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Abstract— Novelty detection (ND) has gained attention in 

many applications for its effectiveness in dealing with 

imbalanced data. Many ND algorithms have been proposed. For 

example, the level set boundary description (LSBD) algorithm 

can accurately estimate a boundary around normal data which 

is subsequently used to detect novelties. However, the 

computational complexity and the convergence time of the 

LSBD algorithms increases substantially when data 

dimensionality increases. To solve those challenges, we propose 

an Integrated Autoencoder-Level Set Method (AE-LSM) for ND 

in this paper. The AE structure is employed to reduce the 

feature space with high dimensionality to a 3-dimensional (3D) 

space. The LSM algorithm is trained based on the compressed 

3D data to identify the boundary of normal data. The AE-LSM 

has advantages of boundary control and good generalization 

performance. Experiments on 5 benchmark UCI datasets and 

an Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset 

demonstrate that the proposed AE-LSM present a 3%~14% 

significant improvement based on the average AUC (p<0.05) 

over the AE and LSBD algorithms across the six datasets. 

Keywords—novelty detection, level set methods, 

autoencoder, level set boundary description 

I. INTRODUCTION  

Novelty detection (ND), also known as one-class 
classification or anomaly/outlier detection, has attracted a lot 
of research interest across a range of applications, where 
abnormal data are limited or are extremely rare, e.g., credit 
card [26], mobile phone fraud detection [1], mobile robotics 
[2], sensor networks[3], rumor detection [4],[5], video 
surveillance [6], [7], [8] and healthcare [9],[10],[11] areas. ND 
aim to train the detectors with the target (normal, negative) 
class and then identify the deviated data as novelties 
(abnormal, positive) class using the trained detectors.  

Many algorithms have been proposed for ND, such as K-
Nearest Neighbors (KNN) [12], Extreme Learning Machine 
(ELM) [13], Self-Organizing Maps (SOMs) [14], one-class 
support vector machine [15], Ensemble methods [16],[17], 
autoencoder (AE) [18], and deep learning [19],[20]. Most of 
the ND algorithms identify the novelties according to an 
anomaly score. If the anomaly score of a data point is larger 
than the threshold, the point is considered to be abnormal data. 
Otherwise, it is normal data. Some ND algorithms identify the 
novelties by constructing a boundary around the normal data, 
such as the level set boundary description (LSBD) method 
[21]. Autoencoders (AEs) have been widely used in ND. The 
basic idea of AE for ND is that the reconstruction/prediction 
error is used as the anomaly score to identify whether a new 
data is normal or anomaly data [18]. Some variations of AE 
for ND have been proposed to improve the performance and 

robustness. More details of variations of AE can be found in 
[22],[23], [24] [25], [26], [27]. 

The basic idea behind ND algorithms is to construct 
boundaries enclosing the normal data in the training phase. 
The trained boundaries will be used to identify abnormal data 
in the testing phase. In real-world applications, the boundaries 
are usually nonlinear which is not easy to represent directly in 
the input space. Ding et al. [28] propose a kernel density 
estimation (KDE) based level set method (LSM) to construct 
a minimum volume surface around the normal data by 
dynamically controlling the boundary. They first learn the 
distribution of the given normal data with KDE to get the 
initial boundary from the zero-level set function (LSF). Then 
the boundary shrinks or expands in the normal direction with 
a constant velocity. By using the final decision boundary, a 
new coming data point will be classified into normal or 
abnormal according to whether it lies inside or outside the 
boundary. In [21], the approach to find data points outside of 
the boundary and the final decision is simplified in [28]. They 
propose a level set boundary description (LSBD) method, 
where the sign of the LSF determines the location of data 
points. To make the decision boundary more effective and 
efficient, they further propose a locally adaptive boundary 
description (LALSBD) method to evolve the boundary locally 
instead of globally [29]. The LALSBD can then evolve the 
boundary smoothly and describe data distribution with 
different shapes which perform better than the LSBD. 
However, the LALSBD only works well when less than 5% 
of normal data are permitted to be misclassified in the training 
phase. 

There are many advantages of LSM-based algorithms: 1) 
complex shape boundaries in the input space [30] can be 
directly constructed; 2) more flexibility than parametric 
representations since the boundary can shrink/expand in a 
specific direction with a given speed [31]; 3)  the motion of 
the boundaries can be managed, i.e., merging and splitting 
[21]. However, the implementation of LSBD for high-
dimensional datasets is cumbersome since it is implemented 
on a discretized Cartesian grid where the values of LSF are 
maintained and updated. However, the grid nodes grow 
exponentially with increasing dimensions. Hence, in each 
iteration, a large number of points need to be stored and 
updated for high-dimensional datasets, which is time-
consuming and computationally complex [31].  

One direction to solve this challenge is dimensionality 
reduction, which can compress the high dimensional data into 
lower-dimensional space and subsequently employ the 
compressed data to learn the LSBD. The commonly used 
dimensionality reduction algorithms are linear principal 
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component analysis (PCA), kernel PCA and AE. Compared 
with linear PCA, AEs are able to extract nonlinear 
presentations of the features [32]. It has been proven that the 
performance of AE for dimensionality reduction is better than 
the PCA-based algorithms [18]. Moreover, the LSM has been 
combined with AEs for image segmentation [33], [34], [35], 
[36] and as we mentioned above, AE has been used 
extensively in ND. Nevertheless, we are unaware of any 
research that focuses on combining AE with LSM for ND in 
high-dimensional datasets. Hence to address the challenge 
experienced by LSBD algorithm for high dimensional data, 
we propose an Integrated Autoencoder-LSM (AE-LSM) 
algorithm which employs the AE to reduce the dimensions of 
the data and then the compressed features are used to train the 
LSBD algorithm to improve the performance of the LSBD 
algorithm on the datasets with more than three dimensions. 

Our contributions are four-fold. First, we propose a hybrid 
ND algorithm by combining the AE and LSBD. Second, we 
propose a new strategy to control the evolution speed in the 
AE-LSM algorithm to make sure the algorithm can reach the 
final boundary. Third, we compare the performance of the 
proposed AE-LSM algorithm with the AE and LSBD 
algorithms to clarify the property of the proposed algorithm. 
We show that the proposed AE-LSM outperforms the other 
two algorithms on high dimensional (>3D) datasets. It is faster 
than the LSBD algorithm. Moreover, the proposed AE-LSM 
algorithm retains the advantages of LSBD. Finally, we 
visualize the evolution of boundaries on the high-dimensional 
data. 

II. RELATED WORKS 

In this section, the basic theory behind the AE and LSBD 
are introduced. 

A. Autoencoder 

Autoencoder is a particular type of unsupervised feed-
forward neural network where the size of the input and output 
layer of network structure are equivalent, but the middle 
hidden layer presents a bottleneck which is an encoded version 
of the input. AE thus includes an encoder and decoder 

structure. Given a dataset x={x1, … , x𝑁}
d
, N and d denote the 

number of the samples and dimensions of the dataset, the 
encoder can be presented by the standard neural network 
function 

Z=σ(Wx+b) (1) 
where Z  is the latent dimension, σ  denotes the transition 
function, W and b are the weight and bias between the input 
layer and bottleneck layer. The decoder can be written as, 

x̂=f(W'Z+b') (2) 

where x̂ denotes the output which is the reconstructed input, 𝑓 

is the transition function for the decoder, W' and b' denote the 
weight and bias between the bottleneck and output layers. The 
objective loss function is the mean squared error (MSE) which 
measures the reconstruction error. 

MSE= 
1

N
∑(xi − xî)

2

N

i=1

 (3) 

The aim of AE is to minimize the MSE by updating the 
weight and bias. For ND, the MSE is used as the anomaly 
score. The MSE is small if the test data are normal data, while 

it becomes large with abnormal data [18]. For dimensionality 
reduction, the objective function is 

min 
1

N
∑ (

1

2
‖xi-xî‖

2

N

i=1

) +
𝛾

2
∑∑∑(W ji

l )
2

sl+1

j=1

sl

i=1

nl

l=1

 (4) 

where 𝑛𝑙 is the number of layers in the AE network and 𝑠𝑙 
denotes the number of nodes in the corresponding layer. 𝛾 is 
the regularization parameter. 

B. Level set boundary description 

LSBD algorithm is a density-based ND algorithm [28]. 
There are four steps to building LSBD: 1) constructing the 
level set function (LSF) and finding the initial boundaries; 2) 
evolving boundaries; 3) stopping the evolution; 4) evaluating 
the final boundary with testing data. The boundary evolution 
is controlled by a level set equation (LSE), i.e. 

∂φ

∂t
+V⃗⃗ ∙∇φ=0 (5) 

where 
∂φ

∂t
 denotes the partial derivative of the implicit LSF, φ, 

with respect to the time variable, 𝑡, i.e., the pseudo time, V⃗⃗  is 

the velocity field and ∇  is the gradient operator. The V⃗⃗   
includes a normal component, Vn, and a tangent component 
Vt . While only the Vn  influences the movement of the 
boundary; the LSE can be written as: 

φ
t
+Vn|∇φ|=0 (6) 

where, |∇φ| is the norm of the gradient of φ. 

The initial boundary usually is defined as a signed distance 
function with |∇φ|=1 . The initial boundary is constructed 
based on the KDE, which is defined by: 

f(x)= 
1

Nh
d
∑ K(

x-xi

h
)

N

i=1

 (7) 

where K(∙) is a kernel function, h  denotes the kernel 
bandwidth. Selecting h is very important for convergence. If 
h is too small, there will be many small boundaries around. 
While if it is too large, the boundary will be over-smoothed. 
The Gaussian kernel is used in this paper. 

After estimating the density of the dataset, the Laplacian 
operator ∆ is used to obtain the initial boundary, the zero-level 
set of φ . The initial boundary with Gaussian kernel is 
described as 

 φ=∆f(x)= ∑
‖x-xi‖

2-h
2

Nh
4+d

(2π)
d/2

exp (-
‖x-xi‖

2

h
2

)

𝑁

i=1

 (8) 

An example of the implicit function (LSF) and the 
obtained initial boundaries on the two-dimensional (2D) XOR 
dataset is shown in Fig 1. The blue points are from the normal 
class. The grid surface represents the implicit φ. The two black 
closed curves are the initial boundaries. 

Next, the boundary evolves according to the threshold λ 
which is a hyperparameter that must be set. In this algorithm, 
λ  is the percentage of normal points rejected, called the 
expected false positive rate (FPr). For instance, if we permit 
10% of training samples to be misclassified as the abnormal 
class, then λ=0.1. Although we know all the training data are 
from the normal class, rejecting a small fraction of training 
samples helps the classifier to learn the most representative 
model from the training data [37]. If the current FPr (λt) is 
smaller than λ, the boundaries will shrink by solving the LSE *Data used in preparation of this article were obtained from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 

such, the investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in 

analysis or writing of this report. A complete listing of ADNI investigators 

can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 



to include more normal data. Otherwise, boundaries will 
expand to include less normal data. The evolution of the 
boundary will stop when λt∈[λ-ε, λ+ε], (where 𝜀  is a small 
positive number) or when a maximum time threshold is 
exceeded. Finally, with the obtained boundaries, the features 
inside of the boundaries (φ<0) are classified as normal data, 
whilst features of the data lying outside of the boundaries 
(φ>0) are identified as abnormal data. 

 

In LSBD algorithm, the evolution speed is a very 
important parameter for capturing the final boundary. Ding et 
al. [21] set the initial speed as 0.25 and then dynamically 
changed the speed during the boundary evolution. If the 
current λt< λ-ε  while λt+1> λ+ε , then the speed Vt  will be 

adjusted to 
Vt

2
 to slow the boundary evolution. If the  λt+1=λt, 

the speed Vt changes to 2*Vt. If the final boundary cannot be 
found, then ε  was increased by 10%. However, changing ε 
will change the performance of the trained boundary on the 
normal data. Moreover, for different datasets, the standards of 
the final boundary are different. In addition, the LSBD is time-
consuming and determining the final boundary within the set 
time maybe not occur. Therefore, we propose the AE-LSM 
algorithm with speed adjust. 

III.  AUTOENCODER-BASED LEVEL SET METHOD 

In this section, we introduced the structure of the proposed 
AE-LSM algorithms. 

(a) Structure of the proposed AE_LSM 

The proposed hybrid AE-LSM algorithm for ND includes 
two parts: dimensional reduction and discriminator. The AE 
is used to reduce the dimensions of high-dimensional datasets. 
The encoded data are used as the input of the LSBD algorithm 
which acts as a discriminator to detect the abnormal data. 

The structure of the proposed AE-LSM algorithm is 
shown in Fig 2. First, the whole dataset is normalized with the 
mean value and standard deviation of the training data. Then 
the standardized training data are learned by AE with 3 hidden 
nodes in the hidden layer (bottleneck). The LSBD model is 
applied to the compressed 3D training data. In the testing step, 
the test data are compressed into 3D with the trained AE-LSM 
model. They are classified depending on the location of the 
data points. Data points outside of the boundaries are 
classified as abnormal data. 

In this paper, we test the proposed AE-LSM on up to 18D 
datasets and compare it with the AE and LSBD algorithms 
alone on 6 benchmark datasets. Note that the structure of the 
AE and the proposed AE-LSM are different. For both 
algorithms, a 3-layer network with 3 hidden neurons is used. 

However, the transition functions and training algorithms are 
different. For example, for the proposed AE-LSM, the 
objective of using AE is to obtain nonlinear features 
representation to reduce dimensionality. Therefore, the 
nonlinear transition function is used for the encoder. The 
linear transition function is used for the decoder and the SCG 
backpropagation is used to train the network. However, the 
transition functions of encoder and decoder for the benchmark 
AE algorithm used alone is selected with nested cross 
validation (nCV) [38] which is detailed in the experiment 
section. 

 
b) Speed adjust algorithm 

For the AE-LSM algorithm, instead of adjusting the speed 
with double or half the original speed or adapting 𝜀, we adjust 
the speed based on the distance between λt and λ. 

Given the initial speed V0 , λ, ε and the current FPr (λ𝑡 ) 

obtained from the initial boundary. We first calculate the 

difference et  between λt  and λ respectively. Then if the λt ∉
(λ-𝜀, λ+𝜀), the boundary needs to evolve. For each iteration, 

we calculate the new error between the current λ𝑡 and λ and 

compare the signs of the new error et and et-1. If the signs of 

the error are the same, the current boundary and the previous 

boundary are at the same side of the target boundary. The 

boundary will evolve in the same direction. Otherwise, the 

boundary will evolve in the opposite direction. We set 
1

3
λ as a 

threshold to determine the change of the speed. If the error is 

larger than 
1

3
λ , the speed will vary more to meet the 

termination criteria, while if the error is that less than 
1

3
λ, the 

speed changes slowly to avoid missing the target boundary. 

With |et|> 
1

3
λ, if the signs of the error are positive, the speed 

Vt changes to 2*Vt-1. If the sign of the error is negative, the 

current speed is too large and cause a large step in the 

evolution but exceeds the target boundary. In this situation, we 

reset the boundary, speed and FPr using the boundary with the 

corresponding Vt-1 and λt-1 obtained before this evolution and 

then reduce the speed to 𝑉t= 
1

2
Vt-1. With |𝑒𝑡|< 

1

3
λ, if signs of 

the error are positive, the speed decreases to Vt=
1

4
V

t-1
. We 

want the boundary to evolve slowly to get the final boundary. 

If signs of the error are negative, the speed Vt= 
1

2
𝑉t-1 . The 

details of the speed adjust algorithm is shown in Fig 3. In the 

experiments, we set V0=0.15. 

IV. EXPERIMENTS 

A. Datasets 

Five UCI benchmark classification datasets and one real 
Alzheimer's disease dataset, the ADNI dataset, are used in 
experiments. The dataset specifications are shown in TABLE 

 
Fig 1. Implicit function φ and initial boundary based on Gaussian kernel 

density estimation on the XOR dataset. 

 
Fig 2. The structure of the proposed AE-LSM 

 



I. All the features are normalized in the range [0, 1]. For the 
ADNI dataset, we employ the stable mild cognitive 
impairment (sMCI) patients who remain MCI over the test 
time as the normal class. The MCI patients who develop AD 
within the following two years, called progressive MCI 
(pMCI) patients, are used as the abnormal class. 

Speed adjust algorithm 

Initial speed V0, Expected FPr λ,  

Initial FPr λ1 with the initial boundary 

The boundaries, B 

// For each iteration t 

et=λ1- λ //The distance between the current λ1 and the target 𝜆0. 
et= et // save the error  

λt= λ1 // save the current FPr 

=====================speed adjust====================== 
If λ1∉(λ-ε, λ+ε)  
      et=λt- λ // The distance between the current λt and the target λ. 

      e_s= et* et-1 // check the sign change 

                                                                          // between the two errors. 

 If |e𝑡|>
1

3
λ 

     if e_s>0 // if the sign of the error is not change 

            Vt=2*Vt-1 

     elseif e_s<0  

             Bt=Bt-1  

             λ𝑡 = λt-1 

             𝑉t= 
1

2
Vt-1 

       endif 

 Elseif |e𝑡|<
1

3
λ 

       if e_s>0 

              𝑉t= 
1

2
Vt-1 

       elseif e_s<0 

             Bt=Bt-1 

             λt=λt-1 

             𝑉t= 
1

2
Vt-1 

       endif 

 Endif 
 

 

Endif 

Fig 3. Speed adjust algorithm 

The data used in this study were obtained from 
Alzheimer's Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.ucla.edu), the most frequently used dataset 
to develop computational approaches to predict the MCI 
subjects were at high risk for converting to AD early. The 
ADNI was launched in 2003 as a public-private partnership 
led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and early 
Alzheimer's disease (AD). For up-to-date information, see 
www.adni-info.org. 

TABLE I. UCI datasets and ADNI dataset specifications 

Datasets Dim Normal Abnormal 
Target 

class 

Svmguide 4 4000 3089 1 

Phoneme 5 3818 1586 1 

Thyroid 6 3679 93 0 

Breast cancer 9 186 77 1 

Image 18 1188 898 1 

ADNI 4 681 379 SMCI 

 

B. Experiment Setup 

It has been mentioned we employ nCV [38] to optimize 
the parameters for the AE ND algorithm to thoroughly 
validate the method without leaking between training and test 
data when optimizing hyperparameters and ensure proper 
generalization evaluation.  

The nCV includes a 5-fold inner CV for tunning 
parameters and a 5-fold outer CV for evaluating the 
performances of trained AE. The experiment nCV structure is 
shown in Fig 4. There are three steps for splitting the dataset 
in nCV: 

1) Splitting the whole dataset into normal data and 
abnormal data according to their labels and splitting the 
normal and abnormal data into 5 parts. 

2) Selecting 20% of normal and abnormal data randomly 
as the independent testing dataset. The remaining 80% of the 
data are used for training and validation. 

3) Splitting the 80% normal data into 5 folds for inner CV. 
In each iteration, one fold of normal data is combined with the 
80% abnormal data as the validation dataset which is used to 
validate the performance of the algorithms trained with the 
remaining 4-fold normal data. 

Constructing ND contains (1) Train and validation, 
s1.Train and s2.Validation in Fig 4. After training the 
algorithms with the training set, the validation set is used to 
validate the trained algorithms to evaluate their training 
performance for obtaining the optimized parameters. (2) Test 
(s3.Train and s4.Test in Fig 4). In this phase, the optimized 
parameters and 80% of all the normal data are used to train the 
corresponding algorithms, and the trained models are tested 
with the independent testing set. These two steps repeat 5 
times with different parts of the training data for eliminating 
bias. 

 

In the experiments, only the AE algorithm employs the 
nCV structure to find the optimal transfer functions for 
encoder and decoder and the best training algorithm. The 
transition function of the encoder is selected in the sigmoid 
and saturating liner (satlin) functions. The transition function 
of the decoder is chosen in the functions of [sigmoid, satlin, 
tan sigmoid, pure linear]. Training functions are used to 
update the weight and bias of the network. In this paper, 
training functions are chosen from the BFGS quasi-Newton 
backpropagation (BFG), Scaled conjugate gradient 
backpropagation (SCG), Gradient descent with momentum 
and adaptive learning rate backpropagation, and Levenberg-
Marquardt backpropagation. The learning rate is set as 0.1, the 
maximum number of training epochs is 1000, γ=0.001, λ=0.1, 
and ε=0.01 . For the LSBD and the proposed AE-LSM 
algorithms, only the 5-fold outer CV is conducted in the 

 
Fig 4. The structure of nested cross validation. 
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experiments since all hyperparameters are set and are not 
required to be optimized in these two algorithms. 

C. Evaluation Measures 

The area under the receiver operating characteristic curve 
(AUC) and adjusted F1 score (AGF) [39] are used as the 
measurements for performance evaluation. The definitions of 
different measures are shown below.  

a) AUC. The AUC calculates the area under the 

receiver operating characteristic (ROC) curve showing the 

FPr and True positive rate across a continuum of thresholds 

[40]. It is a fundamental metric for evaluating a diagnostic 

model and has been commonly used in biomedical research 

to assess the classification and prediction performance for 

disease diagnosis and prognosis [41]. The AUC can be 

calculated with (10) [42]. 

AUC = 0.5*(Sens+Spec) (10) 

where   

Sens=Sensitivity=Recall=
TP

TP+FN
 (11) 

Spec=Specificity=
TN

TN+FP
 (12) 

TP is the true positive, TN is true negative, FP is the 

false positive and FN is false negative. 

b) AGF. The AGF is an improved F-measure which 

ignores the true negative rate in the calculation. However, the 

AGF considers all the four elements of the confusion matrix 

to make the results more reliable [39]. The AGF first 

calculate the F2  with the real labels and then the F0.5  is 

calculated after the inversion of labels (Inv F0.5). The AGF 

provides more weight to correctly classify patterns in the 

positive class (abnormal class). Higher AGF indicates better 

performance in identifying abnormal data. 

AGF= √F2×Inv F
0.5

 (13) 

where, 

F2=5×
Sens×Prec

4×Prec+Sens
 (14) 

Inv F0.5=
5

4
×

Sens×Prec

0.52×Prec+Sens
 (15) 

Prec=Precision=
TP

TP+FP
 (16) 

All the experiments are carried out in the MATLAB 
R2019a environment using the Ian Mitchell toolbox [43] for 
the implementation of LSBD. 

V. RESULTS AND DISCUSSION 

In this paper, we select different encoder and decoder 
transition functions and network training functions to find the 
best functions for training AE for ND. After getting the 
optimized parameters, we train the proposed AE-LSM 
algorithm with the optimized parameters. However, even 
though the optimized parameters get the best classification 
performance with AE, they are unsuitable for the AE-LSM. 
Many compressed normal and abnormal data points obtained 
from the encoder with the best encoder transition function 
overlap Fig 5(A). Then we employ the sigmoid function as the 
transition function of the encoder since we aim to get a 
nonlinear representation of the data. The normal data and 

abnormal data are separated well (Fig 5 (B)). Therefore, to get 
the nonlinear transition of the original data, we used the 
sigmoid function as the transition function of the encoder. 

 

The average values of AUC (±std) of the outer CV is 
shown in TABLE II. The proposed AE-LSBD algorithm 
obtains a significantly higher AUC on 5 datasets, whilst the 
AUC of AE (0.9334±0.0189) is slightly higher than the AUC 
of AE-LSM (0.9229±0.0386) on the thyroid dataset. For 
Svmguide, ADNI, BreastCancer and Image datasets, the AE-
LSM provides around 3%~14% increase on the AUC over the 
highest results obtained by LSBD and AE.  

For the BreastCancer and Image datasets, the LSBD fails 
to find the final boundaries with speed suggested in [28]. We 
adjust the speed in our experiments to find the final boundary, 
but it still fails; however, with AE applied for dimensionality 
reduction, the AE-LSBD performs well. 

TABLE II. The average AUC±std over 5-fold outer CV for the LSBD, AE 
and AE-LSM algorithms. 

Datasets LSBD AE AE-LSM 

Svmguide 0.7582±0.0142 0.7798±0.0248 0.9187±0.011 

Phoneme 0.6470±0.0234 0.6038±0.0363 0.6471±0.0212 

Thyroid 0.6201±0.122 0.9334±0.0189 0.9229±0.0386 

ADNI 0.6715±0.0221 0.6532±0.0656 0.7143±0.0189 
BreastCancer -- 0.5634±0.0637 0.6216±0.0540 

Image -- 0.6569±0.0428 0.7847±0.0495 

 
 

 The t-test based on the average AUC is conducted 
(TABLE III). It can be seen that the proposed AE-LSM 
significantly outperforms AE (p=0.0139 < 0.05) based on all 
the datasets and tends towards significantly outperforming 
LSBD (p=0.0794) based on the first four datasets. 

TABLE III. The p-Value of the t-test based on the average AUC 

p-Value AE AE-LSM 

LSBD 0.2345 0.0794 

AE  0.0139 

 
Besides the AUC, the average values of the AGF over the 

5-fold outer CV is shown in Fig 6. The proposed AE-LSM 
wins the highest AGF on 4 out 6 datasets. The AE gets the best 
AGF (0.3548) on the Thyroid dataset. The LSBD performs 
slightly better than the proposed AE-LSM on the ADNI 

 
Fig 5. The example of Thyroid dataset after encoder with different transfer 

function and training algorithms. (A) The Saturating linear (satlin) as the encoder 
transfer function, Sigma function as the decoder transfer function and the BFG 

as the training. (B) The sigmoid function is the encoder transfer function, linear 

function as the decoder transfer function and the SCG as the training. 



dataset with 0.6248 and 0.6228 AGF, respectively. The t-test 
results show that the proposed AE-LSM is significantly better 
than the AE on all the datasets (p = 0.0045 < 0.05) and, again, 
although not significant (p = 0.0721), achieves better than the 
LSBD on the first four datasets.  

 
 
An example of the boundary’s evolution on a one-fold 

compressed Thyroid dataset is shown in Fig 7. The blue points 
are the normal points. The red stars are the abnormal points in 
the testing set. The red circles denote the normal data points 
out of the boundary, i.e. misclassified normal data. The black 
circles denote the abnormal data inside the boundary, i.e., 
misclassified abnormal data. The closed surfaces are 
boundaries. With the initial boundary (Fig 7. (a)), around 
3.6345% of normal data is located outside the boundaries (FPr 
= 0.036345). Since the FPr is smaller than λ-ε, boundaries 
need to shrink to include more training data (see Fig 7. 
(b)~(c)). The boundaries become smaller and smaller until FPr 
= 0.10632 (Fig 7. (d)) that meets the termination condition 
(FPr ∈[λ-ε, λ+ε] ), the boundaries stop evolving. The final 
boundaries classify the test set in the test phase. The test 
results of the final boundary on the normal and abnormal class 
of the test data are present in Fig 7. (e) and (f), respectively. 
Around 9.6599% of normal data are misclassified as abnormal 
data, and 16.667% of abnormal data are misclassified as 
normal data. 

VI. DISCUSSION 

The experimental results show that the proposed AE-LSM 
has significantly better performance than LSBD and AE 
algorithms on most datasets. It improves the performance of 
LSBD on the datasets of higher three dimensions by 
compressing the data into 3D space with a 3-layer AE. 

The results show that the LSBD algorithm fails to find the 
final boundaries on the BreastCancer and Image datasets. It 
may be because the LSBD evolves with a specific speed, the 
boundaries expand and shrink many times around the 
expected boundaries, but the evolution stops due to the time 
restriction imposed. For LSBD, setting proper running time 
and evolution speed is very important. However, it is 
challenging to optimize the two parameters. Compared with 
the LSBD, the proposed AE-LSM behaves better since we fix 
the dimensions of the dataset and the lower-dimensional data 
boundary is more manageable whilst the speed adjusts 
according to the distance between the target FPr and the 

current FPr. It can find the final boundaries with several 
evolutions faster than the LSBD algorithm. 

Moreover, the boundaries evolve globally in the LSBD 
algorithm and the proposed AE-LSM algorithm in the 
experiment, which means that all the boundaries evolve with 
the same speed in each iteration (see Fig 7). Global evolution 
constructs the boundaries not only at high-density regions of 
the normal data but also the data at low-density regions. The 
boundaries around the low-density regions may misclassify 
more abnormal data. For example, the boundary enclosing 2 
normal points in the final boundary (the first figure on the 
second row) in Fig 7 makes two abnormal data misclassified 
in the test phase (the last figure on the second row). Local 
evolution of the boundary helps to get more effective 
boundaries. Ding et al. [29] proposed an approach to evolve 
the boundaries of LSBD locally. However, their method only 
works well when the value of λ is very small, e.g., 0.001. 
When the λ is large, their method does not work. Therefore, 
developing a local-evolving algorithm is important. 

The limitation of the proposed algorithm is that it does not 
work well on very high-dimensional datasets since reducing 
the very high-dimensional data into three neurons bottleneck 
may lose a lot of important information. To solve this 
limitation, we can use the deep AE [24] [25] to reduce 
dimensionality for high-dimensional data or apply LSBD on 
the dimensions associated with the optimal bottleneck for the 
AE. 

VII. CONCLUSION 

In this paper, we propose an Autoencoder-based level set 
method (AE-LSM) for unsupervised novelty detection. AE-
LSM consists of two major components: AE network and 
LSBD detector, where the AE network projects samples into 
a low-dimensional space that preserves the key information 
for ND, and the detector is used to detect the abnormal data 
from new data points. We also develop a new speed adjust 
algorithm to help to find the final boundaries and speed up the 
algorithm. 

The experimental results show that the proposed AE-LSM 
demonstrates superior performance over the AE and LSBD 
algorithms on public benchmark datasets and the ADNI 
dataset with up to 14% improvement on the standard AUC 
score. The advantages of the proposed AE-LSM: 1) it is 
efficient and time-saving. 2) it does not require large memory 
resources for high-dimensional data, and 3) it retains all the 
advantages of LSBD. 

It is a known fact that there is no one algorithm performing 
best for all datasets. The performance of algorithms may 
change a lot depending on the data characteristics due to 
biases [44]. The AE-LSBD provides a new option when 
choosing an algorithm for ND. For further work, we will 
employ deep AE to work on higher dimensional datasets and 
improve the LSM algorithm to make it more effective, e.g., by 
employing locally evolving boundary estimation. 

 
Fig 6. Comparisons of the adjusted F1 score (AGF). 
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Fig 7. The boundaries evolution on the compressed Thyroid dataset. (a) Initial boundary; (b)~(c) boundary evolution; (d) final boundary on the 

training dataset; (e) and (f) final boundary on the normal class and abnormal class of testing data. The surfaces are the boundaries constructed 

by LSM and red circles denote the points out of the boundaries of the normal data, the black circles denote the misclassified abnormal points. 
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