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Background: Accumulating evidence has revealed that the prevalence of

Coronavirus 2019 (COVID-19) was significantly higher in patients with

primary Sjogren’s syndrome (pSS) compared to the general population.

However, the mechanism remains incompletely elucidated. This study aimed

to further investigate the molecular mechanisms underlying the development

of this complication.

Methods: The gene expression profiles of COVID-19 (GSE157103) and pSS

(GSE40611) were downloaded from the Gene Expression Omnibus (GEO)

database. After identifying the common differentially expressed genes (DEGs)

for pSS and COVID-19, functional annotation, protein-protein interaction (PPI)

network, module construction and hub gene identification were performed.

Finally, we constructed transcription factor (TF)-gene regulatory network and

TF-miRNA regulatory network for hub genes.

Results: A total of 40 common DEGs were selected for subsequent analyses.

Functional analyses showed that cellular components and metabolic pathways

collectively participated in the development and progression of pSS and

COVID-19. Finally, 12 significant hub genes were identified using the

cytoHubba plugin, including CMPK2, TYMS, RRM2, HERC5, IFI44L, IFI44,

IFIT2, IFIT1, IFIT3, MX1, CDCA2 and TOP2A, which had preferable values as

diagnostic markers for COVID-19 and pSS.

Conclusions: Our study reveals common pathogenesis of pSS and COVID-19.

These common pathways and pivotal genes may provide new ideas for further

mechanistic studies.

KEYWORDS
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Introduction

Primary Sjogren’s syndrome (pSS) is one of the most

common systemic autoimmune disorders, frequently

accompanied by a variety of specific autoantibodies, such as

antinuclear antibodies (ANAs), antibodies against Ro/Sjogren’s

syndrome-related antigen A (SSA) and La/Sjogren’s syndrome-

related antigen B(SSB), and hypergammaglobulinemia (1, 2).

The prevalence of pSS is about 60 cases per 100,000 inhabitants

(3) and there is a significant gender distribution difference, with

the number of male patients to female patients ratio being about

1:9 (4). It is marked by lymphocytic infiltration of exocrine

glands, such as lacrimal glands, salivary glands and other

exocrine glands, characterized by oral and ocular dryness. At

least one-third of patients with pSS may have multiple organ

function impairment, such as severe thrombocytopenic purpura,

primary biliary cirrhosis, and interstitial pneumonia, which can

seriously compromise the patient’s prognosis, and 5% of patients

may develop lymphoma (5).

The etiology and pathogenesis of pSS are still not fully

elucidated and may be related to various factors such as

infection, genetics and sex hormone abnormalities. Among

them, viral infections are more closely related to pSS. Epstein-

Barr virus (EBV), cytomegalovirus (CMV) and hepatitis C virus

(HCV) may play an important role in the pathogenesis of pSS.

EBV, a DNA virus, was the first virus identified in

association with pSS. EBV can affect the host immune system

by directly infecting lymphocytes and indirectly regulating the

expression of viral antigens through immunomodulatory

mechanisms (6). The DNA component of EBV has been

found to be detectable in the epithelial cells of saliva and

lacrimal glands of patients with pSS (7). Studies have reported

that EBV can induce autoimmune disorders in pSS through type

I interferon, molecular mimicry and ectopic lymphoid-like

structures (ELS),a feature of pSS pathogenesis. EBV promotes

the development and progression of pSS by inducing TLR to

promote IFN-I production by dendritic cells (8, 9). In addition,

the molecular mimicry between pSS autoantigens and EBV-

associated antigens in the serum of pSS patients suggests that

EBV infection may be involved in pathogenesis through

molecular mimicry mechanism (10). Moreover, EBV can

invade the ELS and thus contribute to the growth and

differentiation of self-reactive B cells in pSS patients (11).

CMV is a double-stranded DNA virus. It was found that CMV

IgG concentrations were higher in the control group than in the

pSS patient group, implying that CMV infection may be

associated with the development of pSS, however, this needs to

be confirmed by further clinical studies (12). HCV is a RNA

virus capable of causing chronic hepatitis, cirrhosis and

hepatocellular carcinoma. The pSS-characteristic salivary gland

lymphocyte infiltration was found in patients with hepatitis C

(13). Therefore, it was hypothesized that HCV infection might

be associated with the development of SS and further studies are
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needed to confirm the relationship between HCV and pSS.

However, although viruses such as EBV, CMV and HCV have

been found to influence the pathogenesis of pSS, there are still

relatively few studies focusing on COVID-19 and pSS.

Currently, Coronavirus 2019 (COVID-19), caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is

ravaging the world, which is posing an ongoing challenge to

global health (14). Globally, as of 8 April 2022, there have been

494,587,638 confirmed cases of COVID-19, including 6,170,283

deaths (https://covid19.who.int/). In addition to imposing a

severe burden on global healthcare systems, the epidemic is

also posing a serious challenge to the management of patients

with “inflammatory autoimmune systemic diseases”, including

primary Sjogren’s syndrome (15, 16). Multiple studies have

reported that a significantly higher prevalence of COVID-19

has been observed in patients with pSS than in the general

population (17, 18). Immune dysfunction, as well as the use of

immunosuppressive therapies, have been reported to predispose

pSS patients to severe bacterial and viral infections (18),

however, the underlying mechanism of this phenomenon is

still not fully elucidated.

Exploring the common transcriptional profile of pSS and

COVID-19 may provide new insights into common

pathogenesis of the two diseases. In this study, we aimed to

identify pivotal genes associated with the pathogenesis of pSS

complicated with COVID-19. Two datasets downloaded from

the GEO database (GSE30999 and GSE28829) were analyzed.

Integrated bioinformatics and enrichment analysis were used to

identify common DEGs and their functions in COVID-19 and

pSS. In addition, a PPI network was constructed using the

STRING database and Cytoscape software (version 3.9.1) to

analyze the gene modules and identify hub genes. Finally, we

identified 12 important hub genes and further constructed TF-

gene regulatory network and TF-miRNA regulatory network for

these genes. The hub genes identified in this study between

COVID-19 and pSS are expected to provide new insights into

the biological mechanisms of these two diseases.
Materials and methods

Datasets preparation

GEO (www.ncbi.nlm.nih.gov/geo) is a large database

containing gene expression for multiple diseases, which is

publicly available and free of charge (19). GSE157103 (20)

dataset contains 100 COVID-19 samples and 26 non-COVID-

19 samples, which used high throughput sequencing technology

based on Illumina NovaSeq 6000 platform. GSE40611 (21)

dataset consists of 17 pSS tissues and 18 control tissues, which

was based on Affymetrix Human Genome U133 Plus 2.0

Array platform.
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Identification of shared DEGs
between COVID-19 and primary
Sjogren’s syndrome

GEO2R (22) (www.ncbi.nlm.nih.gov/geo/geo2r/) is an

online web-based tool that can be employed to compare and

analyze gene expression between different sample groups.

Networkanalyst (23) (www.networkanalyst.ca/) is an online

visual analytics platform that enables gene expression

differential analysis and enrichment analysis, meta-analysis,

protein-protein interaction network analysis, and integrated

analysis of multiple datasets. In this study, Networkanalyst was

used to identify DEGs for GSE157103 and we employed GEO2R

to analyze DEGs for GSE40611. Genes with adjusted P-value <

0.05 and |log2 fold change (log2FC)| > 1.0 were considered

DEGs. The R language package VennDiagram (24) was used

to obtain shared DEGs between the GSE157103 and

GSE40611 datasets.
Gene ontology and KEGG
enrichment analysis

KEGG Orthology Based Annotation System (25) (KOBAS;

http://bioinfo.org/kobas) is a database developed by Peking

University for annotation and identification of enriched

pathways and diseases. Gene ontology and KEGG enrichment

analysis were performed to analyze the potential function of

DEGs by using the KOBAS 3.0 database. Adjusted P-value < 0.05

was considered statistically significant.
Construction of protein–protein
interaction network and module analysis

Search Tool for the Retrieval of Interacting Genes (STRING

(26); http://string-db.org) (version 11.5) is a database for the

study of protein interactions with information on more than

14,000 species, more than 60 million proteins, and more than 20

billion interactions, which include both direct physical

interactions as well as indirect functional correlations. The

protein-protein interaction (PPI) interaction network of the

common DEGs was constructed by STRING with an

interaction score > 0.4. Cytoscape software (27) (version 3.9.0)

was used to visualize the PPI network and we used the Cytoscape

plug-in Molecular Complex Detection (MCODE (28)) to

analyze core functional modules. The parameters were set as

follows: degree cutoff = 2, max depth = 100, node score cutoff =

0.2 and K-core = 2. Then KOBAS 3.0 was applied to carry out

KEGG and GO analysis of the genes in each module.
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Identification and analysis of hub genes

The hub genes were selected by a plug-in cytoHubba (29) of

Cytoscape and then seven algorithms (Closeness, MCC, Degree,

MNC, Radiality, Stress and EPC) were used to confirm the final

hub genes, which were visualized by Venn diagram.

GeneMANIA (30) (http://genemania.org), an online tool that

can predict gene interactions, was utilized to construct a co-

expression network of identified hub genes.
Construction of TF-gene regulatory
network and TF-miRNA
regulatory network

In this study, TF-gene regulatory network and TF-miRNA

regulatory network were constructed by utilizing the

Networkanalyst platform. In the case of TF-gene regulatory

network, the ENCODE (31) (https://www.encodeproject.org/)

database, which is included in the Networkanalyst platform, was

been used. As for TF-miRNA regulatory network, it was

acquired from the RegNetwork (32) (http : / /www.

regnetworkweb.org) database, which is incorporated in the

NetworkAnalyst platform.
ROC curves of hub genes

ROC curves were constructed and the area under the ROC

curve (AUC) was calculated separately to evaluate the diagnostic

performance of the hub genes on COVID-19 and pSS using the

R packages “pROC” (33).
Results

Identification of DEGs and shared genes
between COVID-19 and primary
Sjogren’s syndrome

The overall flow chart of this study was shown in Figure 1.

For GSE157103 dataset, a total of 1003 DEGs were identified,

among which 554 genes were up-regulated and 449 genes were

down-regulated (Figure 2A). Based on the GSE40611 dataset,

we identified 351 DEGs including 291 upregulated genes and 60

downregulated genes (Figure 2B). Then by taking the

intersection of DEGs of GSE157103 dataset and GSE40611

dataset, there were 40 shared DEGs selected, which were

visualized by Venn diagrams (Figure 2C).
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FIGURE 2

Volcano diagram and Venn diagram. (A) The volcano map of GSE157103. (B) The volcano map of GSE40611. Upregulated genes are colored in
red; downregulated genes are colored in green. (C) The two datasets showed an overlap of 40 DEGs.
FIGURE 1

Workflow diagram of this study.
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GO and KEGG pathway
enrichment analysis

For GO enrichment analysis, the top five significant terms

showed that the shared DEGs were mainly involved in protein

binding cytoplasm, cytosol, nucleus and nucleoplasm

(Figure 3A). In terms of KEGG pathway enrichment analysis,

the top five significant terms were metabolic pathways,

pyrimidine metabolism, cell cycle, hepatitis C and cytokine-

cytokine receptor interaction. These results forcefully indicated

that cellular component and metabolic pathways collectively

participated in the development and progression of both

inflammatory diseases (Figure 3B).
Protein–protein interaction network
analysis and submodule analysis

The PPI network included 40 nodes and 149 edges, of which

the PPI enrichment P-value was lower than 1.0e − 16 (Figure 4).

By visualizing the PPI network using Cytoscape software, the

redder the color of the gene in the network, the higher the

connectivity of the gene with other genes. A key gene module,

including 25 shared DEGs, was obtained by applying the

MCODE plug-in of Cytoscape (Figure 5A). GO enrichment

analysis of these genes in the module showed that these genes

were mainly associated with cytoplasm, defense response to

virus, response to virus, cytosol and type I interferon signaling

pathway (Figure 5B). KEGG enrichment analysis of these genes

in the module indicated that these genes were mainly related to

pyrimidine metabolism, cell cycle, p53 signaling pathway,

progesterone-mediated oocyte maturation and cellular

senescence (Figure 5C).
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Identification and functional analysis of
hub genes

By applying the seven algorithms of plug-in cytoHubba, we

screened the top 20 hub genes. Through the intersection of Venn

diagrams, 12 common hub genes were finally identified, including

CMPK2, TYMS, RRM2, HERC5, IFI44L, IFI44, IFIT2, IFIT1, IFIT3,

MX1, CDCA2 and TOP2A (Figure 6A). According to GeneMANIA

database, we constructed a complex gene interaction network to

decipher the biological functions of these hub genes, with the co-

expression of 60.37%, physical interactions of 33.91%, co-localization

of 3.46%, predicted of 2.15% and pathway of 0.10% (Figure 6B).

Twenty genes associated with the 12 hub genes were identified, and

the results showed that they were mainly linked to response to type I

interferon, response to virus, regulation of viral genome replication,

regulation of viral life cycle, viral life cycle, deoxyribonucleotide

metabolic process and adenylyltransferase activity.
TF-gene interactions and TF-miRNA co-
regulatory network

TFs which can interact with the 12 hub genes were predicted

by Networkanalyst, and the TF-gene regulatory network was

plotted and visualized by Cytoscape (Figure 7). The network

contains 124 TFs, 134 nodes and 165 edges. These TFs regulate

more than one hub gene in the network, which demonstrated the

high interaction of TFs with hub genes. Subsequently, TF-

miRNA co-regulatory network was constructed using

NetworkAnalyst, which predicted the interaction of miRNA

and TF with hub genes (Figure 8). This interaction may be

responsible for the regulation of hub gene expression. The

network included 65 nodes and 85 edges and 12 miRNAs and

45 TF genes interacted with hub genes.
BA

FIGURE 3

GO and KEGG enrichment analysis of common DEGs. (A)The enrichment analysis results of GO. (B)The enrichment analysis results of KEGG
Pathway. Adjusted P-value < 0.05 was considered significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.938837
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo and Zhou 10.3389/fimmu.2022.938837
ROC curves of hub genes

We assessed the diagnostic efficacy of the 12 hub genes by

plotting ROC curves. In the COVID-19 dataset, TYMS

(AUC:0.952), RRM2(AUC:0.954), CDCA2(AUC:0.946) and

TOP2A(AUC:0.958) exhibited good diagnostic efficiency for
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differentiating the patients with SARS-CoV-2 from healthy

controls (Figure 9A). In the pSS dataset, CMPK2 (AUC:0.922),

TYMS (AUC:0.918), IFI44 (AUC:0.925), IFIT1 (AUC:0.948),

IFIT3(AUC:0.944) and MX1 (AUC:0.935) exhibited preferable

diagnostic performance for differentiating pSS patients from

healthy controls (Figure 9B).
FIGURE 4

PPI network diagram. The redder the color of the gene in the network, the higher the connectivity of the gene with other genes.
B C

A

FIGURE 5

Significant gene module and enrichment analysis of the modular genes (A) A significant gene clustering module. (B) GO enrichment analysis of
the modular genes. (C) KEGG enrichment analysis of the modular genes.
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A

FIGURE 6

Venn diagram and co-expression network of hub genes. (A) The Venn diagram showed 12 overlapping hub genes screened by 7 algorithms.
(B) Hub genes and their co-expression genes were analyzed via GeneMANIA.
FIGURE 7

Network for TF-gene interaction with hub genes. The highlighted blue color node represents the hub genes and other nodes represent
TF-genes.
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Discussion
Evidence has indicated that the prevalence of COVID-19

was significantly higher in patients with pSS compared to the

general population. A variety of viruses (EBV, CMV and HCV)

have been found to be closely associated with the development of

pSS, but there are still fewer studies on COVID-19 and pSS.

Hence, we attempted to explore the shared molecular biological

function and pathways between COVID-19 and pSS, and to

determine the interrelationship between COVID-19 and pSS.

In this study, 40 shared DEGs of COVID-19 and pSS have

been identified. After constructing the PPI network of common
Frontiers in Immunology 08
DEGs, we identified 12 hub genes (CMPK2, TYMS, RRM2,

HERC5, IFI44L, IFI44, IFIT2, IFIT1, IFIT3, MX1, CDCA2

and TOP2A).

Seven genes have been reported to be related to the

pathological mechanism of COVID-19 and pSS. CMPK2

(Cytidine/uridine monophosphate kinase 2) is a thymidylate

kinase, known to be associated with mitochondrial DNA

(mtDNA) synthesis, and may attenuate the severity of acute

respiratory distress syndrome (ARDS), a common complication

of severe COVID-19, by rate-limiting for mtDNA synthesis

(34, 35). In pSS samples, CMPK2 was reported to be

upregulated and was linked to the extent of immune cell

infiltration, mitochondrial respiratory chain complexes, and
FIGURE 8

The network presents the TF-miRNA coregulatory network. The network consists of 65 nodes and 85 edges including 45 TF-genes, 12 miRNA
and 8 hub genes. The nodes in red color are the hub genes, a yellow node represents TF-genes and other nodes indicate miRNAs.
BA

FIGURE 9

Validation of diagnostic shared biomarkers. (A) The ROC curve of the diagnostic efficacy verification in GSE157103. (B) The ROC curve of the
diagnostic efficacy verification in GSE40611.
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mitochondrial metabolic pathways (36). HERC5 (HECT and

RLD domain containing E3 ubiquitin protein ligase 5) is an

antiviral immune protein which is induced by interferon. It can

inhibit replication of hepatitis C (HCV), influenza A (IAV),

human immunodeficiency virus (HIV), SARS-CoV-2 and other

viruses by mediating ISGylation of protein targets induced by

type I interferon (37–39). IFI44L (Interferon(IFN) Induced

Protein 44 Like) is a type-1 I interferon-stimulated gene,

induced by several different viruses. IFI44L expression was

significantly higher in pSS patients than in controls and was

markedly increased after IFN-a or IFN-b stimulation (40, 41). In

addition, this gene was also significantly upregulated in SARS-

CoV-2 infected cardiac tissues (42). As a feedback regulator of

IFN responses, IFI44L can facilitate virus replication via

modulating innate immune responses induced after virus

infections (43). IFIT (Interferon-induced protein with

tetratricopeptide repeats) genes are interferon-stimulated genes

and consist of four genes, IFIT1, IFIT2, IFIT3 and IFIT5. The

expression of IFIT genes is low in multiple cell types, while viral

infection can increase their expression. In pathological

conditions, they inhibit viral replication by binding and

modulating the function of cellular and viral proteins (44, 45).

IFIT1, IFIT2 and IFIT3 have been shown to be upregulated in

cells infected with SARS-CoV-2, indicating activation of the

interferon innate response, which could be regarded as potential

drug targets for the treatment of COVID-19 (46–48). Moreover,

they may upregulate the expression of CXCL10 which induces

lymphocyte chemotaxis and may inhibit the replication of

viruses. These molecules may play a critical role in the innate

immune response in response to viruses (49). MX1 (Myxovirus

resistance 1) encodes a guanosine triphosphate (GTP)

metabolizing protein involved in the cellular antiviral

response. The encoded protein is induced by type I and type II

interferons and antagonizes the replication process of multiple

different RNA and DNA viruses. Through binding to viral

nucleoproteins, MX1 can interfere with the transcription of

influenza viruses (50–52). Several studies have revealed that

MX1 is overexpressed in COVID-19 group compared to

control group, due to the activation of MX1 responding to

new viruses for which the body has no immune defense

(53–55). In addition, the baseline level of MX1 help to identify

SARS-CoV-2-positive patients and help to differentiate patients

who are inclined to different outcomes (56). Similarly, the

expression of MX1 was significantly upregulated in the pSS

(57). For the remaining five hub genes (TYMS, CDCA2, TOP2A,

RRM2 and IFI44), there are no studies reporting their role in

COVID-19 or pSS, which emphasizes its importance in

future research.

In this study, GO enrichment analysis indicated that the type

I interferon signaling pathway is common pathogenesis of

COVID-19 and pSS. Furthermore, based on published
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publications, we hypothesized that type I interferon might be a

shared mechanism of COVID-19 and pSS.

Interferon (IFN) is a class of cytokines with antiviral effects

that directly induce anti-pathogenic immune responses by

controlling the inflammatory response and coordinating the

immune response, thereby resisting invasion and infection by

foreign pathogens (58). Interferons induced by viral infections

can be produced through different signaling pathways,

eventually leading to the transcription and expression of

hundreds of IFN-stimulated genes (ISGs), which further exert

antiviral effects (59). Interferons are classified into three major

classes: type I, II, and III interferons. Type I interferons (IFN-a,
IFN-b, IFN-ϵ, IFN-k, IFN-w) are secreted by virus-infected cells,
type II interferons (IFN-g) are secreted by activated T cells, and

type III IFN (IFN-l) binds to type III IFN receptors (IFNLR)

and is preferentially expressed on epithelial cells and certain

bone marrow cells (60). Type I interferon is the main type of

interferon that can exert antiviral effects.

Although IFN has anti-multiviral effects, it does not kill

viruses directly, but rather inhibits the replication process by

producing antiviral proteins (61). Studies have demonstrated

that IFN can induce the expression of antiviral proteins upon

viral infection (62). IFN-a can significantly enhance cellular

susceptibility to microorganisms by upregulating Toll-like

receptors (TLRs) expression or the expression of transduction

molecules and kinases involved in TLR signaling (63). Moreover,

IFN-a strongly increases the differentiation of T cells and

enhances cellular immunity (64). In addition to its effect on T

cells, IFN can also promote the proliferation of B cells and

enhance humoral immune responses (65). In summary, there are

two main antiviral mechanisms of IFN: one is acting on viruses,

such as interfering with viral replication, and the other is acting

on cells to strengthen the immune function of the body.

There is substantial evidence that type I interferon plays an

important role in the pathogenesis and progression of pSS due to

immune dysregulation (66). For example, it can influence the

immune response to pSS, participating in the activation of

antiviral responses and controlling immune responses through

interactions with the corresponding receptors (67). An

important role of type I interferon is to induce immune

activation, which affects the production and regulation of pro-

inflammatory cytokines and other mediators (68). Monocytes

are stimulated by type I interferon to differentiate into dendritic

cells and stimulate immature dendritic cells to express

chemokines and costimulatory molecules that facilitate their

homing to secondary lymphoid organs, thereby activating

adaptive immunity (69). In addition, macrophages are

stimulated by interferon to enhance phagocytosis. BAFF

(B cell activating factor) is known to be involved in the

pathogenesis of pSS, as it is upregulated in monocytes in

response to type I and type II IFN and promotes B-cell
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survival (70). In addition to monocytes, macrophages, dendritic

cells and salivary gland epithelial cells also express BAFF in

response to IFN stimulation (71, 72). Transgenic mice that

overproduce BAFF exhibit increased B cell proliferation,

increased germinal center responses, autoantibody production,

and increased numbers of immune complexes (73). This

suggests that IFN (especially IFN type I) promotes the

development of pSS by inducing innate immunity, activating

adaptive immunity, and regulating inflammatory cytokines and

antibody levels.

Although previous studies have explored the pivotal genes

associated with COVID-19 and pSS, respectively. However, few

studies have explored the common molecular mechanisms

between the two through bioinformatic approaches. In this

study, we explored and identified common DEGs, hub genes

and TFs of COVID-19 and pSS for the first time, which helped to

further elucidate the pathogenesis of both. However, our study

also has some limitations. First, this study requires external

validation to verify our findings; second, the function of hub

genes needs to be further validated in an in vitro model, which

will be the focus of our future work.

In conclusion, we identified common DEGs for COVID-19

and pSS and performed enrichment and PPI network analysis.

We found that COVID-19 and pSS share pathogenic mechanism

that may be mediated by specific hub genes. This study provides

a potential direction for further investigation of the molecular

mechanisms of COVID-19 and pSS.
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