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With the improvement of energy consumption structure, the installed capacity of wind
power increases gradually. However, the inherent intermittency and instability of wind
energy bring severe challenges to the dispatching operation. Wind power forecasting is
one of the main solutions. In this work, a new combined wind power prediction model is
proposed. First, a quartile method is used for data cleaning, namely, identifying and
eliminating the abnormal data. Then, the wind power data sequence is decomposed by
empirical mode decomposition to eliminate non-stationary characteristics. Finally, the wind
generator data are trained by the MA-BP network to establish the wind power prediction
model. Also, the simulation tests verify the prediction effect of the proposed method.
Specifically speaking, the average MAPE is decreased to 12.4979% by the proposed
method. Also, the average RMSE and MAE are 107.1728 and 71.604 kW, respectively.
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INTRODUCTION

Over the past decades, China has been persistently developing renewable energy source (RES)
technology, which effectively alleviate the energy resource constraints and ecological environment
pressure in China (Yang et al., 2021a). Also, the government puts forward the carbon neutral strategy
and demands to further develop power generation on RESs and makes new plans for the
consumption of renewable energy in various regions (Jung and Broadwater, 2014). Therefore,
the research on output prediction of RESs is of positive significance to the efficient utilization of RESs
and the security and reliability of power grid operation (Ji et al., 2014).

Solar energy and wind energy are the twomain forms of RESs used for power generation in China.
In recent years, wind power has gained great attention worldwide due to its advantages of low cost
and non-pollution (Kazem and Yousif, 2017), and a number of large-scale wind farms have been
built. However, the inherent intermittency and instability of wind energy (such as changes in daytime
wind speed, wind direction, and atmospheric pressure (Song et al., 2018)) bring severe challenges to
the dispatching operation and power quality of the power system, which severely limits the
development of wind power. If the wind power can be predicted effectively, it can not only
reduce the spare capacity and operating cost of the power system but also mitigate the adverse impact
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of wind power on the power grid, which will effectively improve
the installed capacity of wind power and improve the
competitiveness of a wind generator (Guchhait and Banerjee,
2020).

The most widely used methods in wind power prediction can
be divided into three categories: physical method, statistical
prediction method, and artificial intelligence (AI) method.
Among them, the physical method realizes the wind power
prediction by establishing a functional relationship model
whose modeling process is relatively complicated (Wang et al.,
2016a). Compared with that of physical prediction methods, the
modeling process of statistical prediction methods is simple
(Erdem and Shi, 2010; Ambach and Schmid, 2017), whose
average prediction accuracy is higher than that of traditional
physical prediction methods. The AI method trains a large
number of historical wind power data through the neural
network model and then predicts the trend of time series data
using the trained model. The classical AI methods include
support vector machine (SVM) (Liu et al., 2014) and artificial
neural network (Chitsaz et al., 2015), etc. The AI prediction
method can better reflect the trend of time series data in
modeling, but the accuracy of the single neural network
prediction model is relatively lower than the previously
mentioned two methods.

The nonlinear and non-stationary characteristics of wind
power are the main reasons affecting the prediction accuracy.
The effective decomposition of wind power signals at a certain
scale or fluctuation trend can reduce the instability of signal, the
key which is how to extract relatively stationary sub-sequence
components from nonlinear and non-stationary wind power
signals. At present, the empirical mode decomposition (EMD)
is commonly used to stabilize wind power signals at home and
abroad. EMD has a good analysis and processing effect on
nonlinear and non-stationary signals such as wind power.
Aiming at the instability of wind power, EMD first
decomposes the time series data, then the sub-sequences are
predicted by the forecasting model, respectively, and finally
adding all the predicted values together. So, EMD can
effectively improve the forecasting accuracy of wind power. In
the literature by Liu et al. (2013), wavelet transform was used to
decompose the original sequence, and the power prediction was
performed by SVM and artificial neural network. But the
influence of key variables on wind power changes was not
analyzed in the combined prediction model. Liang et al.
(2015) used ensemble empirical mode decomposition (EEMD)
algorithm to decompose and preprocess the sequences, and least-
squares support vector machine and wavelet neural network are
used in prediction models, respectively. Meanwhile, the excessive
number of decomposed sub-sequences will lead to error
superposition and increase the prediction error of the model.
In the literature by Stevesonn et al. (2005), the sampling rate
problem was studied, and the influence of sampling rate on EMD
was quantitatively described to some extent, but no solution
was given.

Based on the aforementioned research, the combined
prediction model of decomposition–prediction–reconstruction
can effectively improve the accuracy of wind power prediction.

In view of the wind power characteristics, a new combined
prediction model of wind power based on EMD and back
propagation (BP) neural network optimized with mayfly
algorithm (MA) is proposed in this work. Above all, the EMD
algorithm is used to decompose and preprocess wind sequences
to reduce the non-stationarity of wind power signals and obtain a
group of relatively stationary sub-sequence components. Then,
the MA-BP neural network is used to model and predict the
outputs of each sub-sequence. Finally, the prediction results of
each sub-sequence are superimposed to obtain the final wind
power prediction result.

EMPIRICAL MODE DECOMPOSITION

EMD (Huang et al., 1998) is an adaptive signal decomposition
method, which is particularly suitable for the stabilization of
nonlinear and non-stationary time sequences (Wang et al., 2016b;
Khosravi et al., 2021). The EMD method assumes that any
complex time signal is composed of a series of simple and
mutually independent intrinsic mode functions (IMFs), and
each IMF component must meet the following constraints: 1)
the number of extreme points must be the same as or at most one
different from the number of zero crossing points in the entire
sequence data segment; 2) at any point, the mean of the upper
envelope determined by the maximum and the lower envelope
determined by the minimum is zero.

The specific decomposition steps for a given original time
series X(t) are shown as follows:

1) Identify all maximum and minimum points in the original
sequence X(t), use cubic spline interpolation or Hermite
interpolation to fit and form the upper envelope Xup(t)
and the lower envelope Xdown(t), respectively, and calculate
the mean value Ave(t) of the upper and lower envelope as
follows:

Ave(t) � Xup(t) +Xdown(t)
2

. (1)

2) Calculate the difference between the original sequence X(t)
and the mean envelope Ave(t), denoted as e(t) by the
following equation:

e(t) � X(t) − Ave(t). (2)

3) Determine whether e(t)meets the IMF constraints. If not, it is
taken as a new input sequence to repeatedly execute Step 1)
and Step 2) until the constraint conditions are met. If yes, e(t)
is the first IMF component, denoted as C1(t) � e(t).
Meanwhile, C1(t) is subtracted from the original sequence
X(t), and the remaining component is obtained as follows:

R1(t) � X(t) − C1(t). (3)

4) The residual component R1(t) is regarded as a new original
sequence, and the remaining IMF components and one
residual component can be obtained by repeating the

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 9280632

Gong et al. Wind Farm Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


aforementioned stabilizing processing steps. The final results
acquired by EMD can be represented as,

X(t) � ∑ n
k�1 Ck(t) + Rn(t), (4)

where Ck(t) is the kth IMF component and Rn(t) means the
residual component, which represents the trend term of the
original sequence.

Compared with the original sequence, the sub-sequence has
strong stability and regularity (Ma et al., 2013; Mahidin et al.,
2021), which is conducive to improving the prediction accuracy.
The original wind generator signal processed by EMD can be
adaptively decomposed into finite IMFs and residual component
according to its own characteristics, so that the local characteristic
signals of the original wind generator signal at different time
scales are included in each component, which stabilizes the non-
stationary data.

THE MAYFLY ALGORITHM–BACK
PROPAGATION NEURAL NETWORK

The MA-BP neural network is the core process of the combined
prediction model to excavate the statistical mapping relation
between the meteorological input and wind power output.
Also, MA, an optimizer which has strong global search ability,
is applied to adjust and optimize the weight values and threshold
values.

The Back Propagation Neural Network
BP is a kind of multilayer feed-forward neural network trained
according to error back propagation algorithm (Yang et al.,
2021b). Its core mathematical tool is the chain derivative rule
of calculus. The loss function value between the actual output
value and the expected output value of the network is minimized

by using the gradient descent idea and gradient search technique,
where the loss function means to measure the difference between
the predicted value and the expected value in the supervised
learning (Li and Shi, 2010). The basic BP algorithm includes two
propagation processes: signal forward propagation and error back
propagation (Hu et al., 2016). In this work, the BP network is
utilized to realize the point prediction of wind power.

In the modeling of short-term wind power prediction, the
three-layered BP neural network structure is adopted in this
article, taking training speed and data adaptability into
consideration. Also, the structure of the proposed BP
network for inputting forecast meteorological data is shown
in Figure 1. Moreover, the input can include one or more
different types of meteorological data, such as wind speed and
direction.

The design of the hidden layer of the BP model affects the
training error and prediction error of the network. If the number
of hidden layer neurons is too small, the network will lack the
necessary learning ability and information processing ability and
may unable to train data or the performance is poor. Increasing
the number of hidden layer nodes can improve the generalization
ability of the BP network and reduce the network error, but it will
also increase the complexity of the BP network, prolong the
training time, and even lead to the phenomenon of over-fitting.
There is no standard method for selecting the appropriate
number of hidden layer neurons, and the more common
method is trial and error, which can refer to the following
empirical formula:

Nhidden � 2 pNinput + 1, (5)
whereNhidden represents the number of hidden layer neurons and
Ninput denotes the number of input layer neurons.

After many tests and comparison, the optimal number of
hidden layer neuron nodes is around 5.

Mayfly Algorithm
MA, a swarm intelligence search algorithm proposed in the
literature (Konstantinos and Stelios, 2020), simulates the social
behavior of mayflies, including motion, courtship, and mating.
The position of each mayfly represents a set of weights and
thresholds of the BP neural network (Liu et al., 2021). Moreover,
in order to increase the convergence rate of MA, the Levy flight
rule is introduced to adjust the weight of current velocity in the
next iteration. Moreover, MA aims at finding the optimal weights
and bias to reduce the error between prediction output and
desired output. In addition, this error is the fitness value of
MA, which is represented as follows:

Fitness � minmize
⎧⎨⎩∑ n

i�1 abs(y − ydesired)⎫⎬⎭, (6)

where ymeans the predicted wind power and ydesired denotes the
desired output of BP network.

In the course of population evolution, the whole population is
divided into three types: male, female, and offspring. Also, the
position update formula of male mayfly is:

FIGURE 1 | Basic structure of the proposed BP network.
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{ xt+1
ij,m � xt

ij,m + vt+1ij,m

vt+1ij,m � vtij,m + σ1(gbest − xt
ij,m) + σ2(pbest − xt

ij,m) , (7)

where xt
ij,m denotes the coordinate in the jth dimension of the ith

male mayfly in the tth iteration, vtij,m is the motion velocity in the
jth dimension of the ith male mayfly in the tth iteration, σ1 and
σ2 are the social effect positive attraction coefficients, gbest

represents the best location explored by the current mayfly,
andpbest represents the best location explored by the whole
population.

When the fitness value of female mayflies is high, male
mayflies will mate with her. Male mayflies perform a
characteristic up-and-down dance action during courtship
which is mathematically described by the following formula:

vt+1ij,m � vtij,m + ρε, (8)
where ρ is the dancing factor andε is a random value from -1 to 1.

Unlike male mayflies, female mayflies do not gather in groups
during movement but move closer to the location of male
mayflies. The position of female mayflies is updated by Eq. 9
as follows:

vt+1ij,f � { vtij,f + σ2(xt
ij,m − yt

ij,f), g(yi)≥g(xi),
vtij,f + fε,

(9)

where vt+1ij,f is the motion velocity in the jth dimension of the ith
female mayfly in the (t + 1) th iteration, yt

ij,f means the
coordinate in the jth dimension of the ith female mayfly in
the tth iteration, and f denotes a random bludging coefficient.
When the fitness value of a female mayfly is less than that of a
male mayfly, it will approach the male mayfly’s position. When
the fitness value of a female mayfly is greater than that of a male
mayfly, it will accelerate forward based on the last movement. The
speed and position of the offspring are determined by inheriting
those of one male parent and another female parent.

Although MA has strong global search ability, it can be seen
from Eqs 7–9 that mayflies are affected from the speed of the last
movement in the process of motion, which can lead to slow the
convergence rate of MA. For the sake of alleviating the slow
convergence of the system caused by excessive inertia as much as
possible, the Levy flight rule is applied to adjust the weight of the
current velocity in the next iteration movement, so that the
system tends to converge faster. Levy flight is a kind of
movement commonly used by birds in nature. Different from
Brownian motion with random walk, Levy flight moves in a way
of small step-size with a large probability and large step-size with
a small probability. Therefore, the position update equation of
mayflies is altered to reduce the number of MA parameters and
ensure mayfly diversity. The flow of MA is as follows:

1) Initializing the parameters of the mayfly population;
2) Calculate the fitness of each mayfly by Eq. 6 and determine

gbest and pbest;
3) Update the position and motion velocity of each mayfly by

Eqs 7–9 and Levy flight;

4) After the movement of mayflies, recalculate the fitness values
for each mayfly and the P update gbest and pbest;

5) Modeling of wind power prediction based on EMD and MA-
BP network.

Wind power time series data are a typical nonlinear and non-
stationary signal. First, the original data are cleaned and screened
based on the quartile algorithm to identify and eliminate
abnormal data, and then the data are normalized to the range
of [0,1] through the maximum value to eliminate the different
dimensionality of various variables. Second, EMD is used to
separate various components of the wind turbine time series
data to weaken the non-stationarity of the signal. Then, the MA-
BP network is used to predict each component, respectively.
Finally, the prediction results of each component are
superimposed to obtain the final wind power prediction result,
and the error analysis is conducted, as well.

Data Preprocessing
In the data collection process, affected by many factors, such as
sensor errors, electromagnetic interference, and changes of wind
turbine aerodynamic characteristics caused by abnormal weather,
abnormal data may be generated that violate normal operation
characteristics of the wind turbine unit or exceed the operation
boundary of the wind generator. These abnormal data will
seriously affect the prediction accuracy of the wind power
forecasting model, so it is necessary to clean the original data,
identify and eliminate the abnormal data, and then fill in the
missing data.

The quartile method (Wu et al., 2013) is one of the important
methods to analyze the distribution characteristics of data sets. It
refers to dividing a data sample sequence in order of size into four
parts by three data points, and each part contains one fourth of
the total data amount of the whole data sequence. For the data
pair sequence {S} of wind speed–temperature–power, triple
quartile data cleanings are performed from the perspective of
power, wind speed, and temperature to eliminate dispersed
abnormal data. The specific steps are as follows:

1) Sequence {S} is reordered according to the wind power in the
ascending order, denoted as S1. Also, according to the interval
of 15 kW, S1 is equally divided into 100 sub-sequences (the
rated power of a wind farm is 1,500 kW), denoted as S1,i. Each
sub-sequence is rearranged according to the wind speed and
temperature in ascending order, and the abnormal data are
eliminated by the quartile method. The new data are denoted
as S2.

2) S2 is reordered according to the wind speed in the ascending
order and divided into some sub-sequences. Similar to step
(1), the abnormal data are eliminated by the quartile method
in view of power and temperature. The new data are denoted
as S3.

3) Also, S3 is reordered according to the temperature and then
cleaned in view of the wind speed and power. The new data are
denoted as S4.
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Finally, S4 is filled in the missing data by the interpolation
method to obtain the data set that can be ultimately be used to
predict wind power.

The dimensional units and data magnitude of the collected
data, such as wind power, temperature, and wind speed, are
different. Meanwhile, the output range of BP neurons is between
0 and 1. In order to avoid neuron oversaturation, the historical
data of all samples are normalized through the following formula:

y � (ymax − ymin)(x − xmin)
xmax − xmin

+ ymin, (10)

where xmax and xmin are the maximum and minimum values of
the parameter, ymax and ymin are the upper and lower
boundaries of the normalized interval (here it is 0 and 1), x
is the original data set, and y is the normalized data set.

Empirical Mode Decomposition of Wind
Data Sequence
Wind farm monitoring data will be affected by sensor
measurement conditions and environment, resulting in data
distortion and many singularities. In this section, empirical

mode decomposition will be used to eliminate non-stationary
characteristics in the collected data. As shown in Figure 2, the
decomposition results of wind power sequence are composed of
six IMFs and one residual component. It can be inferred from
Figure 2, the frequency of IMF1, IMF2, and IMF3 is higher,
which are the high-frequency components of the wind power
sequence. The periodicity of IMF4, IMF5, and IMF6 is obvious,
which are the low-frequency components. Residual is the trend
component which reflects the overall trend of the wind power
sequence. So, the non-stationarity of the decomposed wind power
data gradually decreases, indicating that IMFs are more stable
than the original power data.

Process of the Wind Power Prediction
Model
Based on the aforementioned analysis, the steps of wind power
prediction model can be summarized as follows:

1) Use EMD to reduce the non-stationarity of wind power series
for obtaining different IMF components and a residual
component;

FIGURE 2 | EMD decomposition results of the wind power sequence.
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2) After the decomposition of original data, an MA-BP neural
network-based wind power prediction model is established for
each IMF and residual component, respectively, to obtain
prediction results of each component;

3) Superimpose the prediction values of each component to
acquire the final prediction value of wind power;

4) Compare the predicted values with the actual wind power
data, and analyze the effect of each prediction model.

CASE STUDIES

To verify the adaptability and effectiveness of the proposed model,
the wind power data from 1 May 2015 to 20 May 2015 are collected
from a wind farm in Jiuquan, Gansu Province, China. A total of
1,536 pieces of historical data includingwind power, wind speed, and
temperature are used in the simulation test, among which, ninety
percent of the data are regarded as the train data set and the rest of
the data are regarded as the test set. Also, the data are collected at an
interval of 10 min. Wind speed and temperature are the input
variables of the proposed forecasting model, and wind power is
regarded as the output variable of the BP neural network.

Evaluation Index of the Prediction Model
Error
In order to effectively evaluate the accuracy of the whole model, root
mean squared error (RMSE), mean absolute error (MAE), andmean

absolute percentage error (MAPE) are selected as the evaluation
index to evaluate the proposed wind power prediction model.
Particularly, the specific formulas of RMSE, MAE, and MAPE
are as follows:

ERMSE �
��������������∑N

t�1(xp,t − xm,t)2
N

√
, (11)

EMAE � ∑N
t�1
∣∣∣∣xp,t − xm,t

∣∣∣∣
N

, (12)

EMAPE � 1
N

∑ N
t�1

∣∣∣∣∣∣∣∣xp,t − xm,t

xm,t

∣∣∣∣∣∣∣∣, (13)

where N is the data length of the test data set, xp,t denotes the
prediction value of wind-generated power, and xm,t represents the
measured power value of the wind farm.

Parameters of the Model Simulation Test on
the Prediction Model
In order to illustrate the contribution of EMD, the simulation tests
are performed by three models, i.e., standard BP neural network,
MA-BP neural network, and combined MA-BP prediction model
with EMD. In addition, with the multiple imitation experiments, the
specific parameters of each wind power prediction model and EMD
algorithm are tabulated in Table 1. In particular, all case studies are
implemented byMATLAB 2019b through a personal computer with
IntelR CoreTMi5 CPU at 3.0 GHz and 16 GB of RAM.

TABLE 1 | Parameter settings of each neural network algorithm.

Algorithm Relative tolerance Max number of IMF Population size Iteration number Number of BP
training iterations

Learning rate Training
target minimum error

BP - - - - 100 0.05 0.05
MA-BP - - 20 10 100 0.05 0.05
EMD-
MA-BP

0.2 6 20 10 100 0.05 0.05

FIGURE 3 | Predicted power curves of three models.
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During the simulation experiments, the interpolation method
used for envelope construction is Hermite interpolation, and the
network structure of designed model is 2, 5, and 1 for each layer
(i.e., input, hidden, and output layer).

Result Analysis of the Simulation Test
The wind power curves of three prediction models and actual values
are shown in Figure 3, and the corresponding RMSE values of each
data point for three prediction models are illustrated in Figure 4.
Moreover, the average prediction error (RMSE and MAE) of each
prediction model is tabulated in Table 2.

As a whole, with the improvement of the prediction
method, the trend of the prediction curve is gradually close
to the actual curve, and the prediction accuracy gradually
improves. Specifically, the RMSE and MAE decrease from
237.2205 and 191.0634 kW to 107.1728 and 71.604 kW. By
analyzing the wind power prediction results based on standard
BP and measured power, it is found that the BP network model
alone cannot meet the target of forecasting the power output of
a wind farm due to its large error from the actual power value.
The prediction effect of MA-BP is better than that of BP but
still unsatisfactory. In most time periods, the EMD-MA-BP
model can fit the actual results well, but it is difficult for the

EMD-MA-BP model to make accurate prediction when the
wind power changes dramatically due to sudden changes in
meteorological conditions. For example, the error of the EMD-
MA-BP model is particularly large around the 35th and 110th
sampling point in Figure 4.

CONCLUSION

Wind power prediction is a very complex and challenging work
because of the nonlinear and non-stationary characteristics of
wind power. As a result, a simple and direct prediction model is
difficult to get the ideal prediction effect. To overcome the
aforementioned problems, the wind power characteristics
should be excavated by hybrid algorithm. Thus, based on the
aforementioned ideas, this work proposes a new combined wind
power prediction model based on EMD and MA-BP neural
network. The following conclusions are obtained from the case
studies:

• EMD can effectively reduce the non-stationary
characteristics of wind power and is suitable for
extracting the characteristics of the wind power curve;

• The abnormal data cleaning based on quartile algorithm is
proposed to improve model accuracy;

• The forecasting accuracy of the proposed model based on
EMD-MA-BP is higher than that of BP and MA-BP, which
reflects the effectiveness of EMD;

• The proposedmethod is effective in wind power forecasting.

But there is still a lot to improve, and the following work is to
develop a noise reduction algorithm for further data
preprocessing.

FIGURE 4 | RMSE of three wind power prediction models.

TABLE 2 | Average prediction error of each prediction model.

Wind
power prediction Model

BP MA-BP EMD-MA-BP

RMSE/kW 237.2205 186.5184 107.1728
MAE/kW 191.0634 130.9646 71.604
MAPE/% 35.3647 27.5632 12.4979
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