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Background: Alterations in static and dynamic functional connectivity during

resting state have been widely reported in major depressive disorder (MDD).

The objective of this study was to compare the performances of whole-

brain dynamic and static functional connectivity combined with machine

learning approach in differentiating MDD patients from healthy controls at

the individual subject level. Given the dynamic nature of brain activity, we

hypothesized that dynamic connectivity would outperform static connectivity

in the classification.

Methods: Seventy-one MDD patients and seventy-one well-matched healthy

controls underwent resting-state functional magnetic resonance imaging

scans. Whole-brain dynamic and static functional connectivity patterns were

calculated and utilized as classification features. Linear kernel support vector

machine was employed to design the classifier and a leave-one-out cross-

validation strategy was used to assess classifier performance.

Results: Experimental results of dynamic functional connectivity-based

classification showed that MDD patients could be discriminated from healthy

controls with an excellent accuracy of 100% irrespective of whether or

not global signal regression (GSR) was performed (permutation test with

P < 0.0002). Brain regions with the most discriminating dynamic connectivity

were mainly and reliably located within the default mode network, cerebellum,

and subcortical network. In contrast, the static functional connectivity-based

classifiers exhibited unstable classification performances, i.e., a low accuracy

of 38.0% without GSR (P = 0.9926) while a high accuracy of 96.5% with GSR

(P < 0.0002); moreover, there was a considerable variability in the distribution

of brain regions with static connectivity most informative for classification.
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Conclusion: These findings suggest the superiority of dynamic functional

connectivity in machine learning-based classification of depression, which

may be helpful for a better understanding of the neural basis of MDD as

well as for the development of effective computer-aided diagnosis tools in

clinical settings.

KEYWORDS

major depressive disorder, resting-state functional magnetic resonance imaging,
dynamic functional connectivity, static functional connectivity, machine learning

Introduction

Complex psychiatric symptoms have recently been mapped
to brain networks, also termed connectome, that facilitate
the effective segregation and integration of information
processing (1). Connectome localizations of different focal
lesions that cause the same symptom may provide new insight
into treatment targets for psychiatric symptoms. Functional
magnetic resonance imaging (fMRI) has emerged as a non-
invasive imaging technique which allows researchers to measure
functional connectivity, i.e., the temporal coherence of the
blood-oxygen-level-dependent (BOLD) signal between different
brain regions (2, 3). Human fMRI studies have demonstrated
that the brain functional connectivity profiles constitute unique
“neural fingerprints” with highly individualized patterns, which
allows identification of individuals at the single-subject level (4–
8). Delayed stabilization and individualization in the functional
connectivity development may be associated with psychiatric
disorders (9). There is a large body of evidence in support of
the notion that functional connectivity alterations are associated
with the symptomatology and therapeutic interventions of
major depressive disorder (MDD) (10–16). MDD-related
functional connectivity alterations involve aberrant connections
between specific region pairs, abnormal connections within
or between functional networks, and disrupted topological
organization of the whole-brain connectome. The consistently
affected functional networks include default mode, cognitive
control, salience, affective, reward, and attention networks, as
well as cerebellar and subcortical circuitries.

Conventionally, resting-state functional connectivity is
implicitly assumed to be temporally static, indicating that the
interaction between brain regions is fixed throughout a whole
resting-state scan period. However, this assumption might
underestimate the complex dynamics of functional connectivity
across time (17–20), which reflects its ability to rapidly switch
across multiple states and allows the brain to continuously
sample different configurations of its functional repertoire
(21, 20). Recently, an increasing number of publications have
emerged to exploit the rich temporal information contained in
dynamic functional connectivity (17–20, 22). These dynamic

approaches have been widely applied to the research of MDD
and have enjoyed significant success in revealing the functional
connectivity deficits in this disorder (23–31), going beyond the
static characterization.

MDD is a complex clinical entity and its diagnosis largely
depends on behavioral symptoms and clinician judgment to
date. However, heterogeneity within MDD and overlapping
phenotypes across psychiatric diseases sometimes render it
difficult to make a stable and well-defined clinical diagnosis. An
effective and objective diagnostic tool for depression is greatly
needed. Recently, neuroimaging approaches have been widely
used to identify reliable neurobiological markers of depression
(10, 12, 14, 32–36) and machine learning techniques [i.e., the use
of advanced statistical and probabilistic methods to construct
systems with an ability to automatically learn from big data
(37)] have been frequently applied to diagnostic classification
of mental illnesses (38), which suggest that a combination of
neuroimaging and machine learning may facilitate an accurate
discrimination of MDD patients and healthy subjects (39–41).
Among multiple neuroimaging approaches, MRI in particular
has demonstrated its capacity for non-invasively measuring
brain structure, function and connectivity (42–45). Thus,
there has been growing interest in machine learning-based
classification of depression which utilizes features extracted
from structural, functional and diffusion MRI (sMRI, fMRI,
and dMRI) data (46, 47). Overall, the diagnostic accuracies
of machine learning studies in MDD are from 45 to 99%
for resting-state fMRI-derived functional connectivity, from
72 to 97% for task fMRI-derived brain activation, from
58.7 to 90.3% for sMRI-derived brain morphology, and
from 71.9 to 91.7% for dMRI-derived white matter integrity,
respectively (46). However, previous resting-state fMRI studies
have mainly focused on static functional connectivity, which is
strongly influenced by potential confounders [e.g., global signal
regression (GSR) in fMRI data preprocessing (48)] and thus may
result in the high variability in classification accuracy.

Here, we used a data-driven approach to characterize
whole-brain dynamic and static functional connectivity patterns
based on resting-state fMRI data from MDD patients and
well-matched healthy controls. Our aim was to compare the
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performances of dynamic and static functional connectivity
combined with machine learning in discriminating patients
from controls at the individual subject level. Given the dynamic
nature of brain activity, we expected that dynamic connectivity
would outperform static connectivity in the classification
accuracy and stability.

Materials and methods

Participants

Patients with MDD were enrolled consecutively from
the psychiatric outpatient or inpatient department of the
local hospital. Healthy controls were enrolled from the local
community via advertisements. This work comprised a total
of 142 right-handed individuals, including 71 patients and 71
controls who did not diverge on gender (Pearson Chi-square
test, χ2 = 1.421, P = 0.233), age (two-sample t-test, t = –
0.734, P = 0.464) and education (t = –1.717, P = 0.088). The
diagnoses of depression were determined by two well-trained
psychiatrists utilizing the Structured Interview for DSM-IV Axis
I Disorders, Patient Edition (SCID-P). Controls were carefully
screened to confirm an absence of any psychiatric disorders
using the MINI-International Neuropsychiatric Interview.
For all participants, exclusion criteria included (1) the
presence of other psychiatric illnesses, e.g., bipolar disorder,
schizophrenia, substance-induced mood disorder, substance
abuse or dependence, and anxiety disorders; (2) a history of
major neurological or physical illnesses; (3) a history of head
injury with consciousness loss; (4) any contraindications for
MRI including pregnancy. For healthy controls, additional
exclusion criterion included a family history of psychiatric or
neurological diseases among the first-degree relatives. Hamilton
Rating Scale for Depression (HAMD) (49) and Hamilton
Rating Scale for Anxiety (HAMA) (50) were adopted to
estimate the severity of depressive and anxiety symptoms. MDD
patients showed higher HAMD (t = 13.694, P < 0.001) and
HAMA (t = 12.426, P < 0.001) scores than control subjects.
All patients were receiving their antidepressants including
serotonin norepinephrine reuptake inhibitors (SNRIs), selective
serotonin reuptake inhibitors (SSRIs), or noradrenergic and
specific serotonergic antidepressant (NaSSA). This research was
approved by the local ethics committee, and written informed
consent was derived from all subjects after they had been given
a complete description of the research. The demographic and
clinical characteristics of the sample are provided in Table 1.

MRI data acquisition

MRI data were collected on a 3.0-Tesla MR system
(Discovery MR750, General Electric) with an 8-channel head

coil. High-resolution three-dimension T1-weighted images were
obtained sagittally with use of the following parameters: echo
time (TE) = 3.2 ms; repetition time (TR) = 8.5 ms; flip
angle (FA) = 12◦; inversion time (TI) = 450 ms; matrix
size = 256 × 256; field of view (FOV) = 256 mm × 256 mm;
slice thickness = 1 mm, no gap; and 192 slices. Resting-
state fMRI images were obtained axially with use of the
following parameters: TE = 30 ms; TR = 2,000 ms; FA = 90◦;
matrix size = 64 × 64; FOV = 220 mm × 220 mm; slice
thickness = 3 mm, slice gap = 1 mm; 35 interleaved slices; and
200 time points. Before the scanning, all subjects were instructed
to keep their eyes closed, relax, move as little as possible, think
of nothing in particular, and not fall asleep during the scans.
During and after the scanning, we asked subjects whether they
had fallen asleep to confirm that none of them had done so.
All images were visually inspected to ensure that only images
without visible artifacts (e.g., ghosting artifacts arising from
subject movement and pulsating large arteries, metal artifacts,
susceptibility artifacts, blooming artifacts) were included in
subsequent analyses. All functional images were also checked to
ensure that the whole cerebellum was covered.

Functional magnetic resonance
imaging data preprocessing

Statistical Parametric Mapping software (SPM12)1 and Data
Processing & Analysis for Brain Imaging (DPABI)2 (51) were
used to preprocess the resting-state fMRI data. The first 10 time
points were deleted to enable the signal to reach equilibrium and
the subjects to adapt to the scanning noise. The rest time points
were then corrected for the acquisition time delay between
slices. Next, realignment was done to correct the motion
between time points. Head motion was indexed by translation
in each direction and angular rotation on each axis. All subjects’
functional data were within the pre-defined thresholds (i.e.,
maximum translational or rotational motion < 2 mm or 2◦).
We also calculated frame-wise displacement (FD) estimating the
volume-to-volume alterations in head position. There was no
significant group difference in mean FD (t = 0.126, P = 0.900).
Some nuisance variables (the linear drift, the Friston-24 head
motion parameters, the spike time points with FD > 0.5, and the
signals of white matter and cerebrospinal fluid) were regressed
out from these data. The functional images were then band-pass
filtered within a frequency range of 0.01–0.1 Hz. For the spatial
normalization, structural images were initially co-registered
to mean functional images; then the co-registered structural
images were segmented and normalized to the Montreal
Neurological Institute (MNI) space using the diffeomorphic
anatomical registration through the exponentiated Lie algebra

1 http://www.fil.ion.ucl.ac.uk/spm

2 http://rfmri.org/dpabi
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TABLE 1 Demographic and clinical characteristics.

Characteristics MDD (n = 71) HC (n = 71) Statistics P-value

Gender (female/male) 33/38 26/45 χ2 = 1.421 0.233a

Age (years) 40.8± 11.4 42.1± 10.1 t = –0.734 0.464b

Education (years) 10.2± 3.3 11.3± 3.9 t = –1.717 0.088b

HAMD 27.0± 12.0 3.8± 4.2 t = 13.694 <0.001b

HAMA 18.0± 7.6 3.9± 4.1 t = 12.426 <0.001b

Illness duration (months) 66.9± 77.8

Onset age (years) 35.3± 11.7

Episode number 2.5± 1.6

Antidepressant medications
(number of patients)

SSRIs 47

SNRIs 21

NaSSA 3

FD (mm) 0.147± 0.117 0.145± 0.086 t = 0.126 0.900b

The data are presented as the mean± standard deviation.
MDD, major depressive disorder; HC, healthy controls; HAMD, Hamilton Rating Scale for Depression; HAMA, Hamilton Rating Scale for Anxiety; SSRIs, selective serotonin reuptake
inhibitors; SNRIs, serotonin norepinephrine reuptake inhibitors; NaSSA, noradrenergic and specific serotonergic antidepressant; FD, frame-wise displacement.
aThe P-value was obtained by Pearson Chi-square test.
b The P-values were obtained by two-sample t-tests.

(DARTEL) technique (52). Finally, each functional image was
normalized to the MNI space based on the deformation
parameters derived during the above step and resliced into a 3-
mm voxel.

Functional connectivity calculation
and feature extraction

Whole-brain functional connectivity analyses were
conducted using GRETNA software3 (53). Network nodes were
defined using the Shen brain atlas, which consists of 268 nodes
and provides whole-brain coverage of the cortex, subcortex, and
cerebellum (54). For each of the 268 nodes, the representative
mean time course was obtained by averaging BOLD time
courses over all voxels within the node. Then, we computed the
node-by-node pairwise Pearson’s correlation coefficients and
transformed them using Fisher’s z-transformation, resulting
in a symmetric 268 × 268 correlation matrix for each subject.
In the matrix, each element represents the strength of static
functional connectivity between two individual nodes. To
capture functional connectivity temporal dynamics, sliding
time-window analysis was leveraged. Specifically, hamming
windows (window size = 50, TR = 100 s, which satisfies the
1/f0 wavelength criterion for a minimum cutoff frequency of
0.01 Hz (55–58); window step = 1, TR = 2 s) were applied
to each participant’s preprocessed functional data to obtain
a set of BOLD signal windows (126 time windows for the

3 http://www.nitrc.org/projects/gretna

current study). The above-mentioned whole-brain functional
connectivity analysis was performed for each window, resulting
in a total of 126 correlation matrices for each subject. Here,
the standard deviations of the sliding-windowed correlation
time series were used as a proxy of dynamic functional
connectivity, where higher standard deviation represents
greater signal dispersion from the average sliding-windowed
correlation time series. For each subject, a 268 × 268 standard
deviation matrix was constructed and each element in this
matrix indexes the strength of dynamic functional connectivity
between two nodes (59–61). For either of dynamic and static
functional connectivity, a total of (268 × 267)/2 = 35,778
features were extracted and formed a high-dimensional
feature representation.

Functional connectivity-based
classification

We utilized a linear kernel support vector machine (SVM), a
method of supervised learning, as our classification algorithm as
it allows the extraction of feature weights and shows resilience to
over-fitting (62, 63). Firstly, feature selection was performed by
using a two-tailed 2-sample t-test that assesses group difference
in each functional connectivity feature. Only features with
P-values smaller than a given threshold (0.01 for the main
analysis) were retained, since these features differed significantly
between the groups and were thus considered highly relevant
to the class label. During the training step, the SVM identifies
a decision boundary that separates the examples in the input
space according to their class labels (i.e., patients vs. controls).
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Once the decision function is determined from the training set,
it can be used to predict the class labels of new examples in the
testing set. The linear kernel SVM has only one parameter C that
controls the trade-off between allowing misclassifications and
training error minimization. This parameter was fixed at C = 1
(a default value) for all cases.

A leave-one-out cross-validation (LOOCV) strategy was
employed to estimate the performance of a classifier (64–66).
Specifically, each of the subjects was in turn excluded, and the
remaining subjects were included as the training set to train the
classifier; the excluded subject was then used as the testing set
to examine the capacity of the classifier to reliably differentiate
between categories (i.e., patients vs. controls). This procedure
was repeated for each subject to assess the overall accuracy,
sensitivity and specificity, which could be utilized to quantify the
performance of the classifier.

Accuracy =
TP+TN

TP+FN+TN+FP

Sensitivity =
TP

TP+FN

Specificity =
TN

TN+FP

where TP (true positives) is the number of patients correctly
classified; TN (true negatives) is the number of controls
correctly classified; FP (false positives) is the number of
controls classified as patients; FN (false negatives) is the
number of patients classified as controls. In addition, the
receiver operating characteristic (ROC) curve was plotted to
illustrate sensitivity vs. 1-specificity across all possible values of
discrimination threshold.

Statistical significance of the classification accuracy was
determined by using permutation testing (67, 68). This testing
examines the null hypothesis that the accuracy is obtained by
change. In this analysis, the class labels (i.e., patients vs. controls)
of the training set were permuted 5,000 times at random prior
to training, and then the classification procedure was repeated
to obtain 5,000 accuracy values. P-value was calculated as
the proportion of accuracy values higher than the accuracy
computed based on the true labels. The smaller the P is, the more
reasonable we reject the null hypothesis that the accuracy is
obtained by chance. Statistical significance level was determined
at P < 0.05.

Validation analyses

We carried out the following procedures to further
assess the reproducibility of the results. First, global signal
has been classically thought to reflect non-neuronal noise
(e.g., movement, physiological, scanner-related) and GSR
has been previously considered a standardized step during

the preprocessing of resting-state fMRI data (69). However,
global signal has recently also been found to represent
neurobiologically relevant information (70–74). Thus, our main
analysis was performed based on resting-state fMRI data
without GSR. Given that GSR is still a highly debated topic
(48), however, we also repeated our analysis using fMRI data
with GSR. Second, we used a 2-sample t-test at a significance
level of P < 0.01 to perform the feature selection. To estimate
whether our main results were dependent on the choice of
different thresholds, the classification procedure was repeated
for connections selected by using two other significance levels
(i.e., P < 0.5 and 0.001). Finally, given that different parcellation
strategies may affect the results, we recalculated functional
connectivity using two other parcellation schemes [i.e., AAL
atlas with 116 nodes (75) and Random atlas with 1,024 nodes
(76)] and reran the entire pipeline.

Results

Functional connectivity-based
classifier performance

The results of the linear kernel SVM classification between
71 patients and 71 controls based on dynamic and static
functional connectivity are shown in Figure 1A. LOOCV of
dynamic functional connectivity-based classification indicated
that MDD patients could be discriminated from healthy controls
with an excellent overall accuracy of 100% (a sensitivity of 100%
and a specificity of 100%, permutation test with P < 0.0002)
(Figure 2A). Figure 2B illustrates that the area under ROC
curve (AUC) of the classifier was 1. However, the SVM classifier
based on static functional connectivity yielded a poor overall
accuracy of 38.0% (a sensitivity of 38.0% and a specificity of
38.0%, P = 0.9926) (Figure 3A) and the corresponding AUC was
0.3845 (Figure 3B).

The results of SVM classification using fMRI data with GSR
are shown in Figure 1B. Both dynamic and static functional
connectivity-based classifiers achieved good performances in
the discrimination of patients and controls, with the former
better than the latter. For dynamic functional connectivity, the
overall accuracy was 100% (a sensitivity of 100% and a specificity
of 100%, P < 0.0002) (Figure 4A) and the corresponding
AUC was 1 (Figure 4B). For static functional connectivity,
the overall accuracy was 96.5% (a sensitivity of 94.4% and a
specificity of 98.6%, P < 0.0002) (Figure 5A) and the AUC was
0.9948 (Figure 5B).

For subsets of connections selected by thresholds of
P < 0.5 and 0.001, the classification results were similar to
those at the threshold of P < 0.01, i.e., dynamic functional
connectivity classifiers (threshold of P < 0.5: accuracy = 100%,
sensitivity = 100%, specificity = 100%, P < 0.0002, and AUC = 1;
threshold of P < 0.001: accuracy = 91.5%, sensitivity = 94.4%,
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FIGURE 1

Performances of dynamic and static functional connectivity-based classifiers using resting-state fMRI data without (A) and with (B) global signal
regression.

FIGURE 2

Dynamic functional connectivity-based classification. (A) Scatter plot showing classification scores of all the subjects. (B) Receiver operating
characteristic (ROC) curve of the classifier. (C) High-degree nodes (degree ≥ 2, larger spheres indicate nodes with higher degree) and their
connections in the positive network. (D) High-degree nodes (degree ≥ 2) and their connections in the negative network. (E) Fingerprints of the
25 highest-degree nodes summarized by overlap with canonical neural networks.

specificity = 88.7%, P < 0.0002, and AUC = 0.9820) performed
much better than static functional connectivity classifiers
(threshold of P < 0.5: accuracy = 37.3%, sensitivity = 35.2%,
specificity = 39.4%, P = 0.9992, and AUC = 0.3499; threshold
of P < 0.001: accuracy = 45.1%, sensitivity = 46.5%,
specificity = 43.7%, P = 0.6784, and AUC = 0.4773) (Figure 6).
In addition, we found that our main results were reproducible
after considering the effects of different parcellation strategies
(Figure 7). For AAL atlas with 116 nodes, although the
overall accuracy of dynamic functional connectivity classifier
reduced to 85.9% (sensitivity = 85.9%, specificity = 85.9%,
P < 0.0002, and AUC = 0.9375), it was higher than that
of static functional connectivity classifier (accuracy = 40.1%,
sensitivity = 42.3%, specificity = 38.0%, P = 0.9952, and
AUC = 0.3718). For Random atlas with 1,024 nodes, the

dynamic functional connectivity classifier (accuracy = 100%,
sensitivity = 100%, specificity = 100%, P < 0.0002, and AUC = 1)
exhibited a better classification power than the static functional
connectivity classifier (accuracy = 50%, sensitivity = 52.1%,
specificity = 47.9%, P = 0.8042, and AUC = 0.4575).

Classification network anatomy

The weight vector provided relevant information about
the contribution of functional connections to classification.
Specifically, functional connections with positive weights
contributed to the identification of MDD patients, whereas
connections with negative weights contributed to the
identification of healthy controls. The dynamic functional
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FIGURE 3

Static functional connectivity-based classification. (A) Scatter plot showing classification scores of all the subjects. (B) Receiver operating
characteristic (ROC) curve of the classifier. (C) High-degree nodes (degree ≥ 50, larger spheres indicate nodes with higher degree) and their
connections in the positive network. (D) High-degree nodes (degree ≥ 50) and their connections in the negative network. (E) Fingerprints of the
25 highest-degree nodes summarized by overlap with canonical neural networks.

FIGURE 4

Dynamic functional connectivity-based classification using fMRI data with global signal regression. (A) Scatter plot showing classification scores
of all the subjects. (B) Receiver operating characteristic (ROC) curve of the classifier. (C) High-degree nodes (degree ≥ 3, larger spheres indicate
nodes with higher degree) and their connections in the positive network. (D) High-degree nodes (degree ≥ 3) and their connections in the
negative network. (E) Fingerprints of the 25 highest-degree nodes summarized by overlap with canonical neural networks.

connectivity-based classification identified positive and
negative networks consisting of 95 connections with positive
weights and 170 connections with negative weights, respectively
(Figures 2C,D). Network anatomies for both networks were
complex and included connections between nodes across the
brain. Of the 25 nodes showing the highest degree (i.e., number
of functional connections) in the positive network, 6 were
within the cerebellum, 4 the salience network, 3 the default
mode network, 3 the visual network, and 3 the subcortical
network (Figure 2E). Of the 25 highest-degree nodes in the
negative network, 7 were within the default mode network, 4
the cerebellum, and 3 the auditory network (Figure 2E). The
static functional connectivity-based classification identified

positive and negative networks consisting of 1,719 and 2,048
connections, respectively (Figures 3C,D). Of the 25 highest-
degree nodes in the positive network, 6 were within the visual
network, 5 the default mode network, and 4 the subcortical
network (Figure 3E). Of the 25 highest-degree nodes in the
negative network, 8 were within the visual network, 5 were
within the frontoparietal network, 3 the default mode network,
and 3 the subcortical network (Figure 3E).

Network anatomies of the classification using fMRI data
with GSR are demonstrated in Figures 4C–E and Figures 5C–
E. The dynamic functional connectivity-based classification
identified positive and negative networks consisting of 137
and 186 connections, respectively (Figures 4C,D). Of the
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FIGURE 5

Static functional connectivity-based classification using fMRI data with global signal regression. (A) Scatter plot showing classification scores of
all the subjects. (B) Receiver operating characteristic (ROC) curve of the classifier. (C) High-degree nodes (degree ≥ 8, larger spheres indicate
nodes with higher degree) and their connections in the positive network. (D) High-degree nodes (degree ≥ 8) and their connections in the
negative network. (E) Fingerprints of the 25 highest-degree nodes summarized by overlap with canonical neural networks.

FIGURE 6

Classification performances of dynamic and static functional connectivity-based classifiers using subsets of connections selected by thresholds
of P < 0.05 (A) and 0.001 (B).

25 highest-degree nodes in the positive network, 10 were
within the cerebellum, 4 the default mode network, and 4
the subcortical network (Figure 4E). Of the 25 highest-degree
nodes in the negative network, 6 were within the default
mode network and 3 the cerebellum (Figure 4E). The static
functional connectivity-based classification identified positive
and negative networks consisting of 390 and 376 connections,
respectively (Figures 5C,D). Of the 25 highest-degree nodes in
the positive network, 9 were within the default mode network, 5
the cingulo-opercular network, and 3 the frontoparietal network
(Figure 5E). Of the 25 highest-degree nodes in the negative
network, 5 were within the default mode network, 5 the cingulo-
opercular network, and 3 the visual network (Figure 5E).

Discussion

Based on machine learning approach, the present study
demonstrated that MDD patients can be distinguished from
healthy controls with excellent and stable classification accuracy
using whole-brain dynamic functional connectivity irrespective
of whether or not GSR was performed. Brain regions with
dynamic connectivity contributing the most to the identification
of patients were mainly and reliably located within the default
mode and subcortical networks as well as the cerebellum, and
regions with connectivity contributing to the identification of
controls were predominately located within the default mode
network and the cerebellum. In contrast, the classifiers based
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FIGURE 7

Classification performances of dynamic and static functional connectivity-based classifiers using AAL atlas with 116 nodes (A) and Random atlas
with 1,024 nodes (B).

on static functional connectivity exhibited unstable classification
performances, i.e., a low accuracy without GSR while a
high accuracy with GSR; moreover, there was a considerable
variability in the distribution of brain regions with static
connectivity most informative for classification.

Traditional resting-state functional connectivity is assumed
to have static nature and thus reflects mean correlation
patterns of spontaneous BOLD signal fluctuations between
regions within a typical resting-state fMRI experiment, which
cannot depict the full extent of intrinsic neural activity given
that human brain is expected to integrate, coordinate and
respond to internal and external stimuli dynamically across
time. On top of this, resting-state functional connectivity
has recently been proved to have dynamic behavior (17, 22),
resulting in a considerable amount of studies directed to
assessing and characterizing its dynamics (18–20). Among
several dynamic functional connectivity methods, the variance
measure which we used in this study reflects the degree of
the meaningful functional connectivity variations, and it has
been demonstrated to contain the most useful information
that can be applied to detect inter-individual differences (59).
High variance value indicates that the functional connectivity
strength between regions greatly fluctuates in and out of
synchrony, reflecting more flexible brain communication
between these regions. Collectively, static and dynamic
functional connectivity analyses capture different aspects of
inter-region functional communication and might provide
complementary information. Using fMRI data with GSR, the
classification accuracy based on static functional connectivity
is comparable to that reported in a prior study (96.5 vs.
94.3%) (77), while the accuracy reduced dramatically without
GSR, suggesting a low robustness of the static functional
connectivity-based classifier. However, the current observation
of excellent and stable performance of dynamic functional

connectivity-based classification of depression adds important
context to the growing literature on the relevance of dynamic
functional connectivity.

The brain’s default mode network has been linked
to emotional processing, self-referential mental activity,
episodic memory retrieval, and internal-directed attention
(78). Dysfunction of the default mode network has been
widely documented in depression (79, 80), along with its
association with core clinical manifestations of this disorder
such as depressive rumination (81). With respect to functional
connectivity changes of the default mode network in MDD
patients, most previous studies have reported hyperconnectivity
(11, 81–84), while some studies have found hypoconnectivity
(85) as well as both increase and decrease (86, 87). These
inconsistencies may arise from limited statistical power,
flexibility in data analysis (88), and heterogeneity in clinical
characteristics. In this study, we found that brain regions within
the default mode network had dynamic functional connectivity
that was most informative in distinguishing the samples. These
findings, in conjunction with those of previous studies, raise the
possibility that functional dysconnectivity of the default mode
network may be a trait of depression, highlighting a prominent
role of this circuitry in the pathophysiology of MDD.

There is consistent evidence that the cerebellum is critically
involved in multiple high-order functions including cognition
and emotion that exist above and beyond low-order motor
function (89, 90). More recently, the clinical relevance of the
cerebellar damage in depression has attracted intense interest
from researchers (91), given the extant findings of structural
and functional impairments of the cerebellum in patients with
MDD (92–95). Neuroimaging studies have established that the
cerebellum is a multifactorial structure that can be divided into
functionally separate and topographically organized subsystems
(96, 97), connections of which form cerebellar-cerebral circuits
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mediating executive control, default mode, affective, and motor
functions (90, 98, 99). Previous studies using resting-state
fMRI have produced mixed findings that MDD patients show
both decreased and increased functional connectivity between
cerebellum and widespread cerebral regions relative to healthy
controls (100–103). Moreover, Ma et al. have found that a
high classification accuracy of 90.6% was achieved by selecting
altered cerebellar-cerebral functional connectivity as features to
discriminate MDD patients from healthy subjects (104), which
is compatible with our observation that abnormal dynamic
functional connectivity of the cerebellum was most informative
in distinguishing MDD and control subjects. Combined, these
findings suggest that disruption of cerebellar-cerebral functional
interactions may serve as one of the depression-specific
neurobiological characteristics.

The subcortical network consists of striatum, thalamus,
hippocampus, and amygdala, which are implicated in a variety
of functions such as emotional regulation, reward processing,
motivational management, cognitive processes, movement
regulation, and memory recall. Many studies have revealed
structural and functional alterations in these subcortical regions
in depressed patients (80, 92, 105–110), which may lead to
deficits of the relevant functions in MDD. Moreover, complex
subcortical connections constitute multiple cortical-subcortical
circuits including frontal-striatal, prefrontal-hippocampal,
prefrontal-amygdala, and frontal-thalamic circuits (111–113).
Structural and functional connectivity impairments of these
cortical-subcortical circuits are considered to be potential
neuropathological targets in MDD (35, 114–117). Our findings
of subcortical dynamic functional connectivity exhibiting
high discriminative power in classification complement and
extend previous literature on the role of subcortical network in
understanding the neural mechanisms of depression.

Some limitations of this study should be acknowledged.
First, our results may be contaminated by the confounding
factors such as medication use and/or long illness duration.
Future studies using a sample of drug-naive first-episode
patients with MDD are warranted to confirm the reliability
of our findings. Second, during the resting-state fMRI scans,
subjects’ levels of drowsiness or vigilance have been shown
to influence dynamic functional connectivity (118). Here, we
did not measure these variables and thus cannot rule out
their potential effects. However, the variance measure that
we utilized as the summary index of dynamic functional
connectivity has been demonstrated to exhibit good test-retest
reliability (59), which may partly alleviate the concerns of
noise interference. Third, it should be noted that patients with
anxiety disorders were excluded. Since anxiety is frequently
comorbid with MDD, this reduces the generalizability of the
findings to the general population with MDD. Fourth, the
lack of data from an independent sample precludes us from
performing an external validation analysis. Fifth, artifacts from
cardiac and respiratory noise are prevalent in resting-state fMRI

analyses. Thus, an advisable pre-processing step is to remove
physiological noise from the data using simultaneously collected
pulse and respiration data. However, physiological data were not
collected in this study. Sixth, MDD patients had a trend toward
a lower educational level than healthy controls, which may
influence our interpretation. Seventh, the resting-state fMRI
scan duration is relatively short and may lead to less stable
results. Thus, future studies are needed to validate the results
by increasing the fMRI scan length. Finally, we only focused on
the discrimination between MDD patients and healthy controls,
but it is unclear whether the application of SVM to whole-
brain dynamic functional connectivity would differentiate MDD
patients from patients with other mental disorders. Further
investigations could address this issue by including a third group
of individuals with a mental disorder other than MDD.

In conclusion, this study successfully demonstrates the
feasibility of machine learning approach toward the objective
and accurate diagnosis of MDD patients by using whole-
brain dynamic functional connectivity as input features. The
classification accuracy and stability of dynamic connectivity-
based classifier were superior to those of static connectivity-
based classifier. Brain regions with the most discriminating
dynamic connectivity were mainly and reliably located within
the default mode network, cerebellum, and subcortical network.
We believe that the current findings will be helpful for a better
understanding of the neural basis of MDD as well as for the
development of effective computer-aided diagnosis tools in
clinical settings.
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