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Wind energy is a typical foreseeable renewable energy source. This study

constructs and optimizes a variable cross-section cantilever-based

piezoelectric energy harvester for low-speed wind energy harvesting. The

Galerkin approach is usually used to discretize the continuum model and

then get the ordinary differential equations. However, this method is more

suitable for calculating uniformity than the variable cross-sectional beam

model. To solve this problem, we proposed an improved piecewise Galerkin

approach for discretizing the continuummodel with a variable cross section. By

modifying the boundary expressions andmodal functions between segments, it

can improve both computation speed and accuracy. COMSOL simulations

demonstrate that natural frequencies calculated via the improved method

are more accurate than those of the traditional Galerkin method. The

method of multiple scales is applied to determine the output power and

critical wind velocity. A distinctive numerical approach is presented for

shape optimization by combining the analytical calculation method with the

particle swarm optimization (PSO) technique for low-speed wind energy

harvesting. Additionally, the logic function is chosen to produce the optimal

shape’s fitting expression for engineering applications. With all the

improvements, the output power of a variable cross-section beam-based

harvester reaches as much as 3.668 times that of a uniform beam model,

demonstrating the importance of structural optimization for this type of energy

harvesters. Finally, experiments are set up to verify the optimization procedure.

Actually, it builds an analytical framework for the adaptive selection of variable-

section piezoelectric cantilever wind-induced vibration energy harvesters.
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1 Introduction

In the past two decades, vibration energy harvesting has been

extensively studied to replace traditional chemical batteries for

powering small electronic devices (Wei and Jing, 2017).

Vibration sources available for harvesting can be mainly

classified into two categories: base vibration and flow-induced

vibration (Zou et al., 2019). Flow-induced vibration energy

harvesting has flourished in recent years with the basic

premise of providing small levels of energy to power

electronic sensors installed in outdoor areas, tunnels, exhaust

ducts, etc. Various fluid–structural interaction techniques were

proposed to transduce a portion of the flow’s kinetic energy into

mechanical motion, which in turn is transformed into electrical

energy via an electromechanical coupling mechanism, e.g.,

piezoelectric or electromagnetic (Abdelkefi, 2016). Unlike

traditional rotating electromagnetic generators, piezoelectric

energy harvesters are very simple to design and fabricate and

hence, can be easily mass produced and designed for integration.

Piezoelectric material-based flow-induced vibration energy

harvesting technologies include, but are not limited to, vortex-

induced vibrations, flutter, and the galloping instability.

Galloping-induced vibration has the characteristics of large

oscillation amplitude and a wide range of operating wind

speeds. Therefore, galloping piezoelectric energy harvesters

(GPEHs) have been explosively researched (Abdelkefi et al.,

2012; Abdelmoula and Abdelkefi, 2017; Wang et al., 2020).

However, the optimal design of GPEH is still difficult, for

example, there are only a few studies on the optimization of

piezoelectric beam geometry. In this study, PSO coupled with

theoretical expressions of the GPEH are used to efficiently search

for the global optimum design of the piezoelectric cantilever

beam. This energy harvester can be applied to the active wind

micro-sensor and self-powered sensing systems.

The optimized design of the GPEH is divided into two main

areas: the windward bluff body and the piezoelectric cantilever

beam. Many kinds of research on windward bluff bodies have

been studied (Abdelkefi, 2016; Wang et al., 2020). Javed and

Abdelkefi (2017) investigated the impacts of using different

aerodynamic load representations on the galloping square

cross-sectional cylinder dynamics in the GPEH system. They

inclined a square cross-section cylinder, investigating GPEH

prone to galloping oscillation (Javed and Abdelkefi, 2018).

Zhu et al. (2021) conducted a comparative study for different

cross-sectional cylinders (square, triangle, and trapezoid)

experiencing the galloping. Liu et al. (2018) proposed and

designed a three-blade bluff body for wind energy harvesting.

In the optimization of GPEH, there are limited results for

piezoelectric cantilever beams. Wang et al. (2019) first

compared the output power of three variable-section

piezoelectric cantilever beams in GPEH. However, there are

many optimizations in the base vibration energy harvester

regarding the geometry of piezoelectric cantilever beams. For

example, Nowak et al. (2020) optimized the uniform beam’s

length, width, and thickness. Salmani et al. (2010), Salmani and

Rahimi (2018), Pradeesh and Udhayakumar (2019), and

Hajheidari et al. (2020) concluded that the exponentially

tapered piezoelectric beam improves the voltage per mass of

the energy harvester. Chen et al. (2020) and He et al. (2020)

showed an increase in the output voltage of a trapezoidal

cantilever beam than a rectangular cantilever. Raju et al.

(2020) revealed that the harvester consists of the tapered

section from the root followed by a rectangular section that

increases the output voltage by 91.3% compared with the energy

harvester considered with a uniform cantilever beam. These

findings point the way to the design of piezoelectric cantilever

beams. These works are mainly based on the beam optimization

of mathematical functions of beams, but in fact, the global

optimization analysis is more reasonable for structural design.

In our previous study, we used a combination of wind tunnel

experiments and data-driven methods to optimize the cross-

sectional shape of the bluff body (Zhao et al., 2019). Based on

these research results, the geometry of the piezoelectric cantilever

beam is globally optimized in this study.

There are few articles on the global optimization of

piezoelectric cantilever beam shapes in energy harvesters. In

order to manipulate the shape of the piezoelectric cantilever

beam in a global sense, parameterization techniques are

necessary. The parameterization of the piezoelectric cantilever

beam needs to satisfy the conditions of flexibility, smoothness,

and uniqueness. Therefore, it is crucial to choose the appropriate

parameterization method to represent the shape of the

piezoelectric cantilever beam. Then, one can use these

parameters as a design space to maximize the output power of

the energy harvester by searching through the design space. For

the complex optimization problem with many design variables, a

considerably high-dimensional design space is required, which

results in an exponential increase in computation time. For the

energy harvester optimization problem, the optimization time is

reduced in two main aspects: the computing time of the output

power of each energy harvester and the optimization method.

There are two main approaches for computing the output power

of energy harvesters: the finite element method (FEM) based on

simulation software (Thein and Liu, 2017; Mohamed et al., 2021)

and the analytical calculation method based on theoretical

mechanics and nonlinear dynamics (Daqaq, 2015; Javed and

Abdelkefi, 2019). For the energy harvester, the result of the FEM

is more accurate. However, the complex design space of size and

shape variables forces the computational cost of global

optimization to be very expensive (Delalat et al., 2021;

Mohamed et al., 2021). Feng et al. (2020) proposed an

improved analytical method for the analytical expression of

the output power of the energy harvester to eradicate the

computational burden. However, based on the present

research results, the analytical method needs to be further

optimized and proved for variable-section piezoelectric
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cantilever beams (Yang et al., 2016; Feng et al., 2020). The

selection of optimization methods should ensure convergence

as quickly as possible on the basis of global optimization

(Bonyadi and Michalewicz, 2017). At present, genetic

algorithm (GA) and PSO have recently demonstrated their

success and popularity in optimization applications methods,

and they are more in line with our optimization requirements

(Daxini and Prajapati, 2019). The aforementioned analysis shows

that there are three main difficulties in the global optimization of

the piezoelectric cantilever shape for energy harvesters: 1)

parameterization of the piezoelectric cantilever beam shape; 2)

accurate and efficient computation of the output power of energy

harvester system; and 3) selection of the optimization method.

In this study, the analytical expression of the system output

power is calculated by using the improved piecewise Galerkin

method and the multiple scales method, and the beam shape is

expressed parametrically using the piecewise cubic Hermite

interpolation (PCHIP) function in this research. Matlab codes

are developed for the PSO method integrated with the analytic

expression of the energy harvester output power to globally

optimize the shape of the piezoelectric cantilever beam. The

rest of the study is organized as follows. The mathematical model

of the variable cross-section GPEH is described in Section 2. In

Section 3, the improved piecewise Galerkin is proposed and

verified, and the analytical expression of the system output power

is also derived. In Section 4, the optimization process and the

optimization results of the variable cross-section piezoelectric

cantilever beam shape are described and compared with the

simulation results. In Section 5, experimental verification is

performed.

2 Model description

In order to study the vibration power generation capacity of

the piezoelectric cantilever with different shapes, it is assumed

that the length and root width of the piezoelectric cantilever

beam base and piezoelectric sheet are the same. As shown in

Figure 1A, the width of its root is wb1, and the width of its free

end is wb2. The width of the beam wb(x) is a function of the

position coordinate x. The piezoelectric material uniformly

covers the whole cantilever beam. The top view of the

piezoelectric cantilever is shown in Figure 1B. The elastic base

is made of beryllium bronze with length, thickness, and width of

Lb, tb, and wb(x), and elastic modulus of Eb. Composite

piezoelectric fiber (MFC) (model: M8507-P2; Smart Materials

Corp.) is used as piezoelectric material with a thickness of tp,

other geometric parameters are the same as that of beryllium

bronze substrate, and the elastic modulus is Ep. Consider

Figure 2B, where the piezoelectric materials are polarized

along the z-axis along the thickness direction and

symmetrically pasted on the upper and lower surfaces of the

elastic substrate.

By drawing on the mathematic modeling method of Erturk

and Inman (2008) and Abdelmoula and Abdelkefi (2016), the

governing equation of motion of variable cross-section

cantilever-based piezoelectric wind energy harvester can be

written as

z2M(x, t)
zx2 + c

zw(x, t)
zt

+meq(x) z
2w(x, t)
zt2

�

1
2
ρaDcLcU

2
0 × ∑3

i�1
a1[ 1

U0

zw(x, t)
zt

+ Dc

U0
]i(δ(x − Lb) + D

2
dδ(x − Lb)

dx
), (1)

Cp
dV
dt

− θ1
dr
dt

+ V

R
� 0, (2)

where

M(x, t) � EbI(x) z
2w(x, t)
zx2

+ θ(x)V(t), (3)

meq(x) �
wb(x)(ρbLptb + 2ρpLptp)

Lp
, (4)

I(x) � 2wb(x)
Eb3

[Eb(tb2)3

+ 3Ep(tb2)2

tp + 3Ep(tb2)t2p + t3p], (5)

FIGURE 1
(A) Schematic diagram of the variable cross-sectional energy harvester. (B) Top view of the piezoelectric cantilever structure.
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θ(x) � d31Epwp(x)
2tp

[(tb
2
)2

− (tp + tb
2
)2], (6)

Cp � ∫Lb

0

ε33wb(x)
2tp

dx, (7)

θ1 � ∫Lb

0
θ(x)ϕ″(x)dx. (8)

The boundary condition of the system is

w(0, t) � 0, (9)
zw(0, t)

zx
� 0, (10)

z

zx
[EbI(x) z

2w(x, t)
zx2

]
x�Lb

� [mc
z2w(x, t)

zt2
+mc

Dc

2
z3w(x, t)
zxzt2

]
x�Lb

, (11)

[EbI(x) z
2w(x, t)
zx2

]
x�Lb

� [ −mc
Dc

2
z2w(x, t)

zt2
− (J +mc(Dc

2
)2) z3w(x, t)

zxzt2
]
x�Lb

.

(12)

It is obvious that Eq. 1 is a partial differential equation of

beamwith variable a cross section. For this variable section beam,

the section area and stiffness are functions of the section position,

which makes the constant coefficients of the differential equation

in the traditional method become a variable coefficient. As a

result, it is impossible to directly apply the traditional Galerkin

method to analyze the modal function and natural frequency of

those beams with variable sections. In order to solve this problem

and analyze its vibration characteristics, we proposed an

improved piecewise Galerkin method based on the literature

(Can, 2009; Feng et al., 2020).

3 Improved piecewise Galerkin
decomposition

In the study by Feng et al. (2020), the modal function of each

small segment is polynomial, which is convenient and concise.

However, the accuracy of calculation results may be affected by

the over-fitting of polynomials. We expressed the modal

functions of each segment as the combination of

trigonometric functions and hyperbolic functions to prevent

the over-fitting phenomenon. The boundary conditions of

each section are modified to the exact value at that point,

rather than the equivalent value represented by the average.

These calculation processes avoid the un-smoothness of modal

functions and improve the accuracy of calculation results.

First, the governing equation of motion for undamped free

vibrations of a variable cross-section beam is considered as

Eb
z2

zx2
(I(x) z2w(x, t)

zx2
) +meq(x) z

2w(x, t)
zt2

� 0. (13)

The Galerkin method (Patil and Althoff, 2011; Peradze,

2011) can be used to solve Eq. 13 by separating the spatial

and temporal functions as

w(x, t) � ϕ(x)r(t), (14)
which can be substituted into Eq. 13 to give

z2

zx2
(EbI(x) z

2ϕ(x)
zx2

) − γ
meq(x)
Eb

ϕ(x) � 0, (15)

d2r(t)
dt2

+ γr(t) � 0. (16)

For Eq. 15, based on the traditional Galerkin method, if I(x)
and meq(x) are constants, the solution form of Eq. 15 is then

ϕ(x) � A cos βx + B cosh βx + C sin βx +D sinh βx, (17)
where β is the eigenvalue of the system, which is related to the

natural frequency of the system. A, B, C, and D are unknown

constants determined by the boundary conditions at the left and

right ends of the beam. Under the given boundary conditions, the

analytical solution of the modal function of a beam with a

uniform beam can be given by Eq. 17, and the characteristic

equation of its natural frequency can be obtained from this

equation. However, this method is more suitable for

calculating the uniformity than the variable cross-section

beam model.

3.1 Discrete process

As shown in Figure 2, based on the idea of segmentation, the

variable cross-section beam is divided into several connected

segments. Each segment is regarded as a constant cross-section

FIGURE 2
Sketch of the variable section cantilever beam. (A) Before segmentation; (B) after segmentation.
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segment when the number of segments is enough (Feng et al.,

2020).

It is assumed that the length of the ith segment is li, the

bending stiffness is (EbI)i, and the linear density is (meq)i, then
the equivalent bending stiffness and equivalent linear density of

this segment can be expressed in the integral form as follows:

(EbI)i � 1
li
∫xi

xi−1
EbI(x)dx, (18)

(meq)i � 1
li
∫xi

xi−1
meq(x)dx. (19)

Based on the analytical expression of the modal function of

the beam, the modal function of the i-th segment of the beam can

be defined as follows:

ϕi(x) � Ai cosXi + Bi coshXi + Ci sinXi +Di sinhXi, (20)
where

Xi � βi(x − xi−1), xi−1 ≤x≤ xi, i � 1, 2, . . . , N, x0 � 0. (21)

In Eq. 20, Ai, Bi, Ci, andDi are the unknown constants of the

i-th segment of the beam, and the relationship between βi and

ω is:

βi �
������(meq)i
(EbI)i

4

√ ��
ω

√
. (22)

It should be noted in Eq. 22 that ω is the natural circular

frequency of transverse vibration of a variable cross-section beam

rather than the natural circular frequency of the i-th segment of

the beam.

Similarly, the modal function of the (i+1)-th segment is then

ϕi+1(x) � Ai+1 cosXi+1 + Bi+1 coshXi+1 + Ci+1 sinXi+1

+Di+1 sinhXi+1. (23)

According to the continuity of displacement, rotation angle,

bending moment, and shear force at the connection point xi of

segments i and i+1, we obtain the following relationship:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕi+1(xi)
ϕi+1′ (xi)
EbI(xi)ϕi+1″ (xi)(EbI(xi)ϕi+1″ (xi))′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ϕi(xi)
ϕ′
i(xi)

EbI(xi)ϕ″
i (xi)(EbI(xi)ϕ″
i (xi))′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (24)

Equation 24 is improved based on the research results of Can

(2009). In the literature, the expression of bending stiffness EI

adopts the average value in the i-th segment. This makes the

calculated modal function not smooth at piecewise points. The

small errors caused by these non-smooth points are magnified in

the calculation of the first and second derivatives, resulting in a

decrease in the accuracy of the calculation. We set an accurate

value EbI(xi) at the connection point xi, and the slope value at

this point is considered, which can eliminate the piecewise point

non-smoothness. These effectively improve the accuracy of the

final results.

Using Eqs 20, 23, and 24, iteration equations become

A(i+1) � Z(i)A(i) i � 1, 2, ..., N − 1 , (25)
where

A(i) � [Ai Bi Ci Di ]T, (26)
A(i+1) � [Ai+1 Bi+1 Ci+1 Di+1 ]T. (27)

The relationship between A(1) and A(N) is obtained as

A(N) � ZA(1), (28)
where

Z � Z(N−1)Z(N−2) . . .Z(2)Z(1). (29)

Each element in the Z matrix is a function of the natural

frequency ω, which establishes the relationship between the

indeterminate coefficients A(1) of the first segment and the

undetermined coefficients A(N) of the N-th segment. The natural

frequency ω and modal function of each segment are obtained from

boundary conditions and from Eq. 25. After applying normalization

of the modal function, we obtained the mass-normalized

eigenfunction of the modal function with a variable cross section.

Finally, the ordinary differential equations of the system are then

d2r

dt2
+ 2ζω

dr
dt

+ ω2r

−1
2
ρ0DL0U0a1(ϕ(Lb) + D

2
ϕ′(Lb))[ϕ(Lb) + D

2
ϕ′(Lb)] dr

dt

− 1
2U0

ρ0DL0a3(ϕ(Lb) + D

2
ϕ′(Lb))[ϕ(Lb) + D

2
ϕ′(Lb)]3(drdt)3

+θ1V � 0,

(30)
Cp

dV
dt

− θ1
dr
dt

+ V

R
� 0. (31)

The improved piecewise Galerkin method can not only

obtain high-precision results of mode function and natural

frequency of the beam with an arbitrary variable section, but

also shorten the time required for calculation greatly. This

method is used here for structural analysis to circumvent

frequently encountered issues with a traditional grid-based

technique like FEM in shape optimization such as heavy

reliance on quality mesh for accurate solutions needing

remeshing. To demonstrate the effectiveness of the improved

piecewise Galerkin method, results obtained through the

proposed method are compared with other methods of the

past literature.

3.2 Convergence analysis

In order to verify the feasibility and universality of the

aforementioned methods, this section takes the FEM results as

the accurate results, uses the Galerkin method, piecewise
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Galerkin method (Feng et al., 2020) and improved the piecewise

Galerkin method, respectively, for the same model, and compares

their calculation accuracy. As shown in Eq. 32, the width function is

selected as different order functions of position coordinates. The

beam is a uniform beam, when n = 0 and it is a variable section

beam, when n ≠ 0.

wb(x) � (wb2 − wb1)( x

Lb
)n

+ wb1, n � 0, 0.5, 1, 2, 3. (32)

The root width of the variable section beam iswb1 = 40 × 10−3 m, and

the free end width is wb2 = 8 × 10−3 m. Here, we take

n � 0, 0.5, 1, 2, 3, respectively, to verify the convergence. Other

physical parameters and geometric dimensions are shown in Table 1.

The natural frequencies of the first mode of the five beams are

calculated by COMSOL simulation, the Galerkin, piecewise

Galerkin, and the improved piecewise Galerkin methods.

From Table 2, it can be seen that the error of the

approximate mode method will be infinitely enlarged when

solving a large deformation variable cross-sectional cantilever

beam. Moreover, the number of segments of piecewise Galerkin

method also affects accuracy. Comparing results with N = 10, it is

obvious that the result from improved piecewise Galerkin has a

higher precision than the traditional Galerkin method and

piecewise Galerkin method. Therefore, the effectiveness and

accuracy of the improved piecewise Galerkin method are

proved by theoretical and COMSOL simulation analysis.

To further verify the accuracy and general application of the

method, we used COMSOL with MATLAB port to combine

MATLAB software with COMSOL software to perform

calculations. A set of random numbers is generated using

MATLAB as the geometry of the beam, and the set of

random numbers is arranged in a descending order and

imported into COMSOL software to generate the base beam.

The number of random samples is 300, and the wind speed is set

between 10 and 20 m/s. The output voltage error and output

power error are shown in Figure 3A and Figure 3B. The voltage

error is less than 6%, and the power error is less than 10%, which

meets the calculation error requirement.

3.3 Approximate solution

We used the method of multiple scales to solve Eqs. 30 and 31

to decrease the computational effort. Therefore, Eqs. 30 and 31

yield the following two equations

€r + (2ζω + α1) _r + ω2r + α3 _r
3 + θ1V(t) � 0, (33)

_V − θ1
Cp

_r + V

CpR
� 0, (34)

where

α1 � −1
2
ρ0DL0U0a1(ϕ(Lb) + D

2
ϕ′(Lb))[ϕ(Lb) + D

2
ϕ′(Lb)],

TABLE 1 Physical parameters and geometric dimensions of the
variable cross-section energy harvester.

Parameter Description Value

Lb (m) Length of the beryllium bronze substrate 110 × 10−3

tb (m) Thickness of the beryllium bronze substrate 0.8 × 10−3

Lp (m) Length of MFC 110 × 10−3

tp (m) Thickness of MFC M8507 P2 0.3 × 10−3

D (m) Width of the column 20 × 10−3

L0 (m) Length of the column 100 × 10−3

ρb (kg/m
3) Density of beryllium bronze 8.3 × 103

ρp (kg/m3) Density of MFC 5.4 × 103

mc (kg) Mass of the column 18 × 10−3

Eb (Pa) Young’s modulus of beryllium bronze 128 × 109

Ep (Pa) Young’s modulus of MFC 30.336 × 109

d31 Strain coefficient of MFC −320 × 10−12

ε33 Permittivity component at the constant strain 13.28 × 10−9

ρa (kg/m
3) Air density 1.24

R (Ω) Load resistance 5 × 103

TABLE 2 Natural frequencies of the variable cross-sectional beam.

Galerkin method Piecewise Galerkin method Improved piecewise Galerkin
method

Modal
order n

COMSOL
(Hz)

Valve
(Hz)

Error
(%)

Valve (Hz) Error
(%)

Valve (Hz) Error
(%)

N = 6 N = 8 N = 10 N = 10 N = 6 N = 8 N = 10 N = 10

0 28.4 28.0 1.40 28.8 1.3 28.6 0.71

0.5 15.2 16.1 2.92 17.5 16.9 16.0 5.1 16.1 15.9 15.8 3.95

1 17.5 18.6 6.29 19.8 19.1 18.3 4.3 17.7 17.4 17.4 0.57

2 18.4 21.5 16.85 21.2 20.4 19.5 6.1 18.7 18.2 17.9 2.72

3 18.8 23.9 27.13 22.6 20.2 19.9 5.9 19.5 18.9 18.5 1.60
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α3 � − 1
2U0

ρ0DL0a3(ϕ(Lb) + D

2
ϕ′(Lb))[ϕ(Lb) + D

2
ϕ′(Lb)]3.

An approximate analytical expression for the steady-state

response of Eqs. 33 and 34 can be obtained by following the

detailed procedure by Daqaq (2015). The steady-state magnitude

of the deflection and voltage is given by

y � 2D

��������������������������������
− α1
3α3ω2

− 2Rθ21(6α3ω2 + 6α3C2
pR

2ω4) − 2ζ
3α3ω

√√
, (35)

V � 2RθDω

����������
1

1 + C2
pR

2ω2

√ ���������������������������������
− α1
3α3ω2

− 2Rθ2(6α3ω2 + 6α3C2
pR

2ω4) − 2ζ
3α3ω

√√
. (36)

The output power can be obtained by squaring Eq. 36 and

dividing by the load resistance, which yields

P � 4R(θDω)2⎛⎝ 1
1 + C2

pR
2ω2

⎞⎠
⎛⎝ − α1

3α3ω2
− 2θ2R(6α3ω2 + 6α3C2

pR
2ω4) − 2ζ

3α3ω
⎞⎠.

(37)

The critical wind velocity of the energy harvester is

Uc � 4ζ1ω1

ρ0DL0a1[φ1(Lb) + D
2φ1

′(Lb)]2. (38)

The output power and the critical wind velocity are

important evaluation indexes of the GPEH.

4 Topological optimization

4.1 Optimization method

We use a parametric optimization approach for obtaining

the near-optimal shape of the piezoelectric cantilever beam.

To manipulate the shape of the beam, techniques of

parameterization are necessary. Several methods, including

discrete, Bezier, linear interpolation, quadratic

interpolation, Spline, polynomial, piecewise polynomial,

and PCHIP methods, can be used to parameterize and

generate different geometries in engineering applications.

However, the design of the piezoelectric cantilever beam has

to meet the following requirements: 1) provide smooth and

realistic beam shapes, 2) design variables ability to cover

wide design search space, and 3) computationally

FIGURE 3
(A) Voltage error. (B) Power error.
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economical. Based on the aforementioned requirements and

due to the fact, PCHIP avoids overshoots and can accurately

connect the flat regions. Therefore, PCHIP curve is used to

generate the geometry of the piezoelectric cantilever beam in

this study.

The most popular methods for global optimization are

PSO and GA (Shaaban et al., 2020a). Sun et al. (2018)

summarized the advantages of PSO corresponding to the

lower memory capacity consumption than GA. Shaaban

et al. (2020b) and Barbieri et al. (2015) performed

comparisons between PSO and GA related to the shape

optimization of the horn problem showing the merits of

using PSO. For a detailed PSO algorithm, refer to Bonyadi

and Michalewicz (2017).

In this study, PSO is used to optimize the shape of the

piezoelectric cantilever beam to increase the output power of the

energy harvester. Matlab codes are developed for the PSO

method integrated with the analytical solution based on the

piecewise Galerkin method as a solver. The PCHIP curve is

applied to parameterize the shape of the piezoelectric cantilever

beam, and the coordinates of the control points are designated to

act as optimization parameters. The objective of shape

optimization is to find the best geometric profile to maximize

the output power of the energy harvester, and the local search

and global search are carried out. The mathematical formula for

objective function is Eq. 37. To summarize the entire process, the

flowchart of the proposed shape optimization technique is shown

in Figure 4.

4.2 Optimization results

In most research results, the optimization of the piezoelectric

cantilever beam ignores the allowable strain of material, which

represents an ideal situation. Nowak et al. (2020) studied the

optimal aspect ratio of the cantilever beam using a static method.

The research results of Wang et al. (2019) and Salmani and

Rahimi (2018) showed that designing a beam with exponentially

varying shapes can obtain the largest power density and reduce

the cost of the energy harvester. These studies reveal the main

geometric relationships affecting the output power of the

piezoelectric cantilever beam. Therefore, it is important to

investigate the global optimization results while neglecting the

allowable strain of material.

However, structural integrity and durability over a long time

are important considerations in designing energy harvesters for

real-life applications. Inherent brittleness and fatigue due to the

cyclic electromechanical loading on lead zirconate titanate (PZT)

material might cause the abrupt failure of the device if material

strength is not considered in the design process. On the other

hand, an unchecked design may result in a situation where

maximum stress or strain is well below the allowable limit,

leading to poor utilization of the material. Allowable strains of

some commonly used MFC materials are given in Table 1.

FIGURE 4
Flowchart for the optimal design of the shape of a
piezoelectric cantilever beam using PSO.

TABLE 3 Material strength of commonly used piezoelectric materials.

Manufacturer Product specification Material strain (ppm)

Smart materials M8507-P1 1,035

Smart materials M8507-P2 605

Smart materials M8514-P2 630

Smart materials M8528-P2 740

MIDE volture V22BL 800
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Fatigue strain values given in Table 3 are the limit values of strain

allowed in the material when subjected to alternate fields or

stresses. It is clearly evident in the table that the strength of

piezoelectric materials is much lower compared to the strength of

substrate materials such as steel, aluminum, and bronze. This fact

accentuates the importance of the allowable strain of

piezoelectric material in designing the energy harvester. In

this study, two pieces of piezoelectric MFC employ for the

experiment. We use 605ppm as the allowable strain of

piezoelectric material to optimize the shape of the cantilever.

The strain value at the root of the uniform piezoelectric cantilever

is greater than the strain limit of MFC material without

considering allowable strain. Therefore, in the following

calculation, we change the thickness of the piezoelectric

cantilever to avoid fracture of piezoelectric material due to

excessive deformation. Other parameters are shown in Table 1

and remain unchanged.

Assuming that the allowable strain of the piezoelectric

material is infinite, that is, the topological shape of the

piezoelectric cantilever beam is optimized without

considering the material strength. Considering the design

requirements of the piezoelectric cantilever beam, the upper

and the lower limits of width are considered as 40 and 8 mm,

respectively. Other physical parameters and geometric

dimensions are shown in Table 1. When M equals 10 and

the ambient wind speed is 13 m/s, convergence in solution was

obtained after 30 iterations and Figure 5A shows the history of

objective function values obtained during the process. The

shape of the optimized beam is plotted in Figure 5B. Since

the shape of the optimized beam is symmetrical about the

x-axis, the shape given in Figure 5B shows the optimization

curve of the symmetrical part of the beam. At this time, the

output power of the energy harvester is 65.5 mW.

However, as shown in Figure 5B, there is no intermediate

value between the sixth point and the seventh point, only the

maximum and minimum values, so it is impossible to judge

whether the optimization result is the optimal result.

Optimized shapes for operating points M from 10 to

40 are studied in this case. The variation of the objective

function for different operating points M during the

optimization processes is shown in Figure 6A and the

shape of the optimized beam for different M is shown in

Figure 6B. In this optimization case, the solution is not

unique and the maximum output energy increases with the

increase of M. From Figure 6B, it can be seen that, when M is

40, the maximum output power is 73.3 mW. As shown in

Figure 6B, with the increase in M, the shape of the optimal

beam gradually approaches the shape of the stepped beam.

When the values of M are 30 and 40, the output power of the

optimized beam is very close, and their shape is also very

close. However, more operating points M unnecessarily

increase the computational cost, because the convergence

algebra increases with the increase of optimization

parameters. On the other hand, fewer operating points

make the optimization results unreliable. Considering

these two aspects comprehensively, 40 operating points are

selected for optimization calculation in the following research

process.

FIGURE 5
(A) Convergence of the objective function in terms of the number of iterations. (B) Optimal beam model.

FIGURE 6
(A) Convergence of the objective function in terms of the
number of iterations for different operating points M. (B) Optimal
beam model for different operating points M.
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In order to verify the correctness of the optimization results,

at the same wind speed, we analyze the output power of the five

piezoelectric cantilevers proposed in the third part. Figure 7A

compares the output power of energy harvesters with five

different piezoelectric cantilever’s shapes for beams having

ended width equal 0–40 mm. The labels of beams with

different shapes correspond to Eq. 32. As shown in

Figure 7A, the maximum output power of the uniform beam

is 15.1 mW and its width is 19.0 mm. The output power of the

variable section beam is maximum when the width of the free

end is the minimum value. Since the minimum value of the

beam width is 8 mm, the maximum output of the variable

section beam is between 36.8 and 48.7 mW within the design

requirements. It is obvious from Figure 7A that the output

power of the variable cross-section beam is 2.4–3.2 times that of

the uniform beam.

Figure 7B compares the output power and critical velocity of

the PSO optimized beam with the five beams proposed in Eq. 32.

FIGURE 7
(A) Output power of the piezoelectric cantilever with different geometrical structures. (B) Output power and critical velocity of beams with
different shapes.

FIGURE 8
(A) Optimal beam mode. (B) Convergence of the objective function in terms of the number of iterations.

FIGURE 9
(A) Strain along the length of piezoelectric cantilever beams with different shapes. (B)Output power and critical velocity of beams with different
shapes.
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It is obvious that the output power of PSO optimized beam is

much higher than that of other forms of beams, and the change of

critical velocity is not very large.

As shown in Figure 8A, the optimized shape of the

piezoelectric cantilever beam is calculated, when considering

that the allowable strain of piezoelectric material is 605 ppm

and the wind speed is 13 m/s. Figure 8B shows the

corresponding convergence diagram. The output power of

the optimized energy harvester is 4.6 mW.

The strain distribution on the lower surface along the length

of the uniform beam, variable cross-section beams, and the

beam optimized by the PSO algorithm in the same wind speed

environment are plotted in Figure 9A. From the figure, it can be

seen that under the same conditions, the beam optimized by the

PSO algorithm can effectively improve the uniformity of strain

distribution compared with other shapes of beams, thus

increasing the electrical energy generated by the piezoelectric

material, which is more conducive to the efficiency of the wind-

induced vibration energy harvester. A comparison of the output

power of the beams with six different shapes is shown in

Figure 9B. It can be seen that the output power of the

piezoelectric cantilever beam optimized by the PSO method

is 3.668 times larger than that of the other beams.

The optimal topology of the piezoelectric cantilever beam

for different wind speeds when considering the upper limit of

the material strain of 605 ppm is shown in Figure 10A. The

optimal topology of the piezoelectric cantilever beam for

different upper strain limit cases in the same wind speed

environment is shown in Figure 10B.

4.3 Fitting of the optimized piezoelectric
cantilever

In order to facilitate engineering application, the logic

function is utilized to fit the optimization results.

As shown in Eq. 39, the expression of the curve consists of

four parameters. The nonlinear least square method is used to fit

the width function of the optimized beam. The fitting results of

the optimized piezoelectric cantilevers under different wind

speeds are shown in Figure 11A.

wb(x) � 2( k1
1 + ek2+k3x

+ k4). (39)

From the nature of the logistic function and the fitted shape

of the optimized beam at different wind speeds shown in

Figure 11A, it can be inferred that the parameter k2 of the

logistic function determines the shape of the optimized beam at

different wind speeds. In this function, k3 = 158.069 is a

constant, and k1 and k4 are related to the maximum and

minimum values, i.e., k1≈wbmax/2, k4≈wbmin/2. Therefore,

the exponential fit of k2 can accurately predict the shape of the

optimized beam at different wind speeds, as shown in Eq. 40,

where U is the wind speed, P1 = −222.2, P2 = −0.00628, P3 =

1,418, and P4 = −0.3221.

FIGURE 10
(A) Optimized beam at different wind speeds. (B) Optimized
beam at different strain upper limits.

FIGURE 11
Fitting diagram of optimized beams at different conditions.
(A) Comparison of the optimized beam curve and fitted function
curve. (B) Fitting of the optimized beam at different wind speeds.
(C) Fitting diagram of optimized beams at different strain
upper limits.
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k2 � P1e
P2U + P3e

P4U. (40)

The logistic function is used to fit the analysis to the

optimized beam with different strains on the requirement.

Figure 11B shows the shape fit of the optimized beam for

different wind speeds at an upper strain limit of 605 ppm.

The expression of the width function of the optimized beam

is Eq. 39, and the expression of k2 is Eq. 40, where P1 = −222.2,

P2 = −0.00628, P3 = 1,418, and P4 = −0.3221. The shape fit of the

optimized beam with different allowable strains at a wind speed

of 13 m/s is illustrated in Figure 11C.

4.4 COMSOL simulation

The software COMSOL is used to validate the theoretical

results. The geometric and material properties of the

piezoelectric cantilever are given in Table 1. Considering the

material strength, the transient response and output power of

piezoelectric cantilever beams with different shapes in the

environment of wind speed of 13 m/s are calculated. The

output voltage and power of piezoelectric cantilever beams

with different shapes and the strain nephogram at their

maximum deformation are shown in Figures 12A,B. It is

FIGURE 12
(A) Transient response and strain nephogram of the piezoelectric cantilever beam. (B) Comparison of output power between simulation
calculation and theoretical calculation of beams with different shapes.

FIGURE 13
(A) Wind tunnel experiment equipment. 1) Wind tunnel test section; 2) energy harvester for testing; 3) wind inlet; 4) wind outlet; 5) hot wire
anemometer; 6) data acquisition; 7) computer; and 8) rheostat. (B) Schematic representation of the experimental apparatus. (C) Base of the
piezoelectric cantilever beam. (D) Experimental results of the output power of beams with different shapes.
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obvious that the output voltage of the piezoelectric cantilever

optimized by PSO is the largest. Compared with the other five

kinds of beams, the stress change of the optimized beam is

uniform, and the strain of most areas remains near the material

strain limit, which maximizes the working efficiency of

piezoelectric materials.

5 Experiment

In order to further verify the correctness of the conclusion,

the energy harvester considering the material strength of

piezoelectric material is experimentally verified.

Wind tunnel experiments are carried out in the “low turbulence

reflux wind tunnel” finished at the Department of Mechanics,

Tianjin University, and the experimental results compare with

the theoretical and simulation results. Figure 13A displays the

physical characteristics of the main body of the wind tunnel

tested, and Figure 13B gives the schematic representation of the

experimental apparatus. Two MFC piezoelectric sheets connect in

series with the rheostat. The voltage signals at both ends of the

rheostat are output to the data acquisition. The laser displacement

sensor monitors the displacement signal of the cylinder and inputs

them to the data acquisition. The computer controls the operation

and storage of the data acquisition system.

Figure 13C provides the physical view of the six piezoelectric

cantilever beam substrates in the wind tunnel experiments. Since

the special shape of the MFC piezoelectric sheet cannot be

customized in the market, the rectangular piezoelectric sheet

of the M8507-P2 model is used for comparison experiments and

qualitative analysis. As shown in Figure 13C, the placement of the

piezoelectric sheet unifies at the position near the free end of the

cantilever beam in the experiment.

Figure 13D shows the output power of different shapes of

beams for the wind speed of 13 m/s in wind tunnel experiments.

From the figure, it can be seen that the output power of the

optimized beam by PSO is the highest in the same area of

piezoelectric material pasted. This conclusion qualitatively

verifies that the optimized beam has a more uniform strain at

all points during the deformation process and gives full play to

the piezoelectric material. Through the rectifier circuit, this

GPEH can supply power to milliwatt level sensors.

6 Conclusion

A global optimization scheme based on a variable-section

piezoelectric cantilever beam for wind-induced vibration energy

harvesters is proposed by coupling the improved piecewise Galerkin

method and the PSO optimization method. The finite element

simulation and wind tunnel experiments validate the accuracy of

the improved piecewise Galerkinmethod in the dynamic calculation

of the variable cross-section beam. Due to the optimization process

being combined with numerical and analytical algorithms, the step

of redrawing the mesh in the shape optimization process is avoided

compared to the simulation optimization, which greatly saves

computational costs.

Considering the material strength of piezoelectric material,

the shape of the optimized beam is similar to the logic function.

The output power of the optimized beam is more than three

times that of the uniform beam. Finally, the logic function is

utilized to fit the optimized beam, and the function and

corresponding parameter values of the optimized beam widths

under different conditions are given.

The cantilever harvester proposed in the study achieves a

better uniform strain distribution. The evenly distributed strain

contributes to less energy dissipation during the charge

redistribution process, which causes a larger voltage and

energy conversion efficiency. This study provides a new global

approach to the optimization of the wind-induced vibration

energy harvester in practical application.

The development of wind energy harvester will adhere to the

trends of miniaturization, multi-function, and integration.

Miniaturization increases the adaptability of energy harvester

applications. With the wireless requirement of the environmental

monitoring network, the energy harvester should be integrated with

sensors to realize the multi-function of the device. The self-powered

wind sensing device is expected to realize a complete intelligent

system, including energy, signal processing, andwireless transmission

unit. With the continuous development, the wind energy harvester

will provide a new energy supply and sensing scheme for wireless

environmental monitoring networks and the Internet of things.
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