
a wide range of other use cases. In practice, any security monitor-
ing scenario with evolving threats and evolving systems, where the
criteria to identify anomalies need to evolve over time, can ben-
efit from this framework. General policy based management sce-
narios, in dynamic environments, may also benefit from the pro-
posed approach, since it enables the streamlining of access poli-
cies updates without requiring formal specification of those policy
updates and/or their manual translation into code.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Joao Henriques: Conceptualization, Methodology, Investigation,
Data curation, Writing - original draft. Filipe Caldeira: Concep-
tualization, Methodology, Investigation, Writing - review & edit-
ing, Supervision, Funding acquisition. Tiago Cruz: Conceptualiza-
tion, Methodology, Investigation, Writing - review & editing, Su-
pervision. Paulo Simées: Conceptualization, Methodology, Investi-
gation, Writing - review & editing, Supervision, Funding acquisi-
tion.

J. Henriques, E Caldeira, T. Cruz et al.
Acknowledgments

This work was partially funded by National Funds through the
FCT—Foundation for Science and Technology, I.P., and the European
Social Fund, through the Regional Operational Program Centro
2020, within the scope of the projects UIDB/05583/2020 and CISUC
UID/CEC/00326/2020. It was also partially co-funded byFEDER, via
the Competitiveness and Internationalization Operational Program
(COMPETE 2020) of the Portugal 2020 framework, in the scope of
Project Smart5Grid (POCI-01-0247-FEDER-047226).

Furthermore, would also like to thank the Research Center in
Digital Services (CISeD) and the Polytechnic of Viseu for their kind
support.

References

Agent, O. P,, 2022. Open policy agent. https://www.openpolicyagent.org/.

Bass, L., Weber, 1., Zhu, L., 2015. DevOps: A Software Architect’s Perspective. Addis-
on-Wesley Professional.

Biswas, B., 2022. Spam emails dataset. Visited on 2022-04-10. https://www.kaggle.
com/datasets/balaka18/email-spam-classification-dataset-csv.

Cohen, W. W., 2022. Ernron email dataset. Visited on 2022-08-19. https://www.cs.
cmu.edu/~enron/.

Consul, 2022. Sentinel in consul. Visited on 2022-04-01. https://www.consul.io.

Crossguard, 2022. Crossguard. Visited on 2022-04-10. https://www.pulumi.com/
crossguard)/.

CVE, 2022. Common vulnerabilities and exposures. Visited on 2022-03-01. https:
//cve.mitre.org.

CWE, 2022. Common weakness enumeration. Visited on 2022-03-01. https://cwe.
mitre.org.

Decker, L., Leite, D., Giommi, L., Bonacorsi, D., 2020. Real-time anomaly detection in
data centers for log-based predictive maintenance using an evolving fuzzy-rule-
based approach. In: Proceedings of the IEEE International Conference on Fuzzy
Systems, pp. 1-8. doi:10.1109/FUZZ48607.2020.9177762.

ETSI, G., 2019. Zero-touch network and service management (ZSM); reference ar-
chitecture. Technical Report. https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/
002/01.01.01_60/gs_ZSM002v010101p.pdf.

Gheibi, 0., Weyns, D., Quin, F, 2021. Applying machine learning in self-adaptive
systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15 (3).
doi:10.1145/3469440.

Henriques,]., Caldeira, F, Cruz, T., Simdes, P., 2020. Combining k-means and xgboost
models for anomaly detection using log datasets. Electronics 9 (7). doi:10.3390/
electronics9071164.

Hireche, O., Benzaid, C., Taleb, T., 2022. Deep data plane programming and ai for
zero-trust self-driven networking in beyond 5g. Comput. Netw. 203, 108668.
IBM, 2022. Ibm pak for aiops. Visited on 2022-09-01, https://www.ibm.com/cloud/

cloud- pak-for-watson-aiop.

Johansen, H.D., Birrell, E., van Renesse, R., Schneider, EB., Stenhaug, M., Johansen, D.,
2015. Enforcing privacy policies with meta-code. In: Proceedings of the 6th
Asia-Pacific Workshop on Systems. Association for Computing Machinery, New
York, NY, USA doi:10.1145/2797022.2797040.

Kephart, J.0., Chess, D.M., 2003. The vision of autonomic computing. Computer 36
(1), 41-50.

Knuth, D.E., 1984. Literate programming. Comput. J. 27 (2), 97-111.

Kyverno, 2022a. Kyverno. Visited on 2022-04-10, https://kyverno.io/.

Kyverno, 2022b. Sentinel. Visited on 2022-04-10, https://www.hashicorp.com/
sentinel.

Litoiu, M., Watts, 1., Wigglesworth, J., 2021. The 13th cascon workshop on cloud
computing: engineering aiops. In: Proceedings of the 31st Annual International
Conference on Computer Science and Software Engineering. IBM Corp., USA,
pp. 280-281.

Liyanage, M., et al., 2022. A survey on zero touch network and service management
(ZSM) for 5g and beyond networks.]. Netw. Comput. Appl. 203, 103362. doi:10.
1016/j.jnca.2022.103362.

Microsoft, 2022. Design azure policy as code workflows. Visited on 2022-
04-05, https://docs.microsoft.com/en-us/azure/governance/policy/concepts/
policy-as-code.

Moore, R.W., Childers, B.R., 2013. Automatic generation of program affinity policies
using machine learning. In: Jhala, R., De Bosschere, K. (Eds.), Compiler Construc-
tion. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 184-203.

Murali, V., Qi, L., Chaudhuri, S., Jermaine, C., 2017. Neural sketch learning for condi-
tional program generation. arXiv preprint arXiv:1703.05698.

Computers & Security 123 (2022) 102949

NIST, 2022a. National vulnerability database. Visited on 2022-03-01, https://nvd.nist.
gov/.

NIST, 2022b. Vulnerability metrics. Visited on 2022-03-01, https://nvd.nist.gov/
vuln-metrics/cvss.

Nomad, 2022. Nomad. Visited on 2022-04-01, https://www.nomadproject.io.

Notaro, P., Cardoso, J., Gerndt, M., 2021. A systematic mapping study in aiops. In:
Hacid, H., Outay, F, Paik, H.-y., Alloum, A., Petrocchi, M., Bouadjenek, M.R., Be-
heshti, A., Liu, X., Maaradji, A. (Eds.), Proceedings of the Service-Oriented Com-
puting-ICSOC Workshops. Springer International Publishing, Cham, pp. 110-123.

OWASP, 2022. OWASP. Visited on 2022-03-01, https://www.owasp.org.

Payment Card Industry Security Standards Council, 2022. Payment card industry
data security standard - requirements and testing procedures, v4.0.

Pedregosa, F, Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P.,, Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: machine
learning in python.]. Mach. Learn. Res. 12 (Oct), 2825-2830.

Pelaez, A., Quiroz, A. Parashar, M. 2016. Dynamic adaptation of policies using
machine learning. In: Proceedings of the 16th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), pp. 501-510. doi:10.1109/
CCGrid.2016.64.

Project, V., 2022. Vault. Visited on 2022-04-01, https://www.vaultproject.io/docs/
enterprise/sentinel.

Quiroz, A., Parashar, M., Gnanasambandam, N., Sharma, N., 2010. Autonomic policy
adaptation using decentralized online clustering. In: Proceedings of the 7th in-
ternational conference on Autonomic computing, pp. 151-160.

Rahman, A., Mahdavi-Hezaveh, R., Williams, L., 2019. A systematic mapping study
of infrastructure as code research. Inf. Softw. Technol. 108, 65-77. doi:10.1016/j.
infsof.2018.12.004.

Riftadi, M., Oostenbrink, J., Kuipers, F.,, 2019. Gp4p4: enabling self-programming net-
works. arXiv preprint arXiv:1910.00967.

Seacord, R.C., 2008. The CERT C Secure Coding Standard. Pearson Education.

Weyns, D., Schmerl, B., Kishida, M., Leva, A., Litoiu, M., Ozay, N., Paterson, C.,
Tei, K., 2021. Towards better adaptive systems by combining mape, control the-
ory, and machine learning. In: Proceedings of the International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
pp. 217-223.

Yuan, Y., Banzhaf, W., 2018. ARJA: automated repair of java programs via multi-
objective genetic programming. IEEE Trans. Software Eng. 46 (10), 1040-1067.
doi:10.1109/TSE.2018.2874648.

Jodo Henriques is a PhD student in Science and Information Technology at the Uni-
versity of Coimbra (UC) and Assistant Professor at the Department of Informatics
Engineering at the Polytechnic Institute of Viseu (IPV). His research interests at the
Center for Informatics and Systems (CISUC) at UC include forensic and audit com-
pliance for critical infrastructures protection.

Filipe Caldeira is an Adjunct Professor at the Informatics Department of the Poly-
technic Institute of Viseu, Portugal. He obtained his PhD degree in Informatics En-
gineering in 2014 from the Faculty of Sciences and Technology of the University
of Coimbra. He acts as program director of the Informatics Engineering program
since 2014. He is also a researcher at the Centre for Informatics and Systems of the
University of Coimbra and at the CI&DETS research centre of the Polytechnic In-
stitute of Viseu. He has been recently involved in some international and national
research projects. His main research interests include ICT security, namely, policy-
based management, trust and reputation systems, Security and Critical Infrastruc-
ture Protection.

Tiago Cruz received his Ph.D. degree in informatics engineering from the Univer-
sity of Coimbra (Coimbra, Portugal), in 2012. He has been an Assistant Professor in
the Department of Informatics Engineering, University of Coimbra, since December
2013. His research interests include areas such as management systems for commu-
nications infrastructures and services, critical infrastructure security, broadband ac-
cess network device and service management, Internet of Things, software-defined
networking, and network function virtualization (among others). He is the author of
more than 80 publications, including chapters in books, journal articles, and confer-
ence papers. Dr. Cruz is a senior member of the IEEE Communications Society.

Paulo Simdes received the Doctoral degree in informatics engineering from the
University of Coimbra (Coimbra, Portugal), in 2002. He is an Associate Professor
in the Department of Informatics Engineering, University of Coimbra, where he reg-
ularly leads technology transfer projects for industry partners such as telecommu-
nications operators and energy utilities. His research interests include network and
infrastructure management, security, critical infrastructure protection, and virtual-
ization of networking and computing resources. He has more than 150 publications
in refereed journals and conferences. Dr. Simdes is a senior member of the IEEE
Communications Society.

https://www.openpolicyagent.org/
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0002
https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv
https://www.cs.cmu.edu/~enron/
https://www.consul.io
https://www.pulumi.com/crossguard/
https://cve.mitre.org
https://cwe.mitre.org
https://doi.org/10.1109/FUZZ48607.2020.9177762
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://doi.org/10.1145/3469440
https://doi.org/10.3390/electronics9071164
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0013
https://www.ibm.com/cloud/cloud-pak-for-watson-aiop
https://doi.org/10.1145/2797022.2797040
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0017
https://kyverno.io/
https://www.hashicorp.com/sentinel
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0020
https://doi.org/10.1016/j.jnca.2022.103362
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/policy-as-code
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0023
https://nvd.nist.gov/
https://nvd.nist.gov/vuln-metrics/cvss
https://www.nomadproject.io
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0028
https://www.owasp.org
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0031
https://doi.org/10.1109/CCGrid.2016.64
https://www.vaultproject.io/docs/enterprise/sentinel
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0034
https://doi.org/10.1016/j.infsof.2018.12.004
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0038
https://doi.org/10.1109/TSE.2018.2874648

	An automated closed-loop framework to enforce security policies from anomaly detection
	1 Introduction
	2 Background
	3 Related work
	4 Proposed framework
	4.1 First stage
	4.2 Second stage
	4.3 Third stage

	5 Proof-of-concept implementation
	5.1 First stage
	5.2 Second stage
	5.3 Third stage

	6 Validation
	7 Discussion
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

