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Background: Hypoxia is a potentially life-threatening condition that can be seen in

pneumonia patients.

Objective: We aimed to develop and test an automatic assessment of lung impairment

in COVID-19 associated pneumonia with machine learning regression models that

predict markers of respiratory and cardiovascular functioning from radiograms and lung

CT.

Materials and Methods: We enrolled a total of 605 COVID-19 cases admitted to

Al Ain Hospital from 24 February to 1 July 2020 into the study. The inclusion criteria

were as follows: age ≥ 18 years; inpatient admission; PCR positive for SARS-CoV-2;

lung CT available at PACS. We designed a CNN-based regression model to predict

systemic oxygenation markers from lung CT and 2D diagnostic images of the chest. The

2D images generated by averaging CT scans were analogous to the frontal and lateral
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view radiograms. The functional (heart and breath rate, blood pressure) and biochemical

findings (SpO2, HCO
−
3 , K

+, Na+, anion gap, C-reactive protein) served as ground truth.

Results: Radiologic findings in the lungs of COVID-19 patients provide reliable

assessments of functional status with clinical utility. If fed to ML models, the sagittal

view radiograms reflect dyspnea more accurately than the coronal view radiograms due

to the smaller size and the lower model complexity. Mean absolute error of the models

trained on single-projection radiograms was approximately 11÷12% and it dropped by

0.5÷1% if both projections were used (11.97 ± 9.23 vs. 11.43 ± 7.51%; p = 0.70).

Thus, the ML regression models based on 2D images acquired in multiple planes had

slightly better performance. The data blending approach was as efficient as the voting

regression technique: 10.90 ± 6.72 vs. 11.96 ± 8.30%, p = 0.94. The models trained

on 3D images were more accurate than those on 2D: 8.27 ± 4.13 and 11.75 ± 8.26%,

p = 0.14 before lung extraction; 10.66 ± 5.83 and 7.94 ± 4.13%, p = 0.18 after the

extraction. The lung extraction boosts 3D model performance unsubstantially (from 8.27

± 4.13 to 7.94 ± 4.13%; p = 0.82). However, none of the differences between 3D and

2D were statistically significant.

Conclusion: The constructed ML algorithms can serve as models of structure-function

association and pathophysiologic changes in COVID-19. The algorithms can improve

risk evaluation and disease management especially after oxygen therapy that changes

functional findings. Thus, the structural assessment of acute lung injury speaks of

disease severity.

Keywords: blended machine learning model, deep learning, COVID-19, pneumonia, SARC-CoV-2, lung structural

changes, structure-function association, hypoxia

1. INTRODUCTION

The outbreak of the coronavirus disease 2019 (COVID-19)
resulted in a steady rise in the number of confirmed cases
and excess mortality (1). Due to the pandemic, the need
for noninvasive respiratory support of patients with severe
pneumonia became overwhelming and often exceeded healthcare
capacity. This also necessitated the development of methods
for improving patient monitoring (2). At the time when the
disease resulted in a high death rate especially in the elderly
population, researchers created machine learning (ML) models
to stratify risks for the proper resource allocation (3–5). The
utility of these models in clinical settings was limited as they
did not provide a quantitative metric of disease severity while

Abbreviations: AG, anion gap; aPTT, activated partial thromboplastin time;

ARDS, acute respiratory distress syndrome; AUC, area under the curve; BR, breath

rate; CAP, community-acquired pneumonia; CI, confidence interval; COVID-19,

coronavirus disease 2019; CRP, C-reactive protein; CT, computed tomography;

CTS, CT score; CXR, Chest X-ray; DB, Data blending; DL, deap learning; HR,

heart rate; LLL, left lower lobe; LUL, left upper lobe; MAE, mean absolute error;

ML, machine learning; PaCO2, alveolar CO2 partial pressure; PaO2, alveolar

oxygen partial pressure; PCR, polymerase chain reaction; PP, pre-processed images

(extracted lungs); PO, pulse oxymetry; PR, pathology rate, rate of lung pathology

in %; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe;

SAP, SARS-CoV-2 associated pneumonia; SARS-CoV-2, severe acute respiratory

syndrome-related coronavirus 2; SpO2, oxygen saturation measured by pulse

oximetry; SaO2, arterial oxygen saturation; VR, voting regression.

forecasting outcomes. For this reason, it was challenging to assess
the level of lung impairment and the models built were not
applicable to patients with other types of community-acquired
pneumonia (CAP).

Currently, COVID-19 has spread around most of the
world and it has been elucidated that the risk of severe
disease is relatively low in healthy individuals especially
children and young adults (6, 7). Instead, there is a high
number of mild and moderate cases to follow. The vast
majority of cases experience mild and moderate disease
compared to severe disease, and most patients have a favorable
prognosis. However, severe hypoxemia secondary to SARS-
CoV-2 infection can lead to acute respiratory failure (8). The
prognosis of severe disease course is more accurate when a
multidisciplinary approach is used (9). Physicians need models
that would describe pathophysiologic changes and alterations
of the lung parenchyma during the disease course. Moreover,
information on the correlation between structural changes and
the functional consequences is insufficient even for CAP, let
alone SARS-CoV-2 associated pneumonia (SAP). Developing
models of structure-function association would improve a
routine radiologic assessment which is currently based on
the visual evaluation of the percentage of consolidation and
opacification within the total lung volume. In addition to
the visual assessment, we aim to develop and test a tool to
evaluate the level of lung damage in pneumonia by predicting
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the level of hypoxia that would be observed if no treatment
is provided.

1.1. Hypoxia in Viral and Bacterial
Pneumonia
Hypoxia is a potentially life-threatening condition that can be
seen in patients with either atypical viral pneumonia or bacterial
pneumonia due to severe lung compromise (10). Over 30% of
SARS-CoV-2 infected patients without shortness of breath might
present with hypoxemia on admission (11). At the beginning of
the pandemic, information on the difference between bacterial
pneumonia and COVID-19-associated pneumonia was missing.
In addition, we did not have data on the hypoxia features specific
to this type of atypical pneumonia. The impulsive use of lung
mechanical ventilation in severe disease forms ended up in
approximately 88% fatality (12).

The mechanisms of developing hypoxia and its structural
correlates merit medical attention as their understanding would
aid in choosing the proper therapeutic strategy and risk
management. In viral pneumonia, pathogen proliferation results
in alveolar inflammation and reduced surfactant production
both leading to pneumonic consolidation and consequent
hypoxia. In SAP, another potential mechanism contributing
to hypoxia is pulmonary vasoconstriction (10). Pathogenesis

of bacterial pneumonia is mediated by a pulmonary defense
system that consists of alveolar macrophages and other
immune cells which engulf bacteria and produce inflammation.
Cytokines are responsible for leakage of the alveolar-capillary
membrane thus causing hypoxia (13). Contrarily to the
bacterial pneumonia, most patients with COVID-19 display low
circulating lymphocyte counts, and a decrease in the number of
T lymphocytes and their subtypes correlate with disease severity
(14). The variety in the immune response may result in distinct
functional outcomes.

1.2. Dissociation Between Structural and
Functional Changes
Hypoxia is an outcome of substantial endothelial damage which
can be more pronounced in COVID-19 than in other viral
pneumonias. Within a year of active research on COVID-19,
specialists managed to report distinct patterns of relationship
between the lung structure and the functional outcomes of
the disease. At an early stage of COVID-19, demolition of the
lung may predominate clinical severity of cases. The clinical
appearance of the disease is relatively mild in contrast to
the gravity of the radiologic findings. This fact serves as an
argument in favor of early administration of corticosteroid
drugs that downregulate the hyperimmune response and prevent
disease progression (8). At a late stage, the situation commonly
reverses. Hypoxia can worsen disproportionally to the lung
involvement. A possible explanation for such a discrepancy is
a disruption of the structure-function association because of
the disregulation of lung perfusion. The disruption may vary
throughout the disease course, causing different phenomena
specific for COVID-19. Considering different diagnostic
modalities improves the accuracy of clinical assessment

and justifies the advantage of a multidisciplinary diagnostic
approach involving specialists in pulmonology, radiology, and
pathology (2, 9).

1.2.1. Silent Hypoxemia in COVID-19
Physicians reported that COVID-19 pneumonia caused oxygen
deprivation which was difficult to detect since the patients did not
experience shortness of breath (15). The condition was termed as
“silent” hypoxia (16). The virus caused a collapse of the alveoli:
it did not fill them with fluid or pus as in CAP. The still-efficient
removal of carbon dioxide hid the clinical appearance of hypoxia
in the initial stages of COVID-19 pneumonia (15). Abnormal gas
exchange results from the known physiology of viral pneumonias
and acute respiratory distress syndrome (ARDS). The elevated
ventilation improves elimination of carbon dioxide, whereas
oxygenation rises to a lesser extent (17). This happens because
of the intrapulmonary shunt and ventilation-perfusion (V/Q)
mismatch. In this way, hypoxic suppression of dyspnea reduces
the manifestation of symptoms, and profound hypoxemia can
remain unnoticed until exertion.

1.2.2. Atypical (Severe) Form of Acute Respiratory

Syndrome in COVID-19
Though COVID-19 pneumonia meets diagnostic criteria of
ARDS, the patients infected with SARS-CoV-2 present with
an uncommon form of the syndrome. A hypothesis explains
severe hypoxemia in COVID-19 with hypoxic vasoconstriction.
A drop in oxygen saturation below some threshold leads to
overaccumulation of byproducts of hypoxia; this creates a vicious
circle of hypoxic changes and causes a loss of lung perfusion
regulation as an outcome (18). So, the cardio-respiratory
compensation to hypoxemia achieved by the patients initially
may fail precipitously (17).

1.3. Studying Structure-Function
Association in Patients With ARDS
Alveolar filling as a central feature of ARDS has both structural
and functional outcomes. To elucidate structural changes,
physicians resort to lung radiographs. They use markers of
impaired gas exchange as physiological metrics. These methods
are universal disregarding the reason for the fluid accumulation
within alveoli which may differ in ARDS of distinct etiology
(inflammation mediated alveolar fluid leak in COVID-19 vs.
elevated transcapillary pressure in CAP with high-altitude
pulmonary edema) (17). Because of these features, structure-
function association in the compliant lung may also vary between
the pathologies.

To prioritize resources for COVID patients effectively,
physicians resort to clinical markers of COVID-19 severity.
The markers can be classified into (i) the laboratory findings
describing biochemical and hematologic shifts; (ii) the structural
data depicting morphologic abnormalities [e.g., chest X-ray
(CXR), CT acquistions, bronchoscopy, etc.]; and (iii) the
functional features showing breath and heart beat rate at rest and
after physical load.

Laboratory findings. Recently we used machine learning for
processing laboratory findings of the patients with SARS-CoV-2
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to rank the biomarkers of disease severity and to build the
prediction model of the disease course (3). The performance of
the neural network trained with top valuable features (aPTT,
CRP and fibrinogen) was admissible (area under the curve
(AUC) 0.86; 95% CI 0.486 to 0.884; p < 0.001). The laboratory
results may serve as predictors of the disease progression as
some of them reflect the degree of inflammation and the others
represent unmanaged chronic conditions that increase the risk of
complications (3).

Morphological findings. Pulmonary inflammation is associated
with the clinical symptoms and the laboratory findings (19). The
degree of the inflammatory process is typically assessed with the
radiologic findings. Examination of chest radiograms (CXR) and
lung CT reflects the level of the structural impairment of the lung
parenchyma and the supposed outcomes. The CT findings differ
by the stage of the disease: ground-glass opacity dominate in the
early COVID-19 followed by crazy paving and consolidation later
in the disease course (20, 21).

There is evidence that both chest radiography and laboratory
findings are important for assessing the severity of the disease
(20), and it is feasible to establish an accurate prediction model
of the outcome of SARS-CoV-2 pneumonia based on either type
of data (22, 23). The laboratory and the morphological findings
are supposed to be more predictive if used in combination (24).
Unfortunately, the predictive models built on either type of the
clinical data had some limitations that precluded their use in
clinical practice (25).

2. OBJECTIVES

We focused on the association between lung CT findings and the
functional status of COVID-19 patients. The principal aim of the
study was to develop and test a tool for automatic assessment
of lung impairment in COVID-19 associated pneumonia with
machine learning (ML) regressionmodels that predict markers of
respiratory and cardiovascular functioning from radiograms and
lung CT.We utilized chest CT images reconstructed with distinct
kernels and pre-processed to obtain either 2D or 3D images of
extracted or non-extracted lung as the morphological findings.
The markers of respiratory and cardiovascular functioning
reflected the level of hypoxia in pneumonia patients.

Hypothetically, the diagnostic value of multi-detector row CT
is sufficient to predict the functional outcomes of the injury to the
lung in SAP. By testing various approaches we expected to find
a combination of optimal settings for reconstructing and pre-
processing diagnostic images of the lung for machine learning.
The settings would help us to reliably build the models reflecting
the patient’s functional status from medical images. The analysis
with advanced statistical methods would help the physicians to
compare follow-up studies, detect disease worsening, and stratify
risks thus improving patient management and outcomes.

To address the objectives, we formulated the
following subobjectives:

1. Study the associations of the radiologic estimates of lung
injury with biochemical and physiological markers of hypoxia.

2. Compare the predictive potential of single- vs. multiplanar 2D
diagnostic images to reflect the level of systemic oxygenation.

3. Build 3D models of structure-function association and
estimate the boost in performance after extraction of the lungs
from 3D images.

4. Select the optimal reconstruction kernel for the diagnostic
images of the lung with regard to the predictive potential of
ML models fed with the images.

3. MATERIALS AND METHODS

3.1. Study Sample
All the patients consecutively admitted to Al Ain Hospital,
Abu Dhabi Emirate from 24 February to 1 July, 2020 were
enrolled into the study. At that time The National Guidelines
of the management of the patients with COVID-19 required that
everybody who tested positive for SARS-CoV-2 was hospitalized
irrespective of disease severity (e.g., presenting any symptoms).
Physicians of the hospital observedmanymild and asymptomatic
forms of the disease. Before the treatment started, all the required
spectrum of analyses were conducted on the day of admission.
These included lung CT; measurement of oxygen saturation by
pulse oximetry (SpO2); physical examination and assessment of
the complete blood count, level of electrolytes and C-reactive
protein (CRP).

In this study we did a retrospective analysis of a unique
dataset of cases. It reflected the full range of disease forms
(from mild to critical) at the early phase of the disease. All
the cases occurred at the time when β-variant of COVID-19
was the predominant variant in the UAE and in most other
countries. The dataset comprises demographic features (age, sex),
the functional data [heart rate (HR), breath rate (BR), systolic
(SBP) and diastolic blood pressure (DBP)], hematological and
biochemical findings, data on SpO2, radiological examinations
(lung CT) of the patients on admission. The inclusion criteria
for our study were as follows: age 18 years or older; inpatient
admission; SARS-CoV-2 positive real-time reverse-transcriptase
polymerase chain reaction (PCR) from nasopharyngeal swabs
only; full DICOM lung CT examination available at PACS. A total
number of 605 cases met the criteria.

3.1.1. Pulse Oximetry, Physical Examination and

Measurement of Laboratory Findings
Follow clinical practice guidelines.Anion gap (AG)was calculated
from the concentration of the major ions (Na+, K+, Cl−, and
HCO−

3 ) in serum expressed inmmol/l (see Formula 1).

AG = ([Na+]+ [K+])− ([Cl−]+ [HCO−
3 ]) (1)

3.1.2. CT Scanning and Reconstructing Settings
The high-resolution CT scan protocol was as follows: the tube
voltage 120 kV, the electric current 195 mA, the exposure time
0.5 s and the slice thickness 1mm. The scanning range was from
lung apex to diaphragm in the axial plane taken at the end of
inspiration. We applied three reconstruction filters (kernels) of
distinct smoothness (B30f, B60f and B80f) for the reconstruction
of CT images. We assured the accuracy of Hounsfield unit (HU)
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in the CT scanner with a standard water phantom. Since the
severity of the lung involvement on the CT correlated with the
severity of the disease, we calculated the total lung CT score and
the percentage of lung involvement. The total CT score is a semi-
quantitative score of pulmonary involvement, and it rates the
percentages of each of the five lobes that is injured: < 5%, 5–
25%, 26–49%, 50–75%, and > 75% involvement (26). The total
CT score is the sum of the individual lobar scores and can range
from 0 (no involvement) to 25 (maximum involvement) when all
five lobes show more than 75% involvement. We calculated the
CT score in the automatic way described in Section 3.4.

3.2. Pre-processing of the Data
In our dataset, the voxel intensities ranged from –1,024 to over
2,000 HU. First, all images underwent the intensity correction by
changing the values of voxels below –1,000 and above 400 to –
1,000 and 400, respectively. Then voxel intensity (v) of images
was normalized with the min-max scaling technique as below:

v =
v− vmin

vmax − vmin
(2)

We also segmented the lungs, performed the background
removal and cropped them within the lung boundaries.
Finally, full and extracted lung images were resized to 128
x 128x 64 voxels (3D-nonextracted and 3D-extracted datasets
were created).

To reduce the data complexity and to test the predictive power
of Deep Learning (DL) models, we also created several two-
dimensional datasets. With X, Y , and Z variables denoting the
dimensions of the CT image in axis x, y, and z, CT scan were
described in the following way:

I = {(vx, vy, vz) : x = 1,X, y = 1,Y , z = 1,Z} (3)

The jth anterior-posterior (coronal), side (sagittal) and
transversal (axial) slices of the image I were defined as:

s
(j)

sagittal
= (j, vy, vz)

s
(j)

coronal
= (vx, j, vz)

s
(j)

axial
= (vx, vy, j) (4)

The corresponding averaged images were determined as follows:

Isagittal =
1

X

X∑

i=1

s
(i)
sagittal

Icoronal =
1

Y

Y∑

i=1

s
(i)
coronal

Iaxial =
1

Z

Z∑

i=1

s
(i)
axial

(5)

We generated a dataset of 2D diagnostic images from the 3D
ones (CT findings). The reason why we did not resort directly

to CXR were as follows. First, the study had a retrospective
design and the patients were scanned only with CT. Evidently,
the physicians did not order CXR as a separate examination to
avoid an additional exposure of the patients to radiation without
diagnostic benefits. Second, the fact that diagnostic images were
acquired with one machine for the same study cohort ensures
the valid comparison of the performance of the models trained
on the 2D and 3D datasets. The 2D and 3D diagnostic images
differ only in the diagnostic value with no confounders impacting
the final diagnostic quality (e.g., different brands, settings,
dosage, etc.).

We averaged voxel intensities over the coronal and sagittal
planes in the 3D − nonextracted dataset and over the axial
and coronal planes in the 3D − extracted dataset. In this way
we created four additional two-dimensional datasets CXRcoronal,
CXRsagittal, PPaxial, and PPcoronal, respectively. Finally, all 2D lung
images were resized to 250 by 150 pixels utilizing down-sampling
with nearest-neighbor interpolation and stored in JPEG format
as illustrated in Figure 1.

3.3. 2D and 3D CNN Models
To predict the biochemical and functional markers of the disease
severity, we designed two CNN models, 2D- and 3D CNN. The
first model was built to be trained on pre-processed 2D-images
(see Section 3.2). We assembled the model in the following
way. We utilized EfficientNetB4 model pre-trained on Imagenet
dataset (27, 28). The top flatten layers were excluded from the
model and substituted with three consecutive fully-connected
layers of 256, 64, and 32 neurons. The designed model was
trained in end-to-endmanner using the five-fold cross-validation
technique and RMSprop optimizer with the initial learning rate
of 0.001 and ρ = 0.9. In each fold 10% of the training subset
were used for validation. We resorted to the mean absolute error
(MAE) to evaluate the loss while training as the output variables
were continuous. The model was trained with 150 epochs or
till the validation loss dropped across 20 consecutive epochs.
The predicted values at each epoch were combined to report the
averaged value of MAE. The final performance was calculated as
the fraction of MAE to the range of values (MAE/range, %).

The second model was based on 3D CNN architecture. It was
fed with 3D-dimensional images 128 x 128 x 64 in size. Themodel
consisted of three 3D convolutional layers of the size of 64, 128,
and 256 units, respectively. Each layer was followed by the max-
pooling block. Then we allocated a global averaged pooling block
followed by a fully connected dense layer of 512 units. At last, we
applied a dropout function of the rate of 30% to the weights of
the layer. We set Adam optimizer parameters for the following
values: the learning rate = 0.0001, β1 = 0.9, β2 = 0.999,
ǫ = 1e − 08, decay = 0.0). The major part of the dataset (70%)
was used for training purposes. 30% of the training data were
utilized to validate the results. The remaining part of the dataset
was allocated for testing. The designed model was trained either
till 150 epochs or till the validation loss did not drop across 20
consecutive epochs. We employed the augmentation technique
to train the model. Before feeding the model, the images were
rotated by the angle from –25◦ to 25◦ with the step of 5◦. The final
performance was calculated as the fraction ofMAE/range, %.
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FIGURE 1 | Steps of pre-processing lung CT images to create 2D and 3D datasets. Sample images averaged over coronal (A) or sagittal (B) plane without

background removal. Same case, images averaged over coronal (C) or axial (D) plane with lung extraction.

3.4. Methodology of the Study
Working on subobjective one, we estimated associations between
the biochemical (AG, serum potassium, HCO3, CRP), the
functional (HR, BR, SBP, DBP, SpO2) and the radiological (total
CT score, percentage of lung involvement) markers of disease
severity by calculating Pearson’s correlation coefficients. We also
added age as a significant risk factor to the correlation matrix.
We assessed the total lung CT score and the percentage of lung
involvement from the radiologic markers. First, the lungs and
lung lobes were segmented with the help of DL U-net model
trained on a large and diverse dataset described in Hofmanninger
et al. (29). See samples of the extracted and non-extracted images
in Figure 2. Masks of the lungs and lobes were stored for further
analysis. Second, we segmented the lesions with CT Thorax
COVID-19model fromMedSeg tool (30). Themodel was trained
on a dataset segmented manually by radiologists. The output of
the model was masks of lesions of the following types: ground-
glass opacity (GGO), consolidation and pleural effusion. We
utilized fslstats tool from FSL to calculate the volume of lesions
(31). This allowed us to determine the absolute value and the
percentage of the involvement for the entire lung and for each lung

lobe. Finally, we calculated the total CT score (CTS) by summing
up the score for the involvement of each lung lobe (1 for <5%, 2
for 5–25%, 3 for 26–49%, 4 for 50–75%, and 5 for > 75%).

See Figure 3 for details on building machine learning models

to fulfill subobjectives 2–4. The rationale behind subobjective two
was to receive more information on the studied structure by
examining the diagnostic images in several planes. The approach
is analogous to the method of obtaining a side view radiogram in
addition to the frontal one.We designed a CNN-based regression
model to predict the markers of systemic oxygenation from 2D
diagnostic images of the chest. We used functional (HR, BR, SBP,
DBP) and biochemical findings (SpO2, serum potassium level
and AG) as the laboratory markers of disease severity. Ametric of
the final performance of themodels was a proportion of themean
averaged error to the range of values (MAE/range, %).We trained
the designed DL model on images from CXRcoronal, CXRsagittal,
PPaxial, and PPcoronal datasets (see Section 3.2). At the input some
models had 2D diagnostic images reconstructed in a single plane
(coronal, sagittal or axial), the others received 2D radiograms in
two planes (coronal and sagittal, axial and coronal), see Figure 1.
We used two architectures for radiograms acquired in two planes:
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FIGURE 2 | Sample images extracted with the proposed pre-processing steps and averaged over the coronal plane of the lung CT examination. I – Lung CT

presented with volume rendering technique; different percentages of lung involvement: (A) 1.16%, (B) 15.83%, (C) 29.09%, (D) 62.29%. Pre-processed 2D images

with (II) and without background (III).
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FIGURE 3 | Building machine learning regression models to predict functional markers of hypoxia from 2D and 3D diagnostic images of lung.
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Data Blending (DB) and Voting Regression (VR). The first
approach is multimodal: the model is fed with two images. The
second solution is an ensemble model in which each comprising
algorithm is fed with a single image.

To address the third subobjective, we designed 3DCNN
regression model and trained it on 3D-Nonextracted and
3D-Extracted datasets separately. The quality of the model
output was measured in the same way as described above
(MAE/range, %). We employed the Mann-Witney U test to
estimate the boost of performance due to information noise
reduction after the lung extraction.

To reach the goal of the final subobjective, we trained the CNN-
regression model on the images from three different kernels
individually. We used the Kruskal-Wallis test to compare the
results of B30f, B60f and B80f kernel images regarding noise as
a function of the reconstruction kernel. The kernels were ranked
according to the predictive power of the DL models.

In this study, DL models were trained and tested using the
five-fold cross-validation technique. Ten percent of the training
data in each fold were used for validation. We employed early
stopping callback functions to monitor the loss at the validation
set.

3.5. Hardware and Software Used
We employed a 40 CPU core Linux Ubuntu 18.04 Nvidia DGX-1
deep learning server equiped with 32 GB 8 NVIDIA Tesla V100
GPU. The server had a web-based multi-user concurrent job
scheduling system (32). The experimental work was conducted
using Python and its libraries for DL, Data Processing, and
Data visualization, such as tensorflow-gpu v.2.3.1, keras v.2.4.3,
SciPy v.1.16.4, NumPy, Pandas,Matplotlib, Seaborn.We installed
Neurodocker which wraps up the aforementioned software in a
complete file system (33).

4. RESULTS

4.1. Associations Between Radiologic
Estimates of Lung Injury, Biochemical and
Physiological Markers of Hypoxia
To justify the accuracy of the collected data, we built a
correlation matrix displaying the correlation coefficients for (a)
age—the major individual risk factor, (b) radiologic markers of
lung involvement and (c) functional and biochemical finding—
laboratory markers of disease severity (see Figure 4).

The percentage of the lung involvement strongly correlated
with the CT score (r = 0.97; p < 0.001). Both metrics of
the lung structural changes were intimately associated with the
majority of the physiological and biochemical markers of the
oxygen deprivation. Relationships between these findings express
the close association between the structural and functional data.
Obviously, lung parenchymatous inflammation has a detrimental
effect on its ventilatory function. Oxygen saturation level showed
the most significant correlation with the percentage of the lung
involvement (r = −0.53; p < 0.001) and the CT score (r =

−0.52; p < 0.001). Less strong association was found between
SpO2 level and cardiovascular system parameters: breath rate

FIGURE 4 | Association between structural findings of the lung impairment

and the functional markers of oxygen deprivation. If the association between

variables is significant (p < 0.05) the values of Spearman’s rank correlation

coefficients are presented in the diagram, otherwise the values are crossed

out.

(r = −0.58; p < 0.001), heart rate (r = −0.14; p =

0.001), systolic (r = 0.26; p < 0.001) and diastolic blood
pressure (r = 0.38; p < 0.001). These observations provide
evidence for the “silent hypoxia” phenomenon described in
Section 1.2.

We did not find a direct correlation between the serum level
of potassium, AG and the level of the lung deterioration assessed
with CT score (K+: r = 0.05; p = 0.224; AG: r = 0.05;
p = 0.242) or the percentage of lung involvement (K+: r = 0.04;
p = 0.306; AG: r = 0.05; p = 0.312). Noticeably, the SpO2

level was not associated with AG (r = −0.03; p = 0.359). These
findings can indicate the presence of non-metabolic respiratory
acidosis in COVID-19 pneumonia. However, the metabolic
factors correlated with some physiological parameters. For
instance, the AG level showed weak but significant correlations
with HR (r = 0.12; p = 0.003), SBP (r = 0.15; p =<

0.001) and DBP (r = 0.16; p =< 0.001). A weak significant
association was observed between HCO3 level and SBP (r =

−0.11; p = 0.008), heart and breath rate (HR: r = −0.19;
p ≤ 0.001; BR: r = −0.14; p =< 0.001). These observations
may illustrate some metabolic compensation for cardiovascular
functioning. Contrarily, the serum potassium concentration was
not associated with any of the tested cardiovascular parameters.
This lack of association could possibly be explained by the
background diseases which may also account for the electrolyte
imbalace.

4.2. Single- vs. Multiplanar 2D Diagnostic
Images
4.2.1. Single-Planar 2D Diagnostic Images
The sagittal view radiograms, if fed to ML models, reflected
dyspnea more accurately than the coronal view radiograms. One
potential reason for this is their smaller size and the lower
model complexity. However, the difference in accuracy was
not pronounced (p = 0.28). MAE/range was 10.43 ± 5.40 for
CXRcoronal vs. 13.49 ± 11.81% for CXRsagittal (see Table 1).
Based on the study findings, it seems that the model trains in
a better way because the size of the sagittal reconstruction is
smaller than in other projections. However, the right and left
lungs overlap in this view.
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TABLE 1 | Performance of the CNN-based regression models trained on the 2D datasets in terms of MAE/range,%.
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S
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D
B
P

Mean ± SD

B30f

CXR coronal(C) 6.030 4.630 5.460 15.170 34.770 13.990 6.610 17.430 10.390 11.790 12.627 ± 8.959

CXR sagittal (S) 10.01 4.060 4.890 14.040 22.920 11.500 4.450 14.620 8.830 10.910 10.623 ± 5.748

CXR DB(C+S) 10.5 3.780 5.090 13.160 31.100 15.750 4.830 16.570 8.190 12.440 12.141 ± 8.059

CXR VR(C+S) 8.02 4.345 5.175 14.605 28.845 12.745 5.530 16.025 9.610 11.350 11.625 ± 7.264

PP coronal (C) 8.06 4.030 5.530 13.610 20.840 12.210 4.550 16.080 8.560 10.570 10.404 ± 5.398

PP axial (A) 12.02 4.070 5.420 13.460 29.490 9.130 4.400 15.080 8.540 11.160 11.277 ± 7.432

PP DB(A + C) 12.66 3.760 5.060 13.040 16.790 10.280 4.470 16.580 8.300 10.460 10.140 ± 4.745

PP VR(A + C) 10.04 4.050 5.475 13.535 25.165 10.670 4.475 15.580 8.550 10.865 10.841 ± 6.492

Average 9.668 4.091 5.263 13.828 26.240 12.034 4.914 15.996 8.871 11.193 11.21 ± 6.582

B30f - 3D images

3D-Nonextracted 8.404 3.128 3.358 3.441 13.317 12.376 5.808 13.394 9.199 10.287 8.271 ± 4.13

3D-Extracted 6.124 2.946 3.21 3.452 13.217 11.825 5.895 13.273 9.137 10.345 7.941 ± 4.131

B60f

CXR coronal(C) 6.480 4.390 5.430 15.340 37.330 15.410 5.800 16.290 9.600 12.790 12.886 ± 9.726

CXR sagittal(S) 5.530 3.970 4.840 13.690 21.560 12.010 5.290 15.890 8.580 11.670 10.303 ± 5.725

CXR DB(C+S) 6.980 3.920 5.230 13.440 27.020 9.700 5.220 14.470 8.340 11.480 10.58 ± 6.789

CXR VR(C+S) 6.005 4.180 5.135 14.515 29.445 13.710 5.545 16.090 9.090 12.230 11.595 ± 7.624

PP coronal(C) 10.54 5.030 5.320 15.360 23.310 13.280 4.770 15.480 8.960 10.550 11.26 ± 5.835

PP axial(A) 13.79 3.820 5.440 12.700 22.570 11.300 6.010 17.870 8.720 11.600 11.382 ± 5.805

PP DB(A+C) 7.420 3.950 4.750 13.570 35.180 13.110 6.020 15.000 8.130 10.890 11.802 ± 9.067

PP VR(A+C) 12.165 4.425 5.380 14.030 22.940 12.290 5.390 16.675 8.840 11.075 11.802 ± 5.744

Average 8.614 4.211 5.191 14.081 27.419 12.601 5.506 15.971 8.783 11.536 11.391 ± 6.878

B80f

CXR coronal(C) 5.78 4.620 5.580 15.670 60.000 14.710 5.510 16.340 9.360 12.130 14.97 ± 16.462

CXR sagittal(S) 6.05 3.990 5.240 13.950 19.920 13.310 4.930 15.160 9.760 11.550 10.386 ± 5.298

CXR DB(C+S) 6.3 4.230 5.700 13.010 22.460 9.130 3.960 13.850 9.900 11.350 9.989 ± 5.614

CXR VR(C+S) 5.915 4.305 5.410 14.810 39.960 14.010 5.220 15.750 9.560 11.840 12.678 ± 10.513

PP coronal(C) 6.100 4.010 5.670 13.630 32.610 12.610 4.890 17.020 8.490 10.810 11.584 ± 8.526

PP axial(A) 11.93 3.910 4.750 13.140 22.050 12.020 6.300 15.470 8.320 10.960 10.885 ± 5.447

PP DB(A+C) 11.98 4.220 4.780 14.660 27.300 12.160 4.320 17.090 8.710 11.670 11.689 ± 7.061

PP VR(A+C) 9.015 3.960 5.210 13.385 27.330 12.315 5.595 16.245 8.405 10.885 11.235 ± 6.864

Average 7.884 4.156 5.293 14.032 31.454 12.533 5.091 15.866 9.063 11.399 11.677 ± 8.007

A, S, C correspond to averaged lung CT image in appropriate plane; VR, Voting Regression meta-estimator; MB, Model Blending; DB, Data Blending.

4.2.2. Multiplanar 2D Diagnostic Images
Table 1 shows that multiplane reconstruction boosts the
performance of the models that were initially trained with 2D
data in a single reconstruction plane. The accuracy of the models
trained on single-projection radiograms was around 11 ÷ 12%
and it dropped by 0.5 ÷ 1% if both projections were applied:
11.97 ± 9.23 (CXRcoronal and CXRsagittal) vs. 11.43 ± 7.51%
(CXR DB and CXR VR). Thus, the ML regression models based
on 2D images acquired in multiple planes showed slightly better
performance (p = 0.70). The diagnostic images acquired in the
sagittal plane contribute additional information to the ones in

the coronal view. The latter shows a typical chest radiogram
in the anteroposterior or reverse projection (see Figure 1A)
while the sagittal reconstruction is analogous to the lateral
projection (see Figure 1B). Radiologists can make more accurate
assumptions on the location and the spread of the lung lesions by
combining the frontal and lateral views. We expected to achieve
the same result with machine learning. However, the observed
improvement in performance was not statistically significant
(from over 11÷12% by 0.5÷1%).

The data blending approach was as efficient as the voting
regression technique: 10.90 ± 6.72 vs. 11.96 ± 8.30%, p = 0.94
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TABLE 2 | Comparison of CNN-based regression models.

Settings Group 1 Group 2 p-value

Models Mean1±SD1 Models Mean2±SD2

Top informative view radiograms

B30f-B80f CXR coronal(C) 13.49 ± 11.81 CXR sagittal(S) 10.44 ± 5.40 0.2838

Model architectures for multiplanar assessment

B30f-B80f CXR DB(C+S) 10.90 ± 6.72 CXR VR(C+S) 11.96 ± 8.30 0.9397

Diagnostic value of multiplanar radiograms

B30f-B80f CXR coronal, CXR sagittal 11.96 ± 9.23 CXR DB, CXR VR 11.43 ± 7.51 0.7016

Effectiveness of background removal

B30f-B80f CXR coronal 13.49 ± 11.81 PP coronal 11.08 ± 6.51 0.5395

B30f 3D-nonextracted 8.27 ± 4.13 3D-extracted 7.94 ± 4.131 0.8206

Advantage of 3D over 2D models

B30f CXR coronal, CXR sagittal 11.75 ± 8.26 3D-nonextracted 8.27 ± 4.13 0.1358

B30f PP coronal, PP sagittal 10.66 ± 5.83 3D-extracted 7.94 ± 4.13 0.1862

(all CXR DB vs. all CXR VR). There was no marked difference in
accuracy between these architectures. We had expected that the
model fed with images acquired in two mutually perpendicular
planes would be more accurate than the ensemble solution.
This did not happen because of the rise in computational
complexity of the algorithm that analyzes both coronal and
sagittal view radiograms.

4.3. Accuracy of 3D Models and Results of
Applying Lung Extraction Technique
We assessed the performance of regression models predicting
markers of systemic oxygenation from 3D to 2D diagnostic
images of the chest. We did it before and after lung extraction
(see Figures 1A–D).

4.3.1. Reduction of the Information Noise With a Lung

Extraction Technique
We cropped the images to extract the lungs. In this way we tried
to reduce the information noise coming from the tissues outside
of the lungs. In 2D models, training the models on the extracted
lung images resulted in only marginally better performance than
feeding them with the radiograms that contain background (e.g.,
ribs, vertebral column, etc.). Furthermore, the most accurate
prediction was achieved using the data blending models trained
on the non-segmented lung images averaged in coronal and
sagittal plane (MAE/range = 9.989 ± 5.614%). For the models
based on coronal-view radiogramsMAE/range was 13.49± 11.81
in CXRcoronal before the lung extraction and it dropped to 11.08
± 6.51% in PPcoronal after the lungs were cropped (p = 0.54).
In 3D models, the lung extraction boosted their performance
unsubstantially: from 8.27 ± 4.13 in 3D non − extracted models
to 7.94± 4.13%; p = 0.82 in 3D extracted ones (see Table 2).

4.3.2. 3D vs. 2D Models
Figure 5 and Table 1 present the performance of the models
trained on diagnostic 3D images that were reconstructed with
B30f kernel. The models trained on 3D images were more
accurate than those on 2D. Before lung extraction, theMAE/range
was 11.75 ± 8.26 for algorithms trained on 2D and it reduced to
8.271 ± 4.13% with 3D data, p = 0.14 (all CXR vs. all 3D non −

extracted). After lung extraction, the performance metrics were
10.66 ± 5.83 for 2D data and 7.94 ± 4.13% for 3D data, p = 0.18
(all PP vs. all 3D extracted).

4.4. Comparison of Reconstruction Kernels
We analyzed how the settings of CT reconstruction kernels
may impact the diagnostic image quality. The final subobjective
of the study was to compare B30f, B60f, and B80f kernel
images with regard to their potential to reflect the clinical
status of the patients with coronaviral pneumonia. We trained
the models predicting the level of hypoxia on images acquired
with these reconstruction kernels. Notched boxplot diagrams on
Figure 6 depict the high accuracy of the models especially the
ones predicting the CRP level and the physiological markers
of the respiratory system (breath rate, oxygen saturation,
HCO3).

Table 1 shows insignificant variance in the accuracy of
the models trained on images reconstructed with different
settings. The reconstruction algorithms achieved approximately
the same degree of accuracy, with the best level in B30f kernel.
The top performance models were trained on a combination
of the coronal and sagittal view chest radiograms and pre-
processed (segmented) coronal and axial CT images (the ratio
of MAE to range of values were 9.989 ± 5.614% and 10.14 ±

4.745%).
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FIGURE 5 | Distribution of the MAE/range(test) values for DL model trained on 3D-Nonextracted and 3D-Extracted CT images.

FIGURE 6 | Distribution of the MAE/range(test) values for DL model trained on the multimodal 2D data (pre-processed coronal and axial CT images).

5. DISCUSSION

5.1. Biochemical and Physiological
Markers of Hypoxia Resulting From Acute
Lung Injury
We observed a strong association between the structural markers

of lung damage (the extent and spread of the inflammation
over the respiratory tissue) and the hypoxia level. The strongest
correlation was found between the oxygen saturation level and
the percentage of the lung involvement each serving as the
most accurate measurement of hypoxia level and COVID-19-
associated lung injury correspondently. The correlation of the
lung tissue damage is more remarkable with the functional
parameters reflecting cardiovascular system (BR, HR) than with
biochemical response (AG, K+). The reason for this is quite
evident as we deal with the respiratory acidosis in COVID-19 and
electrolyte imbalance commonly happens for metabolic reasons,
e.g., in acute renal injury.

The data we analyzed provide a useful insight on the lung
structure-function association. To realize the value of these

studies, one should consider the clinical merit of the forecasted
functional estimates and their limitations. For instance, “silent”
(asymptomatic) hypoxia in CAP is a commonly overlooked
clinical entity (34). To permit timely CAP diagnosis, physicians
should employ a 6-min walk test to diagnose exertional hypoxia
(35) or conduct a meticulous clinical examination (34). If
considered together, the functional estimates (e.g., arterial blood
gases, pulse oximetry, etc.) may provide an accurate assessment of
the patient’s oxygenation status and prevent poor outcomes (36,
37). In contrast to this, the structural findings of lung injury may
elucidate hidden pathophysiological conditions. Some authors
suggest using low-dose CT to ensure that the symptoms of

hypoxia are not overlooked (11).
The association between structure and function is apparent

from the reliable models that predict the hypoxia level in
pneumonia patients from CT findings. The models we built
show a high-accuracy prediction of the oxygen saturation and

bicarbonate levels, breath and heart rates and the level of
potassium and AG. A possible explanation for these findings are
provided in the next few paragraphs.
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5.1.1. Oxygen Saturation and Hypoxemia
In our study, the prediction of the SpO2 level was less
accurate than those of CO2 and breath rate. The following
facts may account for this. Researchers warn treating clinicians
that oxygen saturation constantly changes because of hypoxic
and hypercapnic ventilatory responses, cardiac output and
physical exertion. Physicians should be aware that the profound
hypoxemia observed in COVID-19 may present a temporary
nadir. It is incorrect to think that hypoxia alone causes tissue
injury. When hypoxemia is compensated by the cardiovascular
responses, it is well tolerated (17). However, when the
cardiovascular system fails to compensate for the critical
reduction of blood flow and oxygen delivery, acidosis develops.
The cardiovascular mechanism of adjustment is an elevated
cardiac output due to tachycardia with a moderate augmentation
of the blood pressure. The biochemical adjustment involves
an increased production of 2,3-diphosphoglycerate with cellular
glycolysis and a rise in the Michaelis–Menten constant
for hemoglobin.

5.1.2. Hypocapnia (Hypocarbia)
The models we built predict HCO3 levels quite accurately with
the MAE/range of 5%. This finding offers us an insight into
the structure-function association. From the clinical perspective,
assessment of the HCO3 level is mandatory for analyzing the
severity of respiratory failure. Isolated monitoring of SpO2

is insufficient for making a decision. Hypoxia is thought to
increase the respiratory rate; however, hyperventilation results in
hypocapnia that may attenuate a ventilatory response to hypoxia.
In the early stage and later in mild cases of COVID-19, hypoxemia
and abnormal levels of HCO3 are highly unlikely to be observed.
In severe cases of COVID-19, hypoxemia initiates a compensatory
ventilatory response leading to noticeable hypocapnia (37). High
carbon dioxide levels may also develop in ARDS patients but it
remains unclear how hypercapnia impacts the outcome (38).

5.1.3. Breath Rate
The most accurate prediction in our study was that of the
breath rate as seen from the least value of MAE/range (over
4%). This means that the radiologic findings may reflect dyspnea
more reliably than the other considered laboratory or physiologic
parameters of hypoxia. In the mild or moderate ARDS, the
subjective shortage of breath can be limited with subtle increases
in the respiratory rate even if arterial hypoxemia is present. The
elevated respiratory rate helps the lung to breathe out carbon
dioxide, and thismitigates the sensation of dyspnea (17). Hypoxic
ventilatory responses in humans vary in the number of changes
in respiratory rate and tidal volume. Individual factors (e.g.,
age, ethnicity, obesity) may reduce the hypoxic and hypercapnic
ventilatory responses thus putting these patients at a higher risk
of more profound symptoms of hypoxia at clinical presentation.

5.1.4. Potassium
Potassium is the primary intracellular electrolyte that produces
osmotic pressure to maintain the cell volume. Normally the
concentration of potassium in the serum is maintained within
a relatively narrow range of 3.5–5 mEq/l (39). Hyperkalemia

that we observe in a hypoxic condition is an elevation of serum
potassium above 5 mEq/l. It is characteristic of systemic hypoxia
which inactivates the ATPase of the sodium-potassium pump.
The deficit of oxygen results in acidosis and shifts potassium from
the intra- to extracellular compartment as ATP is not sufficiently
replenished (40, 41).

The regressionmodels predicting the level of potassium in our
study were the least accurate ones with the MAE/range values
ranging from 16 to 60%. Theoretically, the additional uptake of
potassium from drugs containing the electrolyte or other sources
may have confounded the study results. Contrarily, the models
forecasting the level of another marker of hypoxia (AG) are quite
reliable with the MAE/range values varying from 4 to 6%.

5.1.5. Anion Gap
Anion Gap is the difference between measured positively
(cations) and negatively (anions) charged ions with the range
of normal values from +8 to +16 mmol/l (40). The gap forms
because the sum of the cations excluded from Formula 1 (e.g.,
Ca2+) is lower than the sum of the anions ignored while
calculating AG (proteins, organic acids). The AG goes up in some
cases of hypoxia. In acidosis physicians observe either enlarged
or normal values of AG (42, 43). Tissue hypoxia is present in
all forms of lactic acidosis (44). A reduced AG may indicate a
decrease in the albumin concentration (hypoalbuminemia) as
albumin is the primary non-measured anion.

5.1.6. Heart Rate
The prediction of the heart rate was inaccurate in our study:
MAE/range values varied from 15 to 17%. The reason may be
due to the fact that a wide variety of physiological factors act
as confounders of the results of the physical examination of the
patient.

5.2. Automatic Assessment of
Two-Dimensional Diagnostic Images
Acquired in a Single and Multiple Planes
Previous research has shown the reliability of the CXR for the
evaluation and management of COVID-19 pneumonia (45). This
finding justified the feasibility and repeatability of a human-
driven quantitative CXR assessment. In their studies the severity
score calculated by radiologist from 2D images showed a
significant positive correlation with CRP, lactate dehydrogenase,
and fever duration, as well as a negative correlation with SpO2.
In line with these studies, we aimed to evaluate an automatic
assessment of 2D diagnostic images of the chest. The regression
models trained on 2D data showed a good performance.

The routine use of lateral view chest radiographs has been
the subject of much debate. We tested if multiplanar CXR aids
computer-driven assessment of the lung injury. The additive
value turns out to be small. This corresponds to the clinical
studies which showed that lateral views contribute to increased
detection of pneumonia only in a small number of cases (46–
49). Because of the low yield and the additional radiation
exposure, researchers criticized the idea of including lateral view
radiographs in epidemiological studies for trial purposes (50).

Frontiers in Medicine | www.frontiersin.org 13 July 2022 | Volume 9 | Article 882190

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Statsenko et al. Deep Learning Models of Structure-Function Association

5.3. 3D Models of Structure-Function
Association Information Noise Reduction
With Lung Extraction Technique
We intended to compare the accuracy of models fed with 2D
and 3D diagnostic images. According to our findings, models
trained on the 3D CT images had a better performance compared
to the ones fed with the 2D plane radiograms. The difference
between the accuracy of the models trained on the non-extracted
2D and 3D images was approaching significance (11.75± 8.26 vs.
8.271 ± 4.13%; p = 0.14). This keeps the debate on the advance
of CT over CXR in pneumonia cases opened. The indications
for ordering either CT or CXR for COVID-19 patients differ
among professional communities. The British Society of Thoracic
Imaging recommended CT for the patients with uncertain or
normal CXR findings and for the follow-up studies of the cases
suspected of complications. Despite the low sensitivity (30-60%),
CXR is still sufficient for some cases of COVID-19 (51) as both
modalities depict similar findings (e.g, unilateral or bilateral
involvement, etc.) (52). Furthermore, X-Ray machines expose
patients to a lower radiation dose than CT scanners and surfaces
of the machines can be more easily cleaned for infection control
in such a pandemic. Because of the apparent priority to use
CXR over CT, there is a lack of studies on optimal tactics of
CXR assessment.

The use of 2D vs. 3D imaging in the evaluation for pneumonia
has been an issue of clinical studies. One previous study showed
that in 27% of cases, when both CXR and CT scans were
performed, pneumonia was demonstrated on CT in case of a
negative or non-diagnostic CXR (53). However, the study had a
selection bias as it only included the patients whose clinical status
demanded extensive imaging, i.e. physicians aimed to rule out
pulmonary embolism as an explanation for the symptoms (53).

5.3.1. Reduction of Information Noise With Lung

Segmentation
In agreement with the findings from previous studies, we showed
a slight boost in the accuracy of the models after the lung was
extracted from the CT image. Lung segmentation is an important
part of pulmonary image analysis. The correct detection of the
organ of interest and delineation of its anatomic boundaries
is crucial for the subsequent identification (29, 54) and
quantification (radiomics) of diseased areas (55). Even in digital
lateral chest radiographs, automated lung segmentation has been
an issue of separate studies for a long time (56). This is in line with
a conventional approach to pneumonia detection on CXR with a
machine learning paradigm: researchers focus analysis on pixels
in lungs segmented region that are contributing more toward
pneumonia detection than the surrounding regions (57).

Owing to generating 2D diagnostics images from 3D, we had
a unique opportunity to check if the segmentation of the lung on
2D images contributed to the accurate automatic assessment of
disease severity. As seen in Table 1, the models trained on 2D
diagnostic images reconstructed in coronal plane were slightly
more accurate (by over 1–2%) when segmentation was applied.
There are a large number of approaches to lung segmentation in
computed tomography. However, the small boost in performance
provided by the techniques is a reason for their limited clinical

application (29). A similar but more pronounced tendency is
reported for deep learning with the lung segmentation for
CXR analysis of lung cancer. The pre-processed dataset without
clavicle and rib bones showed a much better accuracy compared
to the data without background removal (58).

5.4. Impact of Reconstruction Kernels
The effects of the reconstruction kernel (also referred to as
algorithms or filters) on the image quality is a common issue
in radiology studies (59–62). The results of these studies suggest
that the selection of a kernel for an examination should be
careful, and it should correspond to clinical interest. This is
because image noise strongly depends on the reconstruction
kernel (59). A sharper (higher resolution, edge-enhancing) kernel
generates a higher spatial resolution image, but increases image
noise. A smoother (lower resolution) kernel produces a more
accurate representation. Both spatial resolution and image noise
account for the final image quality. Technicians should utilize
proper settings for image acquisition according to clinical interest
(e.g., the size and appearance of the targeted structure and
the general background). For example, the evaluation of small
low-contrast structures should advance from the application of
sharper high-resolution kernels (63). In contrast, the ability to
detect small high-contrast lesions improves as the reconstruction
kernel becomes smoother (64).

Regarding lung pathology, sharper image reconstruction
kernels result in higher CT measurements of emphysema
than smoothing kernels (65). In an earlier study (59), the
noise obtained from B31f reconstructed images was lower
than that obtained from B70f tomograms. From our data, the
reconstruction kernel settings do not affect the quality of ML
models. Presumably, these settings are not crucial for computer-
aided diagnostics but they may still impact the visual diagnostics
by radiologists.

6. STRENGTHS AND LIMITATIONS

The study has the following strengths and limitations. Though
the symptoms of COVID-19-associated pneumonia are more
pronounced compared to other viral pneumonias, the key
pathophysiological mechanisms of the disease are not unique
(17). Thus, the models built and the approaches used are likely
to be applicable for the future outbreaks of viral pneumonias.

Another strength of the study is the practical implementation
of the proposed models. There are different phenotypes of
COVID-19-associated ARDS (37). Therefore, clinicians need to
address whether the blood saturation values reflect the actual
structural changes in the lung parenchyma. Cardiovascular
compensation of hypoxia may adjust the values of oxygen
saturation in the blood, thus hiding the actual lung injury.

Finally, the strength of this research is that we created
regression models that provided numerical automatic assessment
of lung impairment. The qualitative evaluation with classification
models and categories was less accurate.

The known limitations of the study are as follows. First, we
performed a single-center study, with all CT images acquired
using a single scanner. Second, we worked with the CT scans
acquired right on admission when the patients were hospitalized
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a day or two after the disease emerged and they tested positive.
As the radiological findings varied across the disease phases, the
models we built were not trained to work with the data typical for
the intermediate and late phases of the disease. Future studies are
expected to extend the utility of the ML algorithms by applying
them to the results of the follow-up studies. Third, we tested the
patients exceptionally for SARS-CoV-2. However, coinfections
may have occured, and this should be considered (66).

7. CONCLUSION

• TheML algorithms trained on radiological findings can reflect
morphological characteristics and pathophysiologic changes.
The models reveal structure-function association. Therefore,
they may contribute to a more optimal risk evaluation and
disease management in COVID-19.

• Training the models on multiplane 2D images improved the
performance from over 11÷12% by 0.5÷1%. The models fed
with sagittal view radiograms showed higher accuracy than
the models fed with coronal view, but the difference was not
significant: 10.43± 5.40 vs. 13.49± 11.81%; p = 0.28.

• Image pre-processing with the lung segmentation technique
slightly increased the accuracy of 2D models: MAE/range
droped by over 1÷2%, the performance metric for non-
extracted and extracted frontal view radiograms were 13.49 ±
11.81 and 11.08± 6.5% respectively (p = 0.54).

• The models trained on 3D images were more accurate than
those on 2D: 8.27 ± 4.13 and 11.75 ± 8.26%, p = 0.14 before
lung extraction; 10.66 ± 5.83 and 7.94 ± 4.13%, p = 0.18 after
the extraction.

• The top accurate models were trained on pre-processed and
segmented 3D images: MAE/range of the models predicting
breath rate was 2.946%, bicarbonate level - 3.21%.

• The reconstruction kernel settings did not affect the model
performance but they may have impacted visual diagnostics
by radiologists.
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