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Abstract: In this paper, the optimization algorithm based on the population as im-

proved global particle swarm optimization is described and used for inverse modelling of

two-dimensional magnetic field data. This algorithm is able to estimate the parameters

of depth, shape factor, amplitude coefficient, magnetic inclination angle and origin point

coordinates. To evaluate the efficiency of this method, the magnetic field of an artificial

model was analysed, with and without added random noise. The results suggest that the

proposed algorithm is capable of model parameter estimation with high accuracy. Ac-

cordingly, the improved global particle swarm optimization algorithm was used to analyse

the magnetic field of the study area in the Ileh region in Iran located in Taybad city. The

study area is very rich in terms of iron resources. The estimate for the study area is that

the depth of the buried mass centre is about 114.9 m and its approximate shape is similar

to a horizontal cylinder based on the calculated shape factor value which is 1.76. The

calculated depth is an acceptable match with the average depth of drillings.
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1. Introduction

Potential field methods have various applications in geophysical prospect-
ing (Biwas and Rao, 2021; Essa et al., 2021; Gan et al., 2022; Gokula and
Sastry, 2022; Mehanee, 2022a). One of the important goals of the interpre-
tation of magnetic data is to determine the characteristics such as size, shape
and position of the different types of underground structures for various pur-
poses such as exploration, mining and geological studies. The subsurface
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geological structures can be modelled into simple geometric shapes such as
spheres, cylinders, or plane structures acceptably by using magnetic data
(Mehanee, et al 2021). Parameters that control the shape and position of
the geometric model such as depth, length, and radius are calculated and
the parameters that produce the best magnetic field for a model are con-
sidered as the best model.

Interpretation of magnetic anomaly is remarkably important in the ex-
ploration areas according to the subsurface targets (Nabighian et al., 2005;
Abdelrahman et al., 2009; Ekinci et al., 2014). Also, the magnetic method
can be used in hydrocarbon exploration (Abubakar et al., 2015; Ivakhnenko
et al., 2015), mining exploration (Farquharson and Craven, 2009; Abedi
et al., 2013; Abdelrahman et al., 2016; Eshaghzadeh and Sahebari, 2020a;
Eshaghzadeh et al., 2020), engineering applications (Dong et al., 2007) geo-
thermal activities (Bektaş et al., 2007; Nyabeze and Gwavava, 2016), archeo-
logical studies (Gündoğdu et al., 2017), and groundwater research (Al-Garni,
2011; Araffa et al., 2015).

Also, in the last two decades, general optimization methods have been
used in many fields, as an alternative to these geophysical inversion methods
(Mehanee et al., 1998, Tarantola, 2005; Mehanee, 2022b), such as genetic
algorithm (Boschetti et al., 1997; Kaftan, 2017), particle swarm optimiza-
tion (van den Bergh and Engelbrecht, 2004; Essa and El-Hussein, 2017;
Eshaghzadeh and Sahebari, 2020b; Eshaghzadeh and Hajian, 2021), differ-
ential evolution or derivative (Ekinci et al., 2016; Balkaya et al., 2017),
simulated annealing (Biswas, 2015), neural networks (Al-Garni, 2013; Es-
haghzadeh and Hajian, 2018; Eshaghzadeh et al., 2021), ant colony opti-
mization (Colorni et al., 1991; Srivastava et al., 2014), hybrid genetic price
algorithm (Bresco et al., 2005; Di Maio et al., 2016) and teaching learning
based optimization (Eshaghzadeh and Hajian, 2020; Eshaghzadeh and Sa-
hebari, 2020b).

Automatic estimation of depth and shape of buried structure by mag-
netic data has attracted a lot of attention. Methods are generally divided
into two categories. The first category is methods that can only be used
for residual magnetic anomalies; Such as the methods presented by Bar-
bosa et al. (1999), Hsu (2002), Gerovska and Araúzo-Bravo (2003), Salem
et al. (2004), Abdelrahman and Essa (2005), Abdelrahman et al. (2012) and
many others. However, the accuracy of the results obtained by these meth-
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ods depends on the accuracy of the residual anomaly separated from the
observational magnetic data.

The second category, on the other hand, not only can be used for the
residual (local) magnetic field, but also can be used for observational (ac-
quired) magnetic data. Abdelrahman and Hassanein (2000) presented a sim-
ple method for automatically determining the buried structure depth from
magnetic data using a parametric relation. Abdelrahman et al. (2007) pro-
posed a method of minimizing the least squares that the source depth is
estimated using the second horizontal derivative of anomaly obtained from
the magnetic data by applying filters of consecutive window lengths; They
used the variance of the depths as a criterion for determining the correct
shape and depth of the buried structure. However, the methods of Abdel-
rahman and Hassanein (2000) and Abdelrahman et al. (2007) can only be
applied to magnetic data containing the combined effect of a residual field
component of a complete local structure and a regional component pre-
sented with zero degrees and a first degree polynomial, respectively.

The PSO method was proposed by Kennedy and Eberhart (1995). This
method as well as its improved variations have been used more in the fields
of artificial intelligence and computer. In recent years, the PSO particle
swarm optimization method has been used in various branches of geophysics,
and researchers have devised various methods to improve the performance
of this algorithm (Monteiro Santos, 2010; Toushmalani, 2013a and 2013b;
Pallero et al., 2015; Singh and Biswas, 2016; Singh and Singh, 2017; Essa
and El-Hussein, 2017; Roshan and Singh, 2017; Essa and Elhussein, 2018a,
2018b; Essa and Munschy, 2019, Eshaghzadeh and Sahebari, 2020b; Essa
2021; Eshaghzadeh and Hajian, 2021).

2. Method

2.1. Forward modelling

According to Abdelrahman and Essa (2015), the terms of horizontal, vertical,
and total magnetic anomaly of spherical, horizontal cylinder, narrow plane,
and geological contact models (Fig. 1) are defined as follows:

T (xi, z) = K
Az2 +B(xi − x0) + C(xi − x0)

2

((xi − x0)2 + z2)q
, (1)
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where:
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3 cos2 θ − 1 for a sphere (total field)
− sin θ for a sphere (vertical field)
2 cos θ for a sphere (horizontal field)
− cos θ for a horizontal cylinder, thin sheet (FHD), geologi-

cal contact (SHD) (all fields)
0 for a thin sheet, geological contact (FHD) (all fields).

Fig. 1. Simple geometric structures.

In Equation (1), z is the depth of the centre of mass, xi represents the
coordinates of the data acquisition location, K is the amplitude coefficient,
θ is the inclination angle parameter, and q is the shape factor. FHD and
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SHD also refer to the second and first order of horizontal derivatives of
magnetic anomalies, respectively. The shape factor for sphere, horizontal
cylinder and narrow plate is 2.5, 2 and 1, respectively, which are equivalent
to Euler’s structural index of 3, 2 and 1, respectively. The definition of the
inclination angle θ varies for different fields’ components and sources (Gay,
1963; Stanley, 1977; Prakasa Rao et al., 1986; Prakasa Rao and Subrah-
manyam, 1988).

2.2. Particle swarm optimization

The PSO algorithm is one of the evolved algorithms of artificial intelligence,
based on collective intelligence, which is designed based on the evolutionary
procedure of particles in a batch in order to achieve the optimal goal. In
1995, Eberhart and Kennedy first introduced PSO as an uncertain search
method for functional optimization. This algorithm is inspired by the mass
movement of birds looking for food. A group of birds randomly search for
food in a space. There is only one piece of food in the space. None of
the birds know the location of the food. One of the best strategies can be
following the bird that has the shortest distance to the food. This strat-
egy is actually the basis of the algorithm. Each solution (parameter) called
a particle in the PSO algorithm is equivalent to a bird in the bird mass
movement algorithm. Each particle has a merit value that is calculated by
a merit function. The closer the particle is to the target in the search space
(food in the bird movement model), the more suitable it is. Each particle
also has a velocity that directs the particle’s motion. Each particle continues
to move in the space by following the optimal particles in the current state.

In the standard PSO algorithm, each particle i (parameter under discus-
sion) has two main parts, including the current position of the particle (xi)
(parameter value) and the current velocity of the particle (vi) (the rate of
changing the parameter value). The next position of each particle in the
search space is determined by its current position and next velocity. The
next velocity of each particle is determined by using the four main factors
namely the current position of the particle, the current velocity of the par-
ticle, the best particle position ever experienced and stored in its memory
(pbest) and the best position among the group particles which is called
group experience (gbest). According to the above definitions, the next ve-
locity of each particle (model parameter) i is expressed by the following
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relation (Sweilam et al., 2007):

vi(t+1) = Wvi(t) + c1 rand(pbest(t)− xi(t)) + c2 rand(gbest(t)− xi(t)). (2)

W is the weight factor of inertia that controls the effect of velocity in the
previous step. c1, c2 are acceleration coefficients or individual and group
learning coefficients of the particle. The rand command generates a random
number in the range of zero to one. vi(t) is the i-th particle (parameter)
velocity in the t-th iteration and xi(t) is the i-th particle value (parameter)
in the t-th iteration. By determining the next velocity of each particle, its
next position (parameter value) is obtained from the following equation:

xi(t+ 1) = xi(t) + vi(t+ 1). (3)

2.3. Improved global particle swarm optimization

In the improved global particle swarm optimization (IGPSO) algorithm to
increase the convergence speed and minimize entrapment in local optimiza-
tions, we define the change rate of each parameter as follows:

vk+1
i,j = A [1 + (r × δ)] , (4)

as

A =



w vki,j + c1r
k
1,j

(

pki,pbest −mk
i,j

)

rms−1
+ c2r

k
2,j

(

pki,gbest −mk
i,j

)

rms



, (5)

where ‘rms’ is the observational and computational magnetic error, vki,j is

the velocity at k-th iteration, and mk
i,j is the position at k-th iteration. In

the IGPSO algorithm, we also consider a high limit for the speed value
vk+1
i,j . If the value of A is more or less than the defined limits, the value of
δ is considered equal to 1 and −1, respectively, otherwise the value of δ is
assumed to be zero. r is a random number between 0 and 1.

Also in the proposed algorithm, we consider the acceleration coefficients
dynamically, as:

c1 = 2.5−
0.5 titer
Tmax

, (6)
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c2 = 1.5 +
0.5 titer
Tmax

, (7)

titer is the current iteration and Tmax is the maximum number of iterations.
The value of c1 + c2 is always less than or equal to 4.

The inertia weight also changes as follows:

wk+1 = (wmax − wmin)− (rand()− 0.5) 2wmean

if ... wk+1 < wmin → wk+1 = wmin

if ... wk+1 > wmax → wk+1 = wmax

(8)

Be careful that:

0 < wmax, wmin < 1 ,

wmin is the low weight limit, wmax is the high weight limit, wmean is the
average weight and rand() is a random number between 0 and 1.

As can be seen from the above equations, with the measures taken, c1
decreases with increasing number of iterations. c1 is pbest coefficient or the
coefficient of the best position the particle has ever experienced. So the
search is local, and as c1 decreases, so does the local search. The coefficient
rms−1 also improves the local search.

On the other hand, as the number of iterations increases, c2 increases.
c2 is the coefficient of gbest or the best position of all the particles. So the
search is done globally. Finally, as the number of iterations increases, the
ability to search globally will increase and will help to find global optimiza-
tion. For the third sentence, rms coefficient improves the global search.

Using the changes made in the PSO algorithm, it is possible to improve
the PSO algorithm, and solve its problems and achieve the main answer
which is universal (absolute) optimization.

The IGPSO operation algorithm is as follows:

1) The magnetic field data profile (artificial or real) is imported into the
code written for the optimization algorithm based on the range defined
for the certain number of unknown parameters of the model (geomet-
ric shape) that we consider. The statistical community (population) is
made. Each member of the population has five components or param-
eters including of depth, amplitude coefficient, shape factor, magnetic
inclination angle and origin coordinates.
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2) Among the population, the member whose calculated magnetic field
based on its parameters has the least error with the observational or
theoretical magnetic field, is considered as the initial gbest.

3) In each iteration, by changing the speed, the value of the parameters of
each member is improved and the best gbest is selected again among the
improved population.

4) Finally, the condition for completing the algorithm can be considered
as one of these two cases: a) the iteration continues until the defined
number of iterations is completed. b) The iteration continues until the
error between the computational and observational magnetic fields is less
than the defined value.

It needs to be explained that the value of velocity in each iteration is
actually a small numerical value (positive or negative) that is added or sub-
tracted to the value obtained for the parameters in the previous iteration.

The IGPSO algorithm works repeatedly to optimize the unknown pa-
rameters of the model, and in each iteration the effect of the magnetic field
in accordance with the parameters calculated for the model in that itera-
tion, is calculated, then the amount of error between computational and
observational magnetic data is estimated.

The error value between the calculated and observed magnetic data is
obtained from the following relation (Essa and Elhussein, 2018b):

Q =

2
N
∑

i

|T o
i − T c

i |

N
∑

i

|T o
i − T c

i |+
N
∑

i

|T o
i + T c

i |

, (9)

where T o
i is the observed magnetic field, and T c

i is the computational mag-
netic field.

3. Numerical example

Figure 2 shows a horizontal magnetic field corresponding to an artificial
spherical model located at a depth of 30m whose center corresponds to the
origin of the data profile (i.e. x0 = 0). The magnetic inclination angle is 50
degrees and the amplitude coefficient is 10000 nT.m3. The length of the
magnetic data profile is 100 m, the data sampling distance is 1 m and the
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magnitude of the magnetic field at the point of origin is −0.2381 nT. The
assumed initial values for the parameters of this model are given in Table 1.

Although the origin point is specified and pre-defined in the numerical
model, the Stanley (1977) method can also be used to determine the origin
point. In this method, we connect the maximum and minimum amount
of magnetic data in the direction of the profile (AB line in Fig. 2). The
intersection point of this line with the change curve of the magnetic field
can be considered as the origin of the profile.

Fig. 2. The horizontal magnetic field corresponds to an artificial spherical model located
at a depth of 30 m with a magnetic inclination angle of 50 degrees and an amplitude
coefficient of 10000 nT.m3, its centre corresponds to the origin of the data acquisition
profile.

3.1. Modelling

For modelling with the improved IGPSO particle swarm optimization al-
gorithm, one hundred initial models are produced according to the range
considered for the parameters of depth, magnetic inclination angle, ampli-
tude coefficient, origin point coordinates and shape factor (Table 1). In each
iteration, the value of the parameters is changed and the magnetic field is
calculated for the new variables, and the error between the calculated and
observational magnetic field is determined. In each iteration, the program
checks that the value of the calculated parameters does not exceed the max-
imum or minimum values defined in Table 1. The minimum error to stop
repetition based on the objective function (Eq. (9)) is 0.01. The intended
number of repetitions for each program execution is 80 repetitions, in which
the final values obtained for each parameter are stored. The code for the
improved IGPSO particle swarm optimization algorithm is written in MAT-
LAB, and it runs for 30 independent iterations. So at the end of the code
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Table 1. The considered range for the artificial model parameters and the results obtained
from the IGPSO algorithm.

Parameters Z (m) K (nT.m3) θ (deg) X0 (m) q Q

Initial values 30 10000 50 0 2.5 –

Used ranges 25 to 35 8000 to 12000 45 to 55 −5 to 5 0/5 to 30 –

Without 31 10500/8 49/36 −0/515 2.44 0/0442
Computed noise

values
With 30/56 9666/8 50/32 −1/19 2.44 0/1055
noise

execution, there will be 30 calculated values for each variable. Frequency
charts are drawn for each parameter and the average of the range with the
highest answer will be considered as the final value of that parameter.

Figures 3a to 3e show the frequency charts corresponding to the values
obtained for the depth parameters, amplitude coefficient, origin point coor-
dinates, inclination angle, and shape factor. According to the recent figures,
the maximum values calculated for the parameters of depth, amplitude co-
efficient, origin point coordinates, inclination angle, and shape factor are in
the ranges of 30.5 to 31.5 m, 10200 to 10600 nT.m3, −0.25 up to −0.75 m,
48.5 to 49.5 degrees and 2.3 to 2.5, respectively.

Based on the averaging method, for the parameters of depth, amplitude
coefficient, coordinates of the origin point, inclination angle, and shape fac-
tor, the following values are obtained, respectively: 31 m, 10500.8 nT.m3,
49.36 degrees, −0.515 m and 2.44. (Table 1). Figure 4a shows the theoret-
ical magnetic field as well as the magnetic field generated using the global
particle swarm optimization method, and Figure 4b shows the difference
between the theoretical magnetic field and the magnetic field calculated at
the corresponding measurement points. The error obtained between the
theoretical magnetic field and the calculated magnetic field, based on the
values obtained for the model parameters is 0.0442.

To evaluate the efficiency of the improved particle swarm optimization
algorithm in the presence of noise, a random noise was added to the the-
oretical magnetic field based on the following equation (Abdelrahman and
Essa, 2015):

Tnoise(xi) = T (xi) +K (rand(i)− 0.5) . (10)
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Fig. 3. Frequency chart corresponding to the values obtained for the parameters a) depth,
b) amplitude coefficient, c) origin point coordinates, d) inclination angle, and e) shape
factor using the improved global particle swarm optimization algorithm for theoretical
magnetic noiseless data.

In the latter equation, Tnoise(xi) is the noisy magnetic field at a point xi, k
is a constant number that determines the amplitude and magnitude of the
noise (which is 0.05 for this model), that depends on the magnitude of the
magnetic field amplitude, and rand is a random number between 0 and 1.

The frequency charts corresponding to the values obtained from the
analysis of noisy magnetic data for the parameters of depth, amplitude
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Fig. 4. a) Theoretical magnetic field and also the magnetic field obtained by the improved
global particle swarm optimization method, b) The difference between the theoretical
magnetic field and the magnetic field calculated at the corresponding measuring points.

coefficient, origin point coordinates, inclination angle and shape factor are
shown in Figure 5a to Figure 5e. According to the recent figures, the max-
imum values calculated for the parameters of depth, amplitude coefficient,
origin point coordinates, inclination angle and shape factor, respectively,
are in the ranges of 29.5 to 30.5 m, 9400 to 9800 nT.m3, −0.75 to −1.25 m,
50.5 to 51.5 degrees and 2.3 to 2.5.

Based on the averaging method, the following values are obtained for the
parameters of depth, amplitude coefficient, origin point coordinates, inclina-
tion angle and shape factor, respectively: 30.56 m, 9666.8 nT.m3, −1.19 m,
51.32 degrees, and 2.44 (Table 1). Figure 6a shows the theoretical noisy
magnetic field, as well as the magnetic field obtained by using the improved
global particle swarm optimization method, and Figure 6b shows the dif-
ference between the theoretical noisy magnetic field and the magnetic field
calculated at the corresponding measuring points. The error between the
theoretical noisy magnetic field and the calculated magnetic field is 0.1055,
based on the values obtained for the model parameters.

According to Table 1, the error between the initial values and the calcu-
lated values for the parameters of depth, amplitude coefficient, origin point
coordinates, inclination angle and shape factor for non-noise magnetic field
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Fig. 5. Frequency diagram corresponding to the values obtained for the parameters a)
depth, b) amplitude coefficient, c) origin point coordinates, d) inclination angle and e)
shape factor using the improved global particle swarm optimization algorithm for the
theoretical noisy magnetic data.

are 1 m, 500.8 nT.m3, −0.515 m, 0.64 degrees and 0.06, respectively, and
for the noisy magnetic field are 0.56 m, 333.2 nT.m3, −1.19m, 0.32 degrees
and 0.06, respectively. Based on the results of theoretical magnetic field
inversion, without noise and with noise, the improved global particle swarm
optimization algorithm can be considered as an effective method with ac-
ceptable performance for the analysis of the magnetic fields.
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Fig. 6. a) Theoretical noisy magnetic field and also the magnetic field obtained by the im-
proved global particle swarm optimization method, b) The difference between the theoret-
ical noisy magnetic field and the calculated magnetic field at the corresponding measuring
points.

4. Field example

4.1. Geographical location and geology of Ileh region in Iran

In terms of geographical location, the study area is located in Khorasan
Razavi province, Taibad city and a village called Ileh, which is significant
in terms of iron reserves. Magnetometric measurements of the study area
are located in the geological map of 1/250000 Taibad.

The main outcrop of geological units in this area is the undivided volcanic-
sedimentary unit, which is mainly tuff-Chile. The age of this unit is Late
Proterozoic, which has undergone a distinct regional metamorphism, and
this unit has a northeast-southwest trend and a light colour (Fig. 7).

4.2. Ileh region magnetic field

The acquisition of magnetic data in the Ileh region was done simultaneously
with three devices and one device in the region as a base station for daily
correction of data. In this area, the distances between profiles were 50 m in
the north-south direction and the distance of the stations was 20 m, and in
some areas 10 m. The area is 688900 m2 with dimensions of 830 × 830 m,
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Fig. 7. Geological map of the study area (Ileh).

Fig. 8. Magnetic field of the study area in Ile region.
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in which a total of 17 profiles and 589 points of magnetic field data are
acquired in this area.

Figure 8 shows the magnetic field of the study area. A bipolar magnetic
anomaly with a maximum of 49758 nT and a minimum of 48441 nT is ob-
served, in the south-eastern part of the study area.

The magnetic field in Figure 8 also contains magnetic fields from regional
and local structures in the study area. Therefore, it is necessary to remove
the effect of the regional magnetic field from the residual magnetic field data
obtained after IGRF correction (declination and inclination angle values and
IGRF are 3.5, 53.3 and 49194, respectively), in order to finally obtain the
desired local magnetic field map. If there is no dominant regional field in
the data collection area, the local field obtained from the surface trend filter
will not differ from the field obtained from the IGRF correction.

Figure 9 shows the residual (local) magnetic field of the study area for
the first-order surface trend. After removing the effect of the regional mag-
netic field, the maximum and minimum values of the magnetic field change.
The local magnetic field map is suitable for quantitative analysis, as it shows
exactly the values of the magnetic field of the magnetic source in the study
area.

Fig. 9. Position and direction of BB’ profiles on magnetic anomalies in the local magnetic
field map of Ileh region.
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4.3. Inversion results

To model the source of the magnetic anomaly with the improved global
particle swarm optimization method, the BB′ profile with a length of 710 m
is designed according to Fig. 9, on the effect of the magnetic field of the
anomaly source in Geosoft software. Data collection was performed at 72
points with a distance of 10 m. Figure 10 shows the changes in the magnetic
field along the BB′ profile. As mentioned in the Numerical example section,
One method to determine the point of origin is to use the Stanley method
(Stanley, 1977), which is very efficient for real magnetic field profiles. In
this method, we connect the maximum and minimum amount of magnetic
data in the direction of the profile. The point of contact of this curve with
the change curve of the magnetic field can be considered as the origin of the
profile. The method presented is particularly simple to execute, does not
require computing facilities, and does not depend upon skilled subjective
judgments. In BB′ profile, the coordinates of the origin point is 310 m (in
Fig. 10, the point of intersection of the EF line that connects the minimum
and maximum amount of magnetic field in the direction of the BB′ profile
with the curve of magnetic field changes).

Fig. 10. Changes in the magnetic field in the direction of the BB′ profile.

For modelling with improved particle swarm optimization (IGPSO) algo-
rithm method, one hundred and twenty initial models is produced according
to the considered range for structural parameters of depth, amplitude coef-
ficient, origin point coordinates, inclination angle and shape factor selected
based on geological information (Table 2). As mentioned before, the pro-
gram checks in each iteration that the value of the calculated parameters
does not exceed the maximum and minimum values defined in Table 2. The
minimum error considered to stop iteration is 0.1, based on the objective
function (Eq. (9)).
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Table 2. Considered range and obtained values from the magnetic field analysis of Ileh
region (interpretation results).

Parameters Z (m) K (nT.m3) θ (deg) X (m) q Q

Initial values 70 to 140
100000 to

30 to 80 200 to 400 0/5 to 3 –400000

Used ranges
112/5 to 195000 to

57/5 to 62/5 315 to 325 1/7 to 1/8 –117/5 205000

Computed
114/9 201450 60/2 316/4

1/76
26/0values (∼Cylinder)

The intended number of repetitions for each program execution is 20 rep-
etitions, in which the final obtained values of each parameter are stored. To
analyse the magnetic field of Faryab region, the code written in MATLAB
for improved particle swarm optimization (IGPSO) algorithm runs for 50
independent iterations. So at the end of the code execution, there will be
50 calculated values for each variable. Similar to the artificial models, fre-
quency graphs are plotted for each parameter and the average of the values
of the range in which the most answers are located is considered as the final
value of that parameter.

The frequency diagram corresponding to the values obtained for the pa-
rameters of depth, amplitude coefficient, coordinates of the starting point,
inclination angle and shape factor is shown in Figs. 11a to 11e.

According to Figure 11, the maximum values calculated for the param-
eters of depth, amplitude coefficient, origin point coordinates, inclination
angle and shape factor are in the ranges of 112.5 to 117.5 m, 195000 to
205000 nT.m3, 315 to 325 m, 57.5 to 62.5 degrees, and 1.7 to 1.8, respec-
tively. As mentioned before, the average values in these ranges are consid-
ered as the final values for the parameters of the buried structure, which are
114.9 m, 201450 nT.m3, 316.4 m, 60.2 degrees, and 1.76 for the parameters
of depth, amplitude coefficient, coordinates of the origin point, inclination
angle, and shape factor, respectively (Table 2).

Figure 12a shows the measured (observational) magnetic field as well as
the calculated magnetic field using the improved IGPSO particle swarm op-
timization method. Figure 12b shows the difference between the observed
magnetic field and the calculated magnetic field at corresponding measuring
points. The error between the observed magnetic field and the calculated
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magnetic field is 0.26, based on the values obtained for the structural pa-
rameters.

Based on the estimated shape factor value, the shape of the subsurface
mass is geometrically closer to the horizontal cylinder. Also, the value of
the origin coordinates obtained by the improved global particle swarm op-
timization method is 316.5 m, which is an acceptable accordance with the
value obtained by the Stanley (1977) method, i.e. 310 m.

Fig. 11. Frequency diagram corresponding to the values obtained for the parameters a)
depth, b) amplitude coefficient, c) origin point coordinates, d) inclination angle and e)
shape factor using the improved global particle swarm optimization algorithm for magnetic
data of the study area in Ileh.
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Fig. 12. a) The measured magnetic field and the calculated magnetic field using the
improved global particle swarm optimization method. b) The difference between the
observed magnetic field and the calculated magnetic field at the corresponding measuring
points.

5. Conclusion

In this paper, an improved global particle swarm optimization algorithm
which is based on the initial population definition is used for inverse mod-
elling of magnetic data. This method is capable of analysing the mag-
netic field data that have not been transferred to the pole or equator with
acceptable accuracy, provided that the values of the subsurface structure
parameters are within the assumed initial numerical range for the model
parameters.

The results obtained from the numerical example show that the improved
global particle swarm optimization method is able to estimate the model
parameters with acceptable accuracy. Due to the good performance of this
method (with and without random noise), we used it for modelling a two-
dimensional magnetic field in Ileh village.

There is a good accordance between the magnetic field calculated based
on the parameters estimated using the improved global particle swarm opti-
mization algorithm and the trend of changes in the magnetic field measured
in the direction of the data acquisition profile, so that the error is 0.26.
The estimated depth by the improved global particle swarm optimization
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algorithm for the centre of the mass is 114.9 m, which is an acceptable ac-
cordance with the average depth obtained for the centre of the buried mass
using drilling which is 103.2 m.
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