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Genetic variation has been shown to affect tumor growth and progression, and

the temperature at different latitudes may promote the evolution of genetic

variation. Geographical data with latitudinal information is of importance to

understand the interplay between genetic variants and environmental

influence, such as the temperature, in gastric cancer (GC). In this study, we

classified the GC samples from The Cancer Genome Atlas database into two

groups based on the latitudinal information of patients and found that GC

samples with low-latitude had better clinical outcomes. Further analyses

revealed significant differences in other clinical factors such as disease stage

and grade between high and low latitudes GC samples. Then, we analyzed the

genomic and transcriptomic differences between the two groups. Furthermore,

we evaluated the activity score of metabolic pathways and infiltrating immune

cells in GC samples with different latitudes using the single-sample gene set

enrichment analysis algorithm. These results showed that GC samples at low-

latitude had lower tumor mutation burden and subclones as well as higher DNA

repair activities. Meanwhile, we found that most immune cells were associated

with the prognosis of low-latitude GC patients. At last, we constructed and

validated an immune-related prognostic model to evaluate the prognosis of GC

samples at different latitudes. This study has provided a further understanding of

the geographical contribution to GC at the multiomic level and may benefit the

individualized treatment of GC patients at different latitudes.
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Introduction

Gastric cancer (GC) is the most commonly diagnosed cancer

in the world and the third leading cause of cancer death (Bray

et al., 2018). It is noteworthy that the incidence and mortality of

GC vary across geographical regions with different

environmental exposure (Voskarides, 2018). Another study

showed that cold environmental temperature can increase

cancer risk when compared with other factors including

alcohol (Sharma et al., 2015). This implicated the involvement

of environmental factors in GC development. On the other hand,

the mechanism of how the environment may influence the

occurrence and progression of gastric cancer remains unclear.

In addition, Walden et al. found that genetic variants play an

adaptive role in a changing environment (Walden et al., 2020).

However, very few studies exist investigating genetic variants

selected for adaptation at regional environmental factors in GC

across regions. It is well known that genetic variation is defined as

the difference at the DNA level between individuals within the

same gene pool. Although genetic variations have been observed

in cancer genomics of multiple cancer types, one of the key

characteristics of a genetic variant is its geographic distribution

(Carrio-Cordo et al., 2020). Studies have found that individuals

from different populations carry distinct genetic variants, and

low-frequency variation of these shows a significant geographical

difference (Genomes Project et al., 2012). Several studies have

found that a major cause of tumorigenesis is the accumulation of

somatic mutations, which can be influenced by genetic variants

and environmental factors (Carrio-Cordo et al., 2020). Pan-

cancer analysis of whole genomes from The Cancer Genome

Atlas (TCGA) showed that the frequencies of genetic variants

appear to be cancer type specific, reflecting various

carcinogenesis processes (Consortium, 2020). In addition,

genetic variants may be closely related to tumor heterogeneity,

which is a natural consequence of genome mutations (Vitale

et al., 2021). Tumor heterogeneity can affect the development

and progression of cancer by forcing cancer cells into the tumor

microenvironment (TME), enabling tumor cells to evade

recognition and elimination by the immune system, and thus,

it is a critical factor influencing clinical prognosis and response to

immunotherapy in GC (Zhang et al., 2021; Sun et al., 2022).

Therefore, future studies will need to characterize the geographic

distribution of genetic variants of GC samples to understand

their contribution to GC development.

In this study, we found significant survival differences

between two types of high and low-latitude GC samples from

multiple regions. We further analyze somatic mutations on the

genome and differential RNA expression on the transcriptome.

In addition, we found that there were significant differences in

the scores of infiltrating immune cells in TME and tumor-related

metabolic pathways in the two types of GC. At last, we

constructed an immune-related prognostic model (IRPM) to

evaluate the prognosis of GC samples across regions. This

study aims to uncover genetic variants in GC across regions

through integrative analysis and improve personalized treatment.

Materials and methods

Transcriptomic, genomic, and clinical
datasets of gastric cancer cohorts

Transcriptional profiles of cancer and normal tissues in GC

patients, including mRNA, miRNA, and lncRNA expression

profiles, were obtained from stomach adenocarcinoma patients

of TCGA (https://portal.gdc.cancer.gov). Two forms of

transcriptome datasets were obtained, including expression

counts and FPKM standardized data. For cancer or normal

samples, RNAs with FPKM expression values of 0 in >70% of

samples were removed and the remaining 0 values were imputed

with K-nearest neighbors. Then, expression values were

log2 transformed for subsequent analysis.

Mutational data of GC patients was also downloaded from

the TCGA database. After removing the synonymous variants,

we calculated the tumor mutation burden (TMB), which was

defined as the number of somatic mutations per megabase of

interrogated genomic sequence. The subclone number of each

sample, co-occurrence of mutations, and other visualization of

mutation profiles were calculated using the R package “maftools”

(Mayakonda et al., 2018).

The clinical information of GC patients was obtained from

the TCGA database, including survival state, survival time,

disease stage, disease grade, therapeutic response, age, gender,

and other clinical characteristics.

In addition, the expression profiles and clinical information

of two independent validation cohorts were downloaded from

the Gene Expression Omnibus (GEO) database, including

samples in Houston (GSE26942 and GSE28541) and Seoul

(GSE26253). These two cohorts included 257 and

432 samples, respectively.

Activity score for DNA repair-related GO
terms and metabolic pathways

We obtained 46 DNA repair-related GO terms and genes

from the Molecular Signatures Database (Liberzon et al., 2015).

Based on the FPKM standardized transcriptional data of these

genes in the TCGA cohort, we calculated the activity score of

each GO term using a single-sample gene set enrichment analysis

(ssGSEA) (Rooney et al., 2015).

The metabolic pathways and the related genes were obtained

from the KEGG database (Kanehisa et al., 2017). In total, we

obtained 77 metabolic pathways. The activity score of each

metabolic pathway was also calculated using the ssGSEA

algorithm.
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Differential expression ofmRNAs, miRNAs,
and lncRNAs

Based on the obtained count expression profiles of mRNA,

miRNA, and lncRNA (the same number of samples were used

to identify differential mRNAs, miRNAs, and lncRNAs,

including 74 low-latitude samples, 162 high latitude

samples, and 32 normal samples), we identified the

differentially expressed RNAs between cancer and normal

samples in different latitudes, using the R package “edgeR”

(Robinson et al., 2010).

Infiltration of immune cells in samples

We obtained 28 immune cells and the related 782 marker

genes from Charoentong et al. (2017). These marker genes were

expressed in specific immune cells. Then, the ssGSEA algorithm

was performed to evaluate the infiltrative level of each immune

cell in one sample, based on the FPKM standardized expression

profile of marker genes.

Generation of immune score, stromal
score, and estimate score

For each patient sample, immune score, stromal score, and

estimate score were generated using the R package “estimate”

(Yoshihara et al., 2013). A higher score represents a larger ratio of

the corresponding component in TME.

Construction of the driven gene-related
metabolic pathway network and the driver
gene-related immune cell network

Cancer driver genes in high and low latitudes were

identified using the dNdScv method (Martincorena et al.,

2017). Then, we identified the regulation relationships

between driver genes and metabolic pathways. For each

driver gene, the samples were divided into two types with

or without the mutations of this given driver gene, and

Wilcoxon rank-sum test was performed to evaluate the

difference in the activity scores of metabolic pathways

between the two sample groups. Those metabolic pathways

with p values of less than 0.05 were selected to be regarded as

regulated by the given driver gene. For a metabolic pathway, if

its activity score was significantly higher in mutational

samples than that in nonmutational samples, we called it

positive regulation. The opposite was called negative

regulation. The regulations between driver genes and

metabolic pathways were identified respectively in high and

low latitudes. Assembling all identified regulation pairs, we

generated the driven gene-related metabolic pathway

network.

Likewise, we constructed the driver gene-related immune cell

network, based on the identified driver gene and activity scores of

immune cells.

Construction of the immune-related
prognostic model

We proposed a computational method to establish the

IRPM to predict the survival risk for samples in low-latitude,

which involved three steps (Bao et al., 2020; Bao et al., 2021;

Zhou et al., 2021). First, we evaluated the prognostic effect of

each immune cell using a univariate Cox proportional hazards

regression model, based on the infiltration profile of immune

cells and survival data of samples. The result showed that

immune cells mainly have a prognostic effect on samples in

low-latitude. Five immune cells with the most significant

prognosis for low-latitude samples were selected for

subsequent analysis. Second, we screened those top 5%

genes with the highest correlation with the infiltration of

five prognostic immune cells to be the marker genes,

including 35 positive and 12 negative genes. Third, an

IRPM score was defined using the T statistic of a two-sided

t test for each low-latitude tumor sample by comparing the

expression values of the 35 positively correlated genes with the

expression values of the 12 negatively correlated genes

(Table 1).

The median IRPM score of TCGA low-latitude samples

was defined as the cutoff (cutoff = −3.82). An IRPM

score > −3.82 represented positive genes were

overexpressed, whereas negative genes were underexpressed

in this sample. An IRPM score < −3.82 meant the opposite.

The five prognostic immune cells were all risk factors, and

apparently, the IRPM score was also a risk factor. Using the

cutoff, the samples in low-latitude were divided into high- and

low-risk groups, with high and low IRPM scores, respectively.

The prognostic effect of the IRPM score was validated in the

TCGA low-latitude cohort and two GEO low-latitude cohorts

(Houston and Seoul cohorts).

Survival analysis

Kaplan–Meier survival plots and log-rank tests were used to

evaluate the survival differences between groups of patients. A

univariate Cox proportional hazards regression model was used

to evaluate the prognostic significance of metabolic pathways and

immune cells. These processes were performed using the R

package “survival.”
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Results

Significant differences in clinical
characterizations in samples of high and
low latitudes

Studies have shown that average temperature at different

latitudes might be significantly associated with cancer death, and

cold temperature might contribute to increasing tumorigenesis

(Sharma et al., 2015). In this study, we classified the samples into

two groups based on the latitude information of patients. Samples at

latitudes 0°–45° were defined as low-latitude samples, whereas those

at 46°–90° were defined as high latitude samples. Overall survival

analysis between these two groups revealed a significantly better

clinical outcome for low-latitude samples (log-rank p = 4.61e-04,

Figure 1A). Comparing other clinical characterizations between the

two sample groups, we found various clinical differences (Figure 1B).

First, patients in low latitudes showed lower death rates (22.92% vs.

41.40% in low and high latitudes, respectively, Fisher’s test p =

0.026). Although the samples in low latitudes had better overall

survival, they showed a more advanced disease stage (72.09% vs.

55.23% in low and high latitudes, respectively, Fisher’s test p =

0.005). On the other hand, the samples in high latitudewere found to

be with higher disease grades (69.35% vs. 46.51% samples with grade

3 in high and low latitudes, respectively, Fisher’s test p = 4.43e-04)

and poor clinical response (63.03% vs. 85.71% complete response in

high and low latitudes, respectively, Fisher’s test p = 0.006). In

addition, we found a higher proportion of male patients in lower

latitudes (82.02% vs. 58.42% males in high and low latitudes,

respectively, Fisher’s test p = 8.16e-05). In summary, these results

unraveled the clinical difference between high and low-latitude,

which may help to account for the different clinical behaviors of GC

patients from different geographical regions.

Genomic difference between high and
low latitudes

Somatic mutation has been found to be the cause of many

cancer types. Therefore, we analyzed the mutational profiles of

samples in high and low latitudes, respectively. First, genes with

the highest mutation frequency were selected. Figures 2A, B

showed themutation profiles of these genes across high- and low-

latitude samples. Comparing the top mutational genes between

TABLE 1 Marker genes used in IRPM model.

Gene symbols

Positive genes DOK2, ITGB2, LAPTM5, CD86, CD53, WAS, PLEK, AIF1, MYO1F, CYTH4, ABI3, LSP1, SPI1, CD4, MS4A6A, IL10RA, CYBB,
HCST, C1QA, NCKAP1L, C1QB, C1QC, TNFAIP8L2, MNDA, SRGN, SLAMF8, CD84, GMFG, MYO1G, GIMAP4, C3AR1,
LILRB1, LST1, HCLS1, HAVCR2

Negative genes GGH, SQLE, F11R, HMGCS1, TRIP13, MAP7, NUF2, SRP9, PERP, EFNA1, TOP2A, TBCE

FIGURE 1
Clinical differences between samples in high and low latitudes. (A) Kaplan–Meier curves of overall survival in high and low latitudes of TCGA
STAD patients. (B) Significantly different clinical factors between samples in high and low latitudes, including survival status, stage, grade, clinical
response, and gender. The P and OR values were calculated using Fisher’s exact method.
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two groups, we found that 16 out of 25 genes frequently mutated

in both sample groups. Meanwhile, we also identified some genes

which were frequently mutated in one specific latitude group,

including nine genes in high latitudes (HMCN1, PCLO, RYR2,

FAT3, KMT2D, USH2A, ADGRV1, MDN1, and RNF213) and

nine genes in low latitudes (SPTA1, AHNAK2, PCDH15,

LAMA1, ABCA12, NIPBL, PTPRT, RYR1, and SACS). A

previous study has found significant differences in the clinical

outcome and molecular phenotypes among GC patients when

utilizing TP53 and other signaling networks, such as WNT and

its related gene RYR1 as biomarkers. This study showed that

under the background of TP53 mutations, samples with

RYR1 mutation showed significantly better outcomes than

those without RYR1 mutations (Park et al., 2016). In our

study, we found that RYR1 was mainly mutated in low-

latitude samples, which have better clinical outcomes than in

high latitude. Another study has proved that the mutations of

KMT2D were characterized by increased immune infiltration

and could lead to increased DNA damage and mutation burden

(Wang et al., 2020). These results were all confirmed in our study

in Figure 4A and Figure 7B. In addition, the high frequent

mutations of KMT2D in high latitudes and the poor outcome

in high latitudes were consistent with their results. Multiple

studies have shown that mutations in these genes could

influence the overall survival of GC patients (Choi et al., 2015;

Chen et al., 2019; Li et al., 2021; Yu et al., 2021). All these results

suggest that the different mutational ratios of the same genes and

the mutations in specific mutational genes might all be the causes

of the difference between the two sample groups. The analysis of

mutational signatures can provide important insights into

mutational processes associated with cancer development.

Therefore, we further recognized the mutational signatures of

two sample groups by performing signature enrichment analysis.

It is of interest that the mutational signature associated with

defective DNA mismatch repair was found to differ across high-

and low-latitude samples (Figures 2C, D).

Afterward, we exhibited the mutations of GC patients in each

country at the chromosomal level (Figure 3A) and found that

FIGURE 2
Mutational profiles of high and low latitudes. (A,B) Topmutational 25 genes in high and low latitudes. (C,D)Mutational signatures in high and low
latitudes.
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mutations were evenly distributed on all chromosomes (detailed

list of mutational types of GC samples among various countries

in Supplementary Table S1). The mutation frequencies in Russia

and Germany were found to be the highest with a mean of

690 and 613 mutations in one sample, respectively. The high level

of mutations in these two countries of high latitude might result

in their poor clinical outcome. Most top mutational genes were

co-occurring in both samples (Figure 3B). However, there were

also some exceptions. Mutations in TP53 were exclusively

accompanied by PIK3CA in high latitude and ABCA12 in

low-latitude, respectively. On the other hand, we found that

mutations in TP53 and ARID1A were exclusive in both latitudes.

These data indicated that the different mutation profiles may

account for the difference between high and low latitudes.

Samples in high latitude bear higher tumor
mutation burden, more subclones as well
as lower DNA repair activities

TMB refers to the number of somatic mutations per DNA

megabase in tumor cells. It has been found to be the primary driver

of antitumor adaptive immune responses and serves as a positive

predictive biomarker for immune checkpoint inhibitors (Castle

et al., 2012). Meanwhile, subclone is a major manifestation of

tumor heterogeneity, which could interfere with the effect of

immunotherapy (Vitale et al., 2021). Therefore, we evaluated the

TMB and subclone status for each tumor sample. We found that

samples in high latitudes have significantly higher TMB and more

subclones (Wilcoxon p = 0.018 without outline values and p = 0.015,

Figures 4A, B). Recent studies have illustrated that the genomic

instability resulting from deficiency of DNA repair is associated with

high TMBs (Picard et al., 2020). Based on the expression profile and

DNA repair GO terms, we calculated the activity scores of each

DNA repair GO term in each sample. Then, we compared the

activity scores of two latitudes. In total, 28 DNA repair GO terms

showed significant differences between the two latitudes (Wilcoxon

p < 0.05). Of note, 27 GO terms showed significantly lower activity

scores (Figure 4C). DNA repair was inhibited in high latitude and

resulted in the accumulation of somatic mutations (higher TMB).

The high level of TMB will accordingly increase the probability of

mutations in driver genes and further lead to subclones propagation

and high tumor heterogeneity, which will ultimately prompt tumor

cells to produce more neoantigens and recruit more immune cells.

However, most subclonal tumor cells could escape from the

recognition and attack by the immune system instead of being

eliminated, which is a major reason for the failure of clinical

immunotherapy (Turajlic et al., 2019).

Transcriptomic difference between high
and low latitudes

It is well known that transcriptomic abnormalities have an

important influence on carcinogenesis and cancer progression.

Based on the TCGA database, we used the edgeR method and

identified the differential expressed mRNAs, miRNAs, and

lncRNAs between tumor and normal samples in high and low

latitudes (Figure 5A). Results demonstrated that a large portion

of differentially expressed RNAs was shared in both groups

FIGURE 3
Mutational distribution, co-occurrence, and exclusive analysis. (A) Chromosomal mutational distribution of samples in various countries.
(B) Co-occurrence and exclusive analysis of the top 25 mutational genes in high latitudes (upper left heatmap) and in low latitudes (bottom
right heatmap). The significance was colored based on the adjacent color map.
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(Figure 5B), suggesting the consistency at the transcriptomic level

between different geographic locations in terms of the same

cancer. Meanwhile, hundreds of RNAs were found to be

specifically differentially expressed in high or low-latitude,

including 668 mRNAs (207 mRNAs), 50 miRNAs

(23 miRNAs), and 407 lncRNAs (133 lncRNAs), which were

upregulated in low-latitude (high latitude), and 613 mRNAs

(546 mRNAs), 69 miRNAs (90 miRNAs), and 802 lncRNAs

(703 lncRNAs), which were downregulated in low-latitude (high

latitude). We speculate that these specific RNAs might contribute

to the different clinical outcomes in samples from different

regions. Then, the functional enrichment of these specifically

differentially expressed mRNAs was performed in GO biological

processes and KEGG pathways (Figure 5C). As a result, we found

that genes with specific differential expression at high latitudes

were enriched in biological processes of cell differentiation,

immune response, and innate immune response. Genes with

specifically differential expression at low latitudes tended to be

FIGURE 4
(A) Tumor mutation burden (TMB), (B) subclone number, and (C) ssGSEA score of DNA repair GO terms of samples in high and low latitudes.
High and low latitudes were marked green and orange, respectively.
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enriched in biological processes of cell adhesion, cell–cell

signaling, and response to drug. Furthermore, these genes at

two latitudes were collectively enriched in the olfactory

transduction pathway, ligand–receptor interaction pathway,

cytokine receptor interaction pathway, chemokine signaling

pathway, and taste transduction pathway.

FIGURE 5
Comparison of samples in high and low latitudes at the transcriptome level. (A)Differential expression of mRNAs, miRNAs, and lncRNAs in high-
and low-latitude samples. Green and red dots represent the downregulated and upregulated RNAs in cancer samples. (B) Overlap of differential
upregulated and downregulated mRNAs, miRNAs, and lncRNAs in two sample groups. (C) Functional enrichment of mRNAs with differential
expression especially in high or low latitude.
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Difference in metabolic activities in high
and low latitudes

Numerous studies showed that cancer cells have evolved

adaptive metabolic patterns different from normal cells, to meet

the needs of tumor growth, maintain a balanced REDOX cell

environment, and influence cell communication (Hu et al., 2021;

Hu et al., 2022). Cancer cells can also change the tumor

microenvironment through reprogramming metabolic patterns

and affect the related metabolic activity of tumor cells. Analyzing

FIGURE 6
Comparison of samples in high and low latitudes at themetabolic level. (A)Metabolic pathways with significantly different ssGSEA activity scores
in two sample groups. (B) Prognostic metabolic pathways. Blue and red dots represented the protective and risk factors, respectively. (C) Driver
gene-related metabolic pathway network. The nodes and edges were colored based on the adjacent figure legend.
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the metabolic profiles in different regions would help in

understanding the metabolic difference and their roles in

prognosis. We evaluated the activity score of each metabolic

pathway in each tumor sample, using the ssGSEA algorithm

based on the obtained metabolic pathways and the expression

profile. Then, the activity scores of the metabolic pathways in

high and low latitudes were compared. As a result, 24 out of

77 metabolic pathways showed significantly different activity in

two latitudes (Wilcoxon p< 0.05, Figure 6A).Most of the differential

pathways presented lower metabolic activities in high latitude.

However, some metabolic pathways presented higher metabolic

activities, such as the primary bile acid biosynthesis pathway, the

phosphonate and phosphinate metabolism pathway, and the

glycosphingolipid biosynthesis–ganglio series pathway.

Furthermore, we used the univariate Cox proportional hazards

regression model to evaluate the prognosis of metabolic pathways in

tumor samples. Results showed that metabolic pathways have

prognostic effects mainly in samples of low-latitude, including

nine pathways as protective factors (Figure 6B). The high

activities of these metabolic pathways in low-latitude samples

positively correlated with the better clinical outcomes of the GC

patients. To explore the combination effect of gene mutations and

abnormal metabolism on the development of tumors, as described

in “Materials andMethods,”we identified the driver genes and their

regulated metabolic pathways (Figure 6C). In the network, the

metabolic pathways on the left were driven by driver genes only

in high latitudes, which is usually enhanced by the mutations in

driver genes. Most of the metabolic pathways on the right were

weakened by mutations in driver genes. The majority of metabolic

pathways were regulated in only one latitude except for several

pathways driven by mutational genes in both latitudes. The

mutations of driver gene TP53 and KRAS were shared in both

latitudes and caused the enhanced activities of tyrosine and pyruvate

metabolisms in both latitudes. For Drug metabolism (cytochrome

P450 metabolic pathway), KRAS mutations in high latitudes

weakened its activity but enhanced its activity in low latitudes.

Driver genes usually exerted opposite regulations in two latitudes.

On the other hand, mutations in TP53 usually enhanced the

metabolic pathways, whereas ARID1A mutations mainly

weakened the metabolic pathways. Therefore, the exclusive

mutations in TP53 and ARID1A might generate the cellular

metabolic programs in tumors.

Infiltration of immune cells was higher in
high latitude than low latitude

Infiltrating immune cells are a key element of the tumor

microenvironment, and further analysis of the infiltration patterns

of these immune cells could help improve the antitumor effect of

FIGURE 7
omparison of samples in high and low latitudes at the immune level. (A) Infiltration of 28 immune cells in samples. (B) Stromal, immune, and
ESTIMATE scores of samples evaluated using the “estimate”method. (C) Expression of PD-L1 in samples. (D) Immune cells with significantly different
infiltration between two sample groups; p values of less than 0.05, 0.01, and 0.001 were marked with “*”, “**”, and “***,” respectively. (E) Prognostic
immune cells. (F) Driver gene-related immune cell network. The nodes and edges were colored based on the adjacent figure legend.
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immunotherapy (Bao et al., 2022). Therefore, we calculated the

infiltration of 28 immune cells in GC samples in two latitudes

using the ssGSEA algorithm. As shown in Figure 7A, most

immune cells presented a higher degree of infiltration in high

latitudes, including innate immune cells, such as undifferentiated

dendritic cells, neutrophils, and specific immune cells, such as

activated CD4 T cells and CD8 T cells. To further clarify the

intrinsic biological differences in high and low latitudes, the

estimation of stroma and immune cells was used to calculate their

scores in malignant tumors by using the ESTIMATE algorithm. The

high score estimated in immune and stromal scores represented a large

amount of the immune or stromal components in TME. The result

showed that the average immune, stromal, and ESTIMATE scores

(Figure 7B) were significantly higher in high latitudes than in low

latitudes. Recent studies showed that the interaction betweenPD-L1 on

tumor cells and PD-1 on immune cells led to the inactivation of

cytotoxic T cells (CTLs such as effector cytotoxic T cells and memory

cytotoxic T cells) to evade antitumor immune responses (Batista et al.,

2020). Therefore, we further performed a differential analysis of PD-L1

gene expression (Figure 7C) and portrayed a heatmap of immune cells

with significant differences by comparing the cell type enrichment level

from gene expression data of 28 immune cells in two types. The result

indicated that 23 out of 28 immune cells showed significantly different

activity in two latitudes (Wilcoxon p< 0.05, Figure 7D).Although there
were more infiltrating CTLs in high latitude samples, the expression

level of the PD-L1 gene was also higher, which might be one of the

reasons for the poor immune response.

Then, we utilized a univariate Cox proportional hazards

regression model to evaluate the prognosis of immune cells in

tumor samples. Data showed that in addition to immature

dendritic cells, most immune cells had prognostic effects mainly

in low-latitude samples, with 15 immune cells being risk factors

(Figure 7E). The lower the activity of these immune cells in low-

latitude samples, the better the clinical prognosis of GC patients.We

further identified the driver genes and their regulated immune cells

(Figure 7F) and found that the immune cells on the left were only

driven by driver genes in high latitudes. For instance, HLA-B

mutations in the left driver gene could decrease the activity of

some immune cells, whereas PTEN, ELF3, and CDH1 mutations

could lead to an increase in the activity of some immune cells. In

addition, the driver genes on the right were shared by both high and

low latitudes. Among them, KRAS and TP53 mutations tend to

reduce the activity of immune cells, whereas SMAD4 and ARID1A

mutations tend to increase the activity of immune cells. In addition,

we found that TP53 and ARID1A regulate immune cells in a

mutually exclusive manner.

Construction and application of the
immune-related prognostic model

Immune cells play a crucial role in tumor development and

influence the prognosis of cancer. In our study, most immune

cells were found to be related to the prognosis of low-latitude GC

patients. In consequence, we constructed an IRPM as described

in the Materials and Methods section and further calculated the

IRPM score for each sample in low-latitude samples.

Kaplan–Meier survival plots were generated and log-rank tests

were executed for samples with high and low IRPM scores (with

the median score as the cutoff) in low-latitude samples (n = 38).

As a result, we found that samples with lower IRPM scores had

better clinical survival (Figure 8C). The log-rank p-value was not

significant due to the relatively small number of low-latitude

samples, but we found that there was a significant difference in

the overall survival probability of high- and low-risk samples by

observing the survival curve. In addition, we calculated the

predictive effect of IRPM score in high- and low-latitude

samples (n = 171, log-rank p = 0.003, Figure 8D). To further

investigate the applicability of the IRPM model and validate its

prognostic effect, we collected two independent GEO datasets

from low latitudes. Then, we calculated the IRPM score for each

sample and further divided the samples into high- and low-risk

groups. The results showed that the IRPM model had a

significant prognostic effect in two independent GEO datasets

(Figures 8E, F).

Discussion

GC patients from different geographic regions were exposed

to multilevel environmental factors, such as geographic factors,

life behaviors, and genetic background (Carrio-Cordo et al.,

2020). Further study has unraveled the interrelationship of

genetic and environmental factors, as environmental factors

can influence the process of genetic variation by causing

damage to the genome. Therefore, we think that genetic

variants could reflect the genetic heterogeneity of GC samples

across regions. In this study, we analyze the difference in genome

and transcriptome of GC patients from different regions and

constructed IRPM, which has been validated in various GEO

cohorts, to evaluate the prognosis of GC samples.

Somatic mutations are primarily disease-causing genetic

variations in cancer. The most commonly studied mutations

are point mutations and fragment mutations, which can be

divided into substitutions, deletion, insertions, and inversion

according to their mutation types. Genetic alterations showed

significant geographical differences (Genomes Project et al.,

2012). Some studies indicated that cold temperature could be

the possible cause of increased mutation in the genome and

might contribute to increasing tumorigenesis (Saini et al., 2017).

In our study, we also found that two types of GC samples show

differences in mutation type, frequency, mutation signature,

tumor heterogeneity, and driver mutation genes. Mutations

might have done irreparable damage to DNA and might lead

to cell death. DNA repair mechanism plays a crucial role in

maintaining genome stability and preventing unfavorable
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mutations. In this study, we found that most scores of DNA

repair-related GO terms of high latitude GC samples were

significantly lower than those of low-latitude GC samples.

This might be one of the reasons for the difference in TMB

levels between the two types of GC samples.

In addition, the number of subclones in high latitude GC

samples was significantly higher than in low-latitude GC

samples. Recent studies have shown that the number of

subclones in a cancer cell has an important effect on tumor

heterogeneity (Parikh et al., 2019; Dentro et al., 2021). We

found that GC in different regions was highly heterogeneous

at the genetic (such as mutations and subclones) level, which

has major repercussions on the efficacy of immunotherapy.

The high tumor mutational burden favored the infiltration of

immune effector cells, mainly because neoantigens were

resulting from tumor somatic mutations, which conferred

tumor immunogenicity by eliciting antitumor immune

responses (Picard et al., 2020). However, antitumor

immune responses were negatively correlated with tumor

heterogeneity. Although high latitude GC samples had

higher TMB levels, they also had more subclone numbers,

which might be the reason for the poor immune response in

high latitude GC samples.

In summary, we found that the mutation status, in terms of

mutation types, mutation number, mutation signature, tumor

heterogeneity, and mutation-driving genes, differed dramatically

among GC samples from different geographic regions. Further

analysis showed that high latitude GC samples had higher scores

of infiltrating immune cells but had lower scores of metabolic

pathways than low-latitude GC samples. At last, we established

an IRPM to predict the clinical outcome for GC samples from

different regions. This study has provided a deep understanding

of cancer heterogeneity at the genomic and transcriptomic level

and facilitated the prediction of the clinical outcome of low-

latitude GC patients.
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