
Computers & Security 123 (2022) 102949

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

An automate d close d-loop framework to enforce security policies from

anomaly detection

João Henriques a , b , c , Filipe Caldeira

a , b , c , Tiago Cruz

a , ∗, Paulo Simões a

a University of Coimbra, CISUC, Department of Informatics Engineering, Coimbra 3030-290, Portugal
b Informatics Department, Polytechnic of Viseu,Viseu 3504-510, Portugal
c CISeD – Research Centre in Digital Services, Polytechnic of Viseu, Portugal

a r t i c l e i n f o

Article history:

Received 13 June 2022

Revised 11 September 2022

Accepted 5 October 2022

Available online 8 October 2022

Keywords:

Automation

Policy as code

Decision trees

Machine learning

Zero-touch network and service

management (ZSM)

a b s t r a c t

Due to the growing complexity and scale of IT systems, there is an increasing need to automate and

streamline routine maintenance and security management procedures, to reduce costs and improve pro-

ductivity. In the case of security incidents, the implementation and application of response actions re-

quire significant effort s from operators and developers in translating policies to code. Even if Machine

Learning (ML) models are used to find anomalies, they need to be regularly trained/updated to avoid be-

coming outdated. In an evolving environment, a ML model with outdated training might put at risk the

organization it was supposed to defend.

To overcome those issues, in this paper we propose an automated closed-loop process with three stages.

The first stage focuses on obtaining the Decision Trees (DT) that classify anomalies. In the second stage,

DTs are translated into security Policies as Code based on languages recognized by the Policy Engine (PE).

In the last stage, the translated security policies feed the Policy Engines that enforce them by converting

them into specific instruction sets. We also demonstrate the feasibility of the proposed framework, by

presenting an example that encompasses the three stages of the closed-loop process.

The proposed framework may integrate a broad spectrum of domains and use cases, being able for in-

stance to support the decide and the act stages of the ETSI Zero-touch Network & Service Management

(ZSM) framework.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

i

n

i

T

&

i

c

&

s

p

m

w

l

i

a

d

D

m

s

o

o

h

c

c

h

0

(

. Introduction

Due to the growing complexity and scale of IT systems, there

s an increasing need to automate and streamline routine mainte-

ance and security management procedures, to reduce costs and

mprove productivity. As a result, approaches such as the European

elecommunications Standards Institute (ETSI) Zero-touch network

 Service Management (ZSM) (ETSI, 2019) are becoming increas-

ngly popular.

Such approaches enable greater consistency and uniformity and

ontribute to significantly enhancing the efficiency of Operations

 Maintenance (O&M) activities. Moreover, they may result in cost

avings and a significant reduction in human errors. Similar ap-

roaches also occur in software development practices, with the
∗ Corresponding author at: University of Coimbra, CISUC, Department of Infor-

atics Engineering, Coimbra 3030-290, Portugal.

E-mail addresses: jpmh@dei.uc.pt (J. Henriques), tjcruz@dei.uc.pt (T. Cruz) .

a

f

a

ttps://doi.org/10.1016/j.cose.2022.102949

167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
idespread adoption of agile techniques for reducing the time al-

ocated to the software development cycle and IT operations, lead-

ng to the well-known concept of DevOps (Bass et al., 2015). The

ddition of security management as a third pillar, complementing

evelopment and operations, characterizes the emerging field of

evSecOps.

In the scope of DevSecOps methodologies, policies are a funda-

ental instrument to accelerate the application of best practices,

ince they potentially enable the automated adaptation of code and

perations to cope with new threats, changes in the network topol-

gy, new services, etc. Policies can express the desired system be-

avior in high-level general terms, and be later translated into spe-

ific lower-level rules applicable to the configuration of each spe-

ific component of the system.

Once security holes are found, the design, implementation and

pplication of specific security policies require significant efforts

rom operators and developers. They need to design the policies

nd translate them to rules, code or other artifacts. This burden in-
under the CC BY-NC-ND license

https://doi.org/10.1016/j.cose.2022.102949
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102949&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jpmh@dei.uc.pt
mailto:tjcruz@dei.uc.pt
https://doi.org/10.1016/j.cose.2022.102949
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Henriques, F. Caldeira, T. Cruz et al. Computers & Security 123 (2022) 102949

c

fi

t

t

b

2

s

a

i

d

t

i

i

m

v

H

m

m

a

c

a

(

e

i

g

e

fi

a

l

(

r

t

s

m

a

e

s

p

e

a

D

o

d

e

t

t

s

c

o

t

a

t

c

m

a

P

t

S

S

c

i

t

S

v

2

a

p

p

f

v

d

p

f

C

d

s

c

T

m

n

t

D

S

e

p

t

r

s

fi

m

p

w

g

d

b

d

a

g

o

f

b

c

s

e

e

r

c

fi

t

a

p

r

g

i

t

g

p

b

reases even more in the case of large organizations. Also, the veri-

cation of policies by humans is time-consuming, and the required

ime significantly increases with the complexity of the infrastruc-

ure. This is aggravated by the fact that rules may not exist a priori ,

eing created and evolved as data becomes available (Decker et al.,

020).

Frequently, policies are enforced by directly embedding them in

ource code. Many existing policies or Access Control Lists (ACLs)

re set by the use of options in user interfaces, which is not an eas-

ly repeatable or versionable task. This is inefficient and makes it

ifficult to keep up to date inventories, also hampering automated

esting. Moreover, ACLs usually lack support for auditing or check-

ng if policies are being violated.

Translating policies expressed in natural language into formal-

zed documents, in formats understandable by both humans and

achines, can be challenging. Such formalized documents pro-

ide guidance and enhance readability, testability and reportability.

owever, such documents are still high-level, lacking the specific

appings into the configurations and tools used in the target do-

ain, making it difficult to directly convert them into actionable

ctions.

A possible approach to overcome this problem is to take the

oncept of putting code in a high-level language to manage and

utomate the enforcement of policies, known as Policy as Code

PaC). This is a relatively new concept that helps decoupling the

nforcement decisions from business logic policies. Describing pol-

cy logic directly in code, rather than depending on a natural lan-

uage, may help documenting the reasons for those policies, by

xtending them using comments. PaC may help converting con-

guration policies into readable formats easily editable, auditable

nd reproducible by IT managers. Further, they can be trans-

ated into intermediate languages recognized by Policy Engines

PEs). PaC offers the opportunity to have policies incrementally

efined and versioned, to support automating activities. Similar

o code, it is possible to include in PaC the programming con-

tructs that determine decisions, helping to automate the enforce-

ent of policies. Moreover, PaC may be reviewed and checked by

utomated tests, reducing the need of human-based testing op-

rations. The PaC concept can be applied to different domains,

uch as security, software development and IT operations rules and

rocesses.

In general, ML may help generating source code (Hireche

t al., 2022; Murali et al., 2017; Riftadi et al., 2019; Yuan

nd Banzhaf, 2018). Specifically in domain of anomaly detection,

ecker et al. (2020) described a real-time evolving solution based

n a fuzzy rule-based classification model for log-based anomaly

etection. Henriques et al. (2020) also highlighted how ML mod-

ls can generate sets of rules at scale from unknown data. Overall,

hese works inspired the approach presented in this paper.

It is evident that the evolving threat landscape requires the in-

roduction of new approaches for deployment, monitoring and as-

essment of security policies. Inspired by ZSM Zero-touch prin-

iples and the aforementioned works, we propose a continu-

us automated closed-loop relying on three stages. Firstly, to ex-

ract the Decision Trees (DTs) from ML models to identify the

nomalies. Secondly, translating them to policies. Thirdly, enforcing

hem along with the different system components. This continuous

losed-loop makes it possible update policies along time with the

ost recent data. The ML model produces DTs that identify the

nomalies to be translated to PaC in a language recognized by the

E. This way, it is possible to reduce the human effort associated

o defining and writing the policies to be enforced.

The remainder of this paper is organized as follows.

ection 2 introduces the background and related concepts.

ection 3 addresses related work. Section 4 presents the proposed

losed-loop framework. Section 5 describes a proof-of-concept
2
mplementation of the proposed framework. Section 6 describes

he experiments we performed to assess the proposed framework.

ection 7 provides an overall discussion of the framework and

alidation experiments. Finally, Section 8 concludes the paper.

. Background

This section starts by presenting base concepts such as policies

nd PaC, followed by a discussion of several technologies that sup-

ort PEs.

In our framework, policies specify the conditions under which

articular activities should be allowed, to enable logic-based en-

orcement decisions. Policies include conditions such as rules pro-

iding fine-grained control and governing activities for a specific

omain (e.g., network security policies; periods under which de-

loyments are allowed), representing the conduct to be evaluated

Policies may cover a large number of use cases. For example, to

ollow the best practices of data security according to the Payment

ard Industry Data Security Standard (PCI-DSS) Payment Card In-

ustry Security Standards Council (2022) , or to enforce the best

ecure coding practices, such as the Open Web Application Se-

urity Project OWASP (2022) , the Computer Emergency Response

eam (CERT) C Secure Coding Standard Seacord (2008) , the Com-

on Weakness Enumeration CWE (2022) and the Common Vul-

erabilities and Exposures (CVE) CVE (2022) recommendations,

he Defense Information Systems Agency’s National Vulnerability

atabase (DISA NVD) NIST (2022a) and the Common Vulnerability

coring System (CVSS) NIST (2022b) .

The PaC concept was inspired by Donald Knuth’s notion of lit-

rate programming (Knuth, 1984), driven by the need to document

rograms to non-technical people. PaC also takes the best prac-

ices from Infrastructure as Code (IaC) on the automatic configu-

ation of system dependencies (Rahman et al., 2019). Conceptually

peaking, IaC relies on scripted workflows that are used to con-

gure software systems and cloud instances at scale, in a secure

anner. However, despite the evident potential of IaC for security

urposes, recent literature reviews (Rahman et al., 2019) found no

orks specifically addressing security applications.

PaC should be learnable and writable by humans with no pro-

ramming skills, including those responsible for implementing, up-

ating and auditing them. PAC’s machine-readable language can

e applied programmatically to improve efficiency along with the

evelopment and deployment cycles. PaC allows to automatically

udit the deployed systems and check their compliance, to detect

aps and quickly apply fixes. This efficiency results from the use

f libraries of policies as templates for new applications and in-

rastructure environments. PaC also reduces the number of errors,

ecause code and deployments can be tested before being run, de-

reasing implementation/deployment risks and costs. With a test

andbox, IT managers can also check policy changes against the

ntire policy stack, to ensure (i) modifications do not break the

xisting rules and (ii) there are no situations not covered by any

ules.

Moreover, PaC leverages the application of consistent and ac-

ountable processes over time. Since policies are encoded in text

les, it is possible to manage their lifecycle by using a Version Con-

rol System (VCS) such as git, taking advantage of features such

s history, diffs, pull requests, and a central location for storing

olicies across platforms and applications. The VCS contributes to

eusing code and helps to define modular policies that can be ag-

regated into comprehensive Policy Engines, to test policies on an

solated test or development environment before deploying them

o production systems. The policies maintained by VCS can inte-

rate the existing CI/CD development pipelines to automate ap-

roval, to ensure software compliance and to enable a tight feed-

ack loop between developers and reviewers.

J. Henriques, F. Caldeira, T. Cruz et al. Computers & Security 123 (2022) 102949

d

t

p

a

B

s

t

m

t

m

i

l

T

d

n

c

t

t

w

d

a

a

K

b

g

w

K

i

t

t

d

s

u

d

m

C

V

a

a

(

a

3

d

o

i

h

o

s

n

P

b

a

f

i

Fig. 1. Proposed Framework.

t

t

C

p

a

e

e

t

N

t

O

w

t

i

4

a

t

i

F

t

i

S

a

t

a

a

r

p

i

d

v

r

l

p

p

m

e

4

r

n

PaC can help documenting policies (which become self-

ocumented), controls and best practices. It can be used to define

he security policies to be enforced, including firewall rules, ap-

lications, resources or data access controls, data encryption rules,

nd code provenance restrictions. Thus, PaC also helps Software

ill of Materials assessment and tracking, in the scope of software

upply chain risk management.

Enforcing policies is as important as defining and documenting

hem. Similarly to software compilers, PEs translate PaC into imple-

entations (e.g., network security configuration, autorization con-

rol policies or Kubernetes cluster parameters) in different environ-

ents. PEs provide the capability to systematically check if a rule

s broken. A PE includes the mechanisms to automatically check

ogical inconsistencies, syntax errors, and missing dependencies.

he PE takes decisions by evaluating inputs against policies and

ata. PEs should be generic enough to be applied to different sce-

arios, combining context-specific data with the higher-level poli-

ies, to enforce them according to each specific context.

PaC and PE can be used in IaC platforms to enforce infrastruc-

ure provisioning and deployment policies such as container clus-

er parameters and constraints in workload placement. IaC soft-

are might query the PE to take decisions before provisioning (e.g.

epending on the type of node, storage, network dependencies,

nd application being targeted) – thus, they also help restricting

ccess to infrastructure and enforcing rationalization policies.

Several tools are available for implementing PEs.

yverno (2022a) , for instance, is designed specifically for Ku-

ernetes, managing policies as Kubernetes resources which can be

enerated, validated and mutated. Pulumi Crossguard (2022) works

ith cloud management tools for AWS, Azure, Google Cloud and

ubernetes. The Open Policy Agent (2022) is open-source and

ncludes a high-level declarative language for writing PaC.

Azure PaC Microsoft (2022) is one of the few PaC software

ools currently available for cloud environments. It can be used

o define policies affecting firewall rules, application, resource or

ata access limits, data encryption rules, or code provenance con-

traints (among others), which are stored on a VCS and tested

pon change.

Sentinel Kyverno (2022b) is a policy language and a framework

esigned to be integrated into applications, providing an auto-

ated test framework enabling continuous integration. HashiCorp

onsul (2022) , Nomad (2022) , Terraform Liyanage et al. (2022) , and

ault Project (2022) rely on Sentinel functionalities.

A recent example of a standard built upon a closed-loop man-

gement approach is ETSIs Zero-touch Network and Service Man-

gement (ZSM) ETSI (2019) ; Liyanage et al. (2022) , an End-to-End

E2E) reference architecture that uses feedback-driven processes to

chieve intelligent automated and management functionalities.

. Related work

This section discusses previous work addressing automated and

ynamic policy-based approaches somehow related with the scope

f our proposal.

Moore and Childers (2013) presented a ML solution to automat-

cally generate program affinity policies that consider program be-

avior and the target machine. Similarly, Quiroz et al. (2010) relied

n unsupervised algorithms to capture the dynamic behavior of

ystems and the hidden relationship between the high-level busi-

ess attribute space, and the low-level monitoring space. Similarly,

elaez et al. (2016) used supervised models to capture the dynamic

ehavior.

Johansen et al. (2015) proposed a mechanism for expressing

nd enforcing security policies for shared data expressed as state-

ul meta-code operations defined in scripting languages interposed

n the filesystem.
3
Gheibi et al. (2021) reviewed the state of the art on

he use of ML in self-adaptive systems based in the tradi-

ional Monitor-Analysis-Planning-Executing (MAPE) Kephart and

hess (2003) feedback loop. Weyns et al. (2021) presented an ap-

roach combining MAPE and Control Theory to produce better

daptive systems.

Finally, the more recently contributions on use of ML mod-

ls supporting the automation of self-adaptive IT operations has

merged a new field (AIOps) IBM (2022) ; Litoiu et al. (2021) while

heir contributions have been organized in a taxonomy by

otaro et al. (2021) .

Out proposal suggests going a step further in the AIOps au-

omation approach, by extending it to the security field (AISec-

ps). As explained next, it introduces a translation stage integrated

ithin a closed feedback loop pipeline for simultaneously filling

he gap and leveraging the benefits of decoupling ML model train-

ng and the security policies to be enforced.

. Proposed framework

This section presents the proposed closed-loop framework that

llows to create a workflow that automates the end-to-end process

hat goes from the classification of anomalies to translational pol-

cy rule generation and subsequent enforcement. As illustrated in

ig. 1 , the proposed continuous closed-loop model S n relies on a

hree-stage loop which is applied along n iterations, as formulated

n (1) .

n = { S n 1 , S
n
2 , S

n
3 } (1)

The adoption of a closed-loop helps reducing the security risks

rising from organizations with outdated security rules. The con-

inuous workflow keeps deployed rules updated, by taking into

ccount the most recent monitoring data to adjust the notion of

nomaly, and to automatically adjust deployed rules based on the

etrained ML models (more specifically DTs, in the case of our pro-

osal) generated in this way.

The first stage (S 1) , automatically takes into consideration new

ncoming data to classify security anomalies. A DT model fits the

ata to classify the anomalies. At the second stage (S 2) , the pre-

iously generated DTs are translated into PaC rules in a format

ecognized by the PE. These rules bring together the conditional

ogic and the granular controls. Finally, at the third stage (S 3) , the

roduced PaC is enforced by PE. The next cycle may be triggered

eriodically or based on specific events which, by their nature,

ight require rule adjustments. Next, we discuss in more detail

ach stage.

.1. First stage

The first stage (S 1) takes as input: the DT ML family of algo-

ithms M DT () (e.g. Random Forest, XGBoost); input data D S orga-

ized according to the schema S; and optional labels J (e.g., in case

J. Henriques, F. Caldeira, T. Cruz et al. Computers & Security 123 (2022) 102949

o

t

S

s

H

f

d

A

I

O

O

T

s

T

a

p

c

r

c

b

n

4

p

D

i

S

P

t

j

P

t

l

R

e

s

D

c

a

o

M

a

d

S

n

j

t

R

s

t

X

o

p

n

c

t

d

f

i

X

4

r

i

p

S

f supervised learning models) to obtain the DTs as T S , according

o (2) .

 1 : (M DT , D S , J) → T S (2)

The realization of this first stage can be based, for in-

tance, on the unsupervised learning model proposed in

enriques et al. (2020) . This model identifies the DTs classi-

ying the anomaly R a , and non anomaly R n events from unlabeled

ata. as denoted in Algorithm 1 . Therefore, the overall list of DTs

lgorithm 1 Unsupervised Learning Model.

NPUT: D S , Data

clusters ← 2

K ← KMeans (clusters)

Y ← K. Train (D S)

X ← XGBoost (D S , Y)

X. train ()

ypred ← X. Predict (D S)

R 1 , R 2 ← X. DecisionTrees ()

for all i ∈ ypred do

if ypred i > 0 . 5 then

ypred 1
i

← 1

k 2 ← k 2 + 1

else

ypred 1
i

← 0

k 1 ← k 1 + 1

end if

end for

if k 1 > k 2 then

R a ← R 2
R n ← R 1

else

R a ← R 1
R n ← R 2

end if

UTPUT: R a , Anomaly Decision Trees

UTPUT: R n , Non Anomaly Decision Trees

 S combines the R a and R n to be included as input for the second

tage, according to (3) .

 S = R a

⋃

R n . (3)

It should be noted that our framework does not propose to sep-

rate the rules and then to gather them again. Instead, the union

resented in (3) denotes the ability of the framework to integrate

lassification models. This is achieved by integrating the resulting

ules from an unsupervised learning model into the framework De-

ision Tree (T S) set. In this case, we highlight that T S can plug a

inary classification model by integrating the anomalies (R a) and

on-anomalies (R n) rules into the T S set.

.2. Second stage

The second stage represents the key contribution of the pro-

osed framework. A mapping function S 2 () receives as input the

Ts T S produced by the first stage and outputs policies P S , accord-

ng to (4) .

 2 : T S → P S (4)

Each policy P S is defined by a set of rules, as per (5) .

 = { R i } n i =1 (5)
4
Each policy has associated an identification, a name, a descrip-

ion, and a level of enforcement P (i,n,m) . It denotes a logical dis-

unction of n Boolean rules R i , as described in (6) .

(i,n,m) = R 1 ∨ R 2 ∨ · · · ∨ R n =

n ∨

i =1

R i (6)

According to the circumstances, a rule R i denotes the conjunc-

ion of either positive or negative disjunctions of specific attribute

evels, as denoted by (7) .

 i =

∧

k

S k (7)

The policies P target the domain data D S (including the events

 k ∈ D S) expressed using the schema S, according to (8) . The

chema S is a set of features a k ∈ S.

 S =

n ⋃

k =1

e k (8)

A set of logical operators (eg. AND, OR, NOT) helps defining

omplex rules R i , and

∨

and

∧

represent the Boolean algebra oper-

tors OR and AND. Using these operators, it is possible to construct

ther operators, such as “CONTAINS”, ”IN”, ”IS”, or ”MATCHES”.

oreover, l
j

k
refers to one of the logical parts of a statement S k

bout the j th attribute. Thus, the statement is composed of two

istinct parts (9) .

 k = n k

∨

j

l j
k

(9)

The first part is the disjunction of level values with l
j

k
the

j th level of the attribute a k . The second part is the parameter

 k ∈ [1 , ¬] , which allows negating (logical operator NOT) the dis-

unction when set to ¬ . The user enters specific rules specifying

he levels l
j

k
and the parameters n k , as expressed in (10) .

 i =

∧

k

(n k

∨

j

l j
k
) (10)

A policy P will be checked by function X() with data D S and a

et of rules or a policy P . This check produces a Boolean classifica-

ion telling whether the Policy is being met or not (11) .

 : (P, D S) → K (11)

It should be noticed that the model can have different levels

f enforcement L = { l w

, l s , l m

} . At (default) mandatory level l m

, the

olicy must be complied, regardless of the circumstances and can

ot be overridden. In the warning level l w

, the failure of poli-

ies is allowed and just produces a warning to the user. The in-

ermediary soft level l s applies to policies that can be overrid-

en to support the configuration of exceptions. Therefore, the en-

orcement levels l ∈ L are also input to function X() , as described

n (12) .

 : (P, D S , l) → K, l ∈ L (12)

.3. Third stage

In the third and final stage (S 3) , the PE translates the policy P S
esulted from the previous stage (4) into native code C p , expressed

n a programming language p to be deployed for enforcement pur-

oses (13) .

 3 : P S → C p (13)

J. Henriques, F. Caldeira, T. Cruz et al. Computers & Security 123 (2022) 102949

5

o

p

f

i

t

l

e

5

I

B

m

d

t

i

a

5

p

t

r

r

e

c

s

a

Listing 3. Sentinel Policy for class 1 (regular email).

d

f

f

r

5

g

f

w

m

p

c

s

p

t

i

i

u

. Proof-of-concept implementation

This section presents a Proof-of-concept (PoC) implementation

f the framework, which demonstrates its practical feasibility by

roducing PaC rules from the identification of anomalies to be en-

orced by a PE.

This PoC was developed for spam detection use case scenarios,

n email systems. According to these scenarios, an IT manager dic-

ates a high-level rule to block suspect (spam) messages. Neverthe-

ess, the objective is not to require the IT manager to specifically

xpress how messages are classified as spam.

.1. First stage

First, a DT classification model M DT () fits the incoming data.

n our PoC, for instance, we used a labeled dataset of emails

iswas (2022) (originally created from Cohen, 2022) to train the

odel, obtaining DTs from the anomaly classification process.

Function M DT () is used to train a ML model with the email

ataset as input data D S and corresponding labels J in schema S,

o obtain T S (cf. Eq. (2)). The resulting DTs T S provide the log-

cal steps for classifying anomalous emails (label 0) and non-

nomalous emails (label 1), as illustrated in Listing 1 .

.2. Second stage

Next, Sentinel Kyverno (2022b) is used as the domain-agnostic

olicy language. A mapping function was implemented to translate

he previous DTs T S into Sentinel policies P S , therefore filling the

ole of the S 2 function from (4) . These Sentinel policies are sets of

ules defined with key-value pairs, with the main rule with a test.

Listing 2 shows the Sentinel policy to classify class 0 (spam

mail), while Listing 3 represents the Sentinel policy to classify

lass 1 (regular email).

In our PoC we created an instance of the

klearn Pedregosa et al. (2011) DecisionTreeClassifier algorithm

nd then it was initialized with ”maximum depth” set to 20. The
Listing 1. Decision Trees for Email Classification.

Listing 2. Sentinel Policy for class 0 (spam email).

6

w

a

u

e

w

p

s

w

a

(

f

a

C

5
ataset fit to this model was split with 80% for training and 20%

or tests. Each word in the email dataset corresponds to a distinct

eature. The function export_text() provided the rules from the DTs

esulting from the training stage.

.3. Third stage

Finally, the previously produced PaC P S is translated to a lan-

uage C p recognized by the PE, according to the function S 3 re-

erred in (13) .

A test folder was created for the policy to be run, and a file

ith that policy defined in JavaScript Object Notation (JSON) for-

at is stored in that folder. Since Sentinel allows to define one

olicy per class (anomalies and non-anomalies), two policies were

reated. Finally, policies were moved to a Github repository to

treamline the PoC with versioning, continuous deployment and

ull request capabilities.

For real-use scenarios, the PoC can be integrated into CI/CD

ool-chains. Within a continuous integration pipeline, for example,

t is possible to run a specific command translating a Sentinel PaC

nto an artifact containing the email rules that the email server

nderstands.

. Validation

The validation of the proposed framework is not straightfor-

ard, because its potential benefits result mainly from the oper-

tional gains obtained over time, in terms of cost of keeping rules

pdated and (indirect) accuracy improvements – which are not

asy to measure.

To fully assess the performance of the proposed framework, we

ould need datasets whose rules had evolved over a significant

eriod of time (so that new types of cyberattacks or new types of

pam email would start appearing only after some time), so that

e could measure the improvements brought by the automated

djustment of the rules over time, and also the ability to preserve

or even increase) the system accuracy.

Since we had no such datasets available, we devised a dif-

erent but still relevant experiment. Starting with a publicly

vailable dataset with spam email Biswas (2022) (created from

ohen, 2022), we performed the following experiment:

• First, we split the dataset in six different blocks with simi-

lar sizes (block 0, block 1, block 2...). These blocks emulate

the emails received during six consecutive periods (e.g., one

week).

• We used the block 0 to train both our platform and a base-

line system. This would be similar, for instance, to the ini-

tial training of the system with the emails from the previous

week.

• Afterwards, we tested the accuracy of the trained system with

block 1 as input – this could represent, for instance, the first

week of emails with our framework running.

J. Henriques, F. Caldeira, T. Cruz et al. Computers & Security 123 (2022) 102949

Fig. 2. Measured accuracy over time for PoC and baseline systems.

F

t

fl

t

p

b

t

p

o

t

t

7

t

H

Y

c

t

t

e

c

s

e

a

a

i

s

t

s

c

s

c

d

M

i

i

t

t

m

r

t

p

g

o

f

f

s

a

a

n

d

s

s

g

m

(

e

i

8

t

l

c

t

a

i

c

e

n

p

c

u

D

c

i

C

D

t

i

t

p

g

t

• Next, our PoC performed an automatic readjustment, based on

the original training and on the updates induced by the inputs

from block 1 (i.e. the first week). This corresponds to the first

automatic readjustment of the rules. The baseline system used

for comparison kept using the original training data.

• Then, we kept repeating the process for the next blocks, so that

our PoC kept automatically refining the rules. This could cor-

respond, keeping the analogy, to having 5 weeks of operation

with weekly updates.

The accuracy obtained in each of these steps is presented in

ig. 2 . Overall, these results are in line with what we expected. For

he baseline system, accuracy remained stable (with slight natural

uctuations), around 87–89%. When using our approach, the sys-

em kept improving accuracy over time, since the data from the

revious period was used to further refine the models. It should

e noted, however, that in real world operations we expect results

o be slightly different: while baseline (i.e. static) systems are ex-

ected to degrade their accuracy over time (due to the appearance

f new types of spam or cyberattacks not present in the original

raining data), our approach is expected to preserve accuracy over

ime, adjusting to those changes.

. Discussion

This work was inspired by the ideas of translating policies

o code that are present in several works Decker et al. (2020) ;

ireche et al. (2022) ; Murali et al. (2017) ; Riftadi et al. (2019) ;

uan and Banzhaf (2018) , also aligning with the Zero-touch con-

ept of the ETSI ZSM framework. It supports a closed-loop with

he intelligence and automation of the tasks of monitoring and de-

ecting the ongoing threats, to produce the security policies to be

nforced.

The presented PoC, based on a simple but representative use

ase, shows how this approach can be applied in practice, to

treamline the security operations associated with keeping spam

mail filters up-to-date. The first stage classifies spam emails as

nomalies, extracting the DTs that identify spam messages as

nomalies. Next, policy rules are generated, by means of translat-

ng those DTs into PaC. Finally, those PaC can be used by email

ervers to block new spam emails.

This process is cyclic, and can be triggered at regular time in-

ervals or based on specific events. Emails classified by users (as

pam or not spam) are used to progressively update applied poli-

ies. Automating these process reduces the operators’ burden by

treamlining routine maintenance and security management pro-

edures.
6
The adopted policy engine in the proposed framework enables

ecoupling policies from the applications that will enforce them.

oreover, it may be integrated with other tools, for instance to

dentify threats and take automatic responses on stopping attacks

n progress or introducing defensive actions.

The proposed framework helps automating repetitive operation

asks related with updating and enforcing policy rules. This poten-

ially improves productivity and reduces the continuous effort of

aintaining the systems’ security up-to-date. Moreover, the time

equired to apply new security rules is shortened, reducing the

ime the systems are exposed to outdated policies.

Translating DTs into PaC contributes to the readability of those

olicy rules by human operators, while not requiring specific pro-

ramming skills. The presented PoC can be generalized to fit

ther anomaly detection scenarios requiring frequent updates. The

ramework can also be applied to automatically update and enforce

orensics and compliance auditing mechanisms.

Despite the potential benefits of the proposed framework, it

hould be noted that some drawbacks may arise. First, relying on

n automatic enforcement from newly generated policies, gener-

ted from ML models, in some cases may result in a significant

umber of false positives. This may be attenuated by prior vali-

ation by humans before enforcing those policies, at the cost of

ome degradation in the process streamlining levels. Second, de-

pite the benefits brought by PaC, some compromises apply re-

arding performance and flexibility. Performance can be compro-

ised because, typically, PaC does not support unsafe operations

such as direct memory access) or operations (such as sub-process

xecution). In terms of flexibility, PaC may result in a limited offer

n terms of programming languages.

. Conclusion

This work proposed a closed-loop framework aiming to reduce

he evolving security risks organizations are exposed to, by stream-

ining the routine maintenance and management of security poli-

ies.

The presented PoC demonstrates how it can be applied in prac-

ice. Beyond the PoC scenario, the framework can be applied to

 wide range of other use cases. In practice, any security monitor-

ng scenario with evolving threats and evolving systems, where the

riteria to identify anomalies need to evolve over time, can ben-

fit from this framework. General policy based management sce-

arios, in dynamic environments, may also benefit from the pro-

osed approach, since it enables the streamlining of access poli-

ies updates without requiring formal specification of those policy

pdates and/or their manual translation into code.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

João Henriques: Conceptualization, Methodology, Investigation,

ata curation, Writing – original draft. Filipe Caldeira: Concep-

ualization, Methodology, Investigation, Writing – review & edit-

ng, Supervision, Funding acquisition. Tiago Cruz: Conceptualiza-

ion, Methodology, Investigation, Writing – review & editing, Su-

ervision. Paulo Simões: Conceptualization, Methodology, Investi-

ation, Writing – review & editing, Supervision, Funding acquisi-

ion.

J. Henriques, F. Caldeira, T. Cruz et al. Computers & Security 123 (2022) 102949

A

F

S

2

U

t

(

P

D

s

R

A

B

B

C

C

C

C

C

D

E

G

H

H

I

J

K

K

K
K

L

L

M

M

M

N

N

N
N

O
P

P

P

P

Q

R

R

S

W

Y

J

v
E

C
p

F

t
g

o
s

U
s

r

b
t

T

s
t

2
n

c
n

m

e

P

U
i

u
n

i

i
i

C

cknowledgments

This work was partially funded by National Funds through the

CT—Foundation for Science and Technology, I.P., and the European

ocial Fund, through the Regional Operational Program Centro

020, within the scope of the projects UIDB/05583/2020 and CISUC

ID/CEC/00326/2020. It was also partially co-funded byFEDER, via

he Competitiveness and Internationalization Operational Program

COMPETE 2020) of the Portugal 2020 framework, in the scope of

roject Smart5Grid (POCI-01-0247-FEDER-047226).

Furthermore, would also like to thank the Research Center in

igital Services (CISeD) and the Polytechnic of Viseu for their kind

upport.

eferences

gent, O. P., 2022. Open policy agent. https://www.openpolicyagent.org/ .

ass, L., Weber, I., Zhu, L., 2015. DevOps: A Software Architect’s Perspective. Addis-
on-Wesley Professional .

iswas, B., 2022. Spam emails dataset. Visited on 2022-04-10. https://www.kaggle.
com/datasets/balaka18/email- spam- classification- dataset- csv .

ohen, W. W., 2022. Ernron email dataset. Visited on 2022-08-19. https://www.cs.
cmu.edu/ ∼enron/ .

onsul, 2022. Sentinel in consul. Visited on 2022-04-01. https://www.consul.io .

rossguard, 2022. Crossguard. Visited on 2022-04-10. https://www.pulumi.com/
crossguard/ .

VE, 2022. Common vulnerabilities and exposures. Visited on 2022-03-01. https:
//cve.mitre.org .

WE, 2022. Common weakness enumeration. Visited on 2022-03-01. https://cwe.
mitre.org .

ecker, L., Leite, D., Giommi, L., Bonacorsi, D., 2020. Real-time anomaly detection in
data centers for log-based predictive maintenance using an evolving fuzzy-rule-

based approach. In: Proceedings of the IEEE International Conference on Fuzzy

Systems, pp. 1–8. doi: 10.1109/FUZZ48607.2020.9177762 .
TSI, G., 2019. Zero-touch network and service management (ZSM); reference ar-

chitecture. Technical Report. https://www.etsi.org/deliver/etsi _ gs/ZSM/001 _ 099/
002/01.01.01 _ 60/gs _ ZSM002v010101p.pdf .

heibi, O., Weyns, D., Quin, F., 2021. Applying machine learning in self-adaptive
systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15 (3).

doi: 10.1145/3469440 .

enriques, J., Caldeira, F., Cruz, T., Simões, P., 2020. Combining k-means and xgboost
models for anomaly detection using log datasets. Electronics 9 (7). doi: 10.3390/

electronics9071164 .
ireche, O., Benzaïd, C., Taleb, T., 2022. Deep data plane programming and ai for

zero-trust self-driven networking in beyond 5g. Comput. Netw. 203, 108668 .
BM, 2022. Ibm pak for aiops. Visited on 2022-09-01, https://www.ibm.com/cloud/

cloud- pak- for- watson- aiop .

ohansen, H.D., Birrell, E., van Renesse, R., Schneider, F.B., Stenhaug, M., Johansen, D.,
2015. Enforcing privacy policies with meta-code. In: Proceedings of the 6th

Asia-Pacific Workshop on Systems. Association for Computing Machinery, New

York, NY, USA doi: 10.1145/2797022.2797040 .

ephart, J.O., Chess, D.M., 2003. The vision of autonomic computing. Computer 36
(1), 41–50 .

nuth, D.E., 1984. Literate programming. Comput. J. 27 (2), 97–111 .

yverno, 2022a. Kyverno. Visited on 2022-04-10, https://kyverno.io/ .
yverno, 2022b. Sentinel. Visited on 2022-04-10, https://www.hashicorp.com/

sentinel .
itoiu, M., Watts, I., Wigglesworth, J., 2021. The 13th cascon workshop on cloud

computing: engineering aiops. In: Proceedings of the 31st Annual International
Conference on Computer Science and Software Engineering. IBM Corp., USA,

pp. 280–281 .

iyanage, M., et al., 2022. A survey on zero touch network and service management
(ZSM) for 5g and beyond networks. J. Netw. Comput. Appl. 203, 103362. doi: 10.

1016/j.jnca.2022.103362 .
icrosoft, 2022. Design azure policy as code workflows. Visited on 2022-

04-05, https://docs.microsoft.com/en-us/azure/governance/policy/concepts/
policy- as- code .

oore, R.W., Childers, B.R., 2013. Automatic generation of program affinity policies

using machine learning. In: Jhala, R., De Bosschere, K. (Eds.), Compiler Construc-
tion. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 184–203 .

urali, V., Qi, L., Chaudhuri, S., Jermaine, C., 2017. Neural sketch learning for condi-
tional program generation. arXiv preprint arXiv:1703.05698.
7
IST, 2022a. National vulnerability database. Visited on 2022-03-01, https://nvd.nist.
gov/ .

IST, 2022b. Vulnerability metrics. Visited on 2022-03-01, https://nvd.nist.gov/
vuln-metrics/cvss .

omad, 2022. Nomad. Visited on 2022-04-01, https://www.nomadproject.io .
otaro, P., Cardoso, J., Gerndt, M., 2021. A systematic mapping study in aiops. In:

Hacid, H., Outay, F., Paik, H.-y., Alloum, A., Petrocchi, M., Bouadjenek, M.R., Be-
heshti, A., Liu, X., Maaradji, A. (Eds.), Proceedings of the Service-Oriented Com-

puting-ICSOC Workshops. Springer International Publishing, Cham, pp. 110–123 .

WASP, 2022. OWASP. Visited on 2022-03-01, https://www.owasp.org .
ayment Card Industry Security Standards Council, 2022. Payment card industry

data security standard - requirements and testing procedures, v4.0.
edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12 (Oct), 2825–2830 .

elaez, A., Quiroz, A., Parashar, M., 2016. Dynamic adaptation of policies using

machine learning. In: Proceedings of the 16th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), pp. 501–510. doi: 10.1109/

CCGrid.2016.64 .
roject, V., 2022. Vault. Visited on 2022-04-01, https://www.vaultproject.io/docs/

enterprise/sentinel .
uiroz, A., Parashar, M., Gnanasambandam, N., Sharma, N., 2010. Autonomic policy

adaptation using decentralized online clustering. In: Proceedings of the 7th in-

ternational conference on Autonomic computing, pp. 151–160 .
ahman, A., Mahdavi-Hezaveh, R., Williams, L., 2019. A systematic mapping study

of infrastructure as code research. Inf. Softw. Technol. 108, 65–77. doi: 10.1016/j.
infsof.2018.12.004 .

iftadi, M., Oostenbrink, J., Kuipers, F., 2019. Gp4p4: enabling self-programming net-
works. arXiv preprint arXiv:1910.00967.

eacord, R.C., 2008. The CERT C Secure Coding Standard. Pearson Education .

eyns, D., Schmerl, B., Kishida, M., Leva, A., Litoiu, M., Ozay, N., Paterson, C.,
Tei, K., 2021. Towards better adaptive systems by combining mape, control the-

ory, and machine learning. In: Proceedings of the International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,

pp. 217–223 .
uan, Y., Banzhaf, W., 2018. ARJA: automated repair of java programs via multi-

objective genetic programming. IEEE Trans. Software Eng. 46 (10), 1040–1067.

doi: 10.1109/TSE.2018.2874648 .

oão Henriques is a PhD student in Science and Information Technology at the Uni-

ersity of Coimbra (UC) and Assistant Professor at the Department of Informatics
ngineering at the Polytechnic Institute of Viseu (IPV). His research interests at the

enter for Informatics and Systems (CISUC) at UC include forensic and audit com-
liance for critical infrastructures protection.

ilipe Caldeira is an Adjunct Professor at the Informatics Department of the Poly-

echnic Institute of Viseu, Portugal. He obtained his PhD degree in Informatics En-
ineering in 2014 from the Faculty of Sciences and Technology of the University

f Coimbra. He acts as program director of the Informatics Engineering program

ince 2014. He is also a researcher at the Centre for Informatics and Systems of the

niversity of Coimbra and at the CI&DETS research centre of the Polytechnic In-
titute of Viseu. He has been recently involved in some international and national

esearch projects. His main research interests include ICT security, namely, policy-

ased management, trust and reputation systems, Security and Critical Infrastruc-
ure Protection.

iago Cruz received his Ph.D. degree in informatics engineering from the Univer-

ity of Coimbra (Coimbra, Portugal), in 2012. He has been an Assistant Professor in
he Department of Informatics Engineering, University of Coimbra, since December

013. His research interests include areas such as management systems for commu-
ications infrastructures and services, critical infrastructure security, broadband ac-

ess network device and service management, Internet of Things, software-defined
etworking, and network function virtualization (among others). He is the author of

ore than 80 publications, including chapters in books, journal articles, and confer-

nce papers. Dr. Cruz is a senior member of the IEEE Communications Society.

aulo Simões received the Doctoral degree in informatics engineering from the

niversity of Coimbra (Coimbra, Portugal), in 2002. He is an Associate Professor
n the Department of Informatics Engineering, University of Coimbra, where he reg-

larly leads technology transfer projects for industry partners such as telecommu-
ications operators and energy utilities. His research interests include network and

nfrastructure management, security, critical infrastructure protection, and virtual-

zation of networking and computing resources. He has more than 150 publications
n refereed journals and conferences. Dr. Simões is a senior member of the IEEE

ommunications Society.

https://www.openpolicyagent.org/
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0002
https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv
https://www.cs.cmu.edu/~enron/
https://www.consul.io
https://www.pulumi.com/crossguard/
https://cve.mitre.org
https://cwe.mitre.org
https://doi.org/10.1109/FUZZ48607.2020.9177762
https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/002/01.01.01_60/gs_ZSM002v010101p.pdf
https://doi.org/10.1145/3469440
https://doi.org/10.3390/electronics9071164
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0013
https://www.ibm.com/cloud/cloud-pak-for-watson-aiop
https://doi.org/10.1145/2797022.2797040
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0017
https://kyverno.io/
https://www.hashicorp.com/sentinel
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0020
https://doi.org/10.1016/j.jnca.2022.103362
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/policy-as-code
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0023
https://nvd.nist.gov/
https://nvd.nist.gov/vuln-metrics/cvss
https://www.nomadproject.io
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0028
https://www.owasp.org
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0031
https://doi.org/10.1109/CCGrid.2016.64
https://www.vaultproject.io/docs/enterprise/sentinel
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0034
https://doi.org/10.1016/j.infsof.2018.12.004
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00341-8/sbref0038
https://doi.org/10.1109/TSE.2018.2874648

	An automated closed-loop framework to enforce security policies from anomaly detection
	1 Introduction
	2 Background
	3 Related work
	4 Proposed framework
	4.1 First stage
	4.2 Second stage
	4.3 Third stage

	5 Proof-of-concept implementation
	5.1 First stage
	5.2 Second stage
	5.3 Third stage

	6 Validation
	7 Discussion
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

