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We present a fully quantummodel for the excitation of a bound electron based on the “free-
electron bound-electron resonant interaction” (FEBERI) scheme. The bound electron is
modeled as a quantum two-level system (TLS) at any initial quantum (qubit) state, and the
free electron is presented as a pre-shaped quantum electron wavepacket (QEW). In the
case that the QEW is short or modulated at optical frequency, the TLS quantum state may
be coherently controlled with multiple modulation-correlated QEWs. For this case, we
derive the transition probability of the TLS due to interaction with a multi-particle beam
based on an analytical approximate solution of the Schrodinger equation that amounts to
using Born’s probabilistic interpretation of the quantum electron wavefunction. We verify
the credibility of the analytical model at its validity ranges using a fully quantum density
matrix computation procedure. It is shown that the transition probability can grow
quadratically with the number of correlated QEWs and exhibit Rabi oscillation. The
study indicates a possibility of engineering the quantum state of a TLS by utilizing a
beam of shaped QEWs.

Keywords: quantum electron wavepackets, superradiance, coherent control, wavepackets size, electron-matter
interaction

INTRODUCTION

Recent technological advances enable the shaping of free electron wavefunctions in the transverse
[1–3] and longitudinal [4–6] dimensions in an electron microscope setup. In the longitudinal
propagation direction of the electron (or in time dimension), the energy and density expectation
values of the electron wavefunction can be modulated by a coherent laser beam at optical frequencies
[7–9], utilizing the scheme of photo-induced near-field electron microscopy (PINEM) [10]. The
modulation is made possible by a multiphoton emission/absorption process in the near field of a
nanostructure [7], a foil [11], or a laser-beat (pondermotive potential) [12, 13]. After the PINEM
interaction, the energy spectrum of a single quantum electron wavepacket (QEW) exhibits discrete
energy sidebands spaced apart by the laser photon energy Zωb. It was also shown that due to the
nonlinear energy dispersion of electrons in free space drift, the discrete energy modulation of the
QEW is converted into tight periodic density modulation (bunching) at attosecond short levels [14,
15]. Furthermore, it was shown that single QEWs can be shaped and compressed to femtosecond
pulse duration by means of a chirping and streaking process with coherent THz or Infra-Red (IR)
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beams [16, 17]. The reality of the finite-sized shape and the
density modulation of the QEW in interaction with light was
asserted and analyzed in the context of stimulated Smith-Purcell
radiation [18, 19]. It has been confirmed experimentally by the
acceleration/deceleration interaction of the pre-shaped/pre-
modulated QEW with another coherent laser beam
synchronous with the modulating laser [20, 21]. The reality of
the QEW sculpting and modulation features in stimulated
radiative interaction and superradiance has been asserted also
in the case of multiple modulation-correlated electron
wavepackets [22, 23], as an extension of the classical case of a
pre-bunched particle beam [18].

Shaping and transfer of coherence and quantum properties
from light to free electrons wavefunction have received recently
significant research attention within an emerging new research
field of “quantum electron optics”. It has been shown that the
coherence and incoherence features of light, and even the
quantum statistical states of light, can be transferred to the
free-electron quantum electron wavefunction by means of the
PINEM process [24, 25]. This paves the way for new applications
of these emerging technologies for coherent control of quantum
systems of light and matter using pre-shaped and optically
modulated QEWs.

A simple example of coherent control of quantum states by
electrons is the effect of free-electron bound-electron resonant
interaction (FEBERI) proposed in Ref. [26]. In this process, a pre-
shaped or pre-modulated beam of QEWs interacts with a bound
electron modeled by a quantum two-level system (TLS). Such a
TLS model is valid because, in general, in the linear response
regime, the transition amplitude responds linearly to all possible
transitions of quantum levels in matter with frequency-
dependent amplitude. Therefore, targeting a single two-level
transition does not reduce the generality of the model, even if
the targets have multiple levels. The QEWs induce excitations of
the TLS when passing in the vicinity of the TLS target. It has been
suggested that a beam of probability-density modulation-
correlated QEWs can interact resonantly with the TLS when
the harmonic n of its optical frequency modulation matches the
TLS quantum energy level transitions nZωb � E2,1, where ωb is
the periodic temporal modulation frequency of the QEW density
distribution and E2,1 � E2 − E1 is the quantum energy gap of the
TLS. This assertion has raised a debate [27–29], but also a stream
of numerous recently published papers relating to different
aspects of this effect and its potential applications in electron
microscopy, diagnostics, and coherent control of qubits [30–33].

Using a fully quantum-mechanical analysis (both free and
bound electrons quantized) of the FEBERI interaction with a
single arbitrarily shaped QEW [34, 35], we showed that the
FEBERI effect can be applied for coherent control and
interrogation of the qubit state of a target TLS. However,
because the FEBERI effect is practically very weak for a single
QEW and single TLS, it is necessary to consider the interaction of
the TLS with multiple modulation-correlated QEWs. Such a
beam of density modulation-correlated QEWs can be
produced if all electrons are energy modulated in the PINEM
process by the same coherent laser beam and then develop the
same phase-correlated density bunching after drifting to the

FEBERI interaction point. In this case, as proposed in the
early paper of Gover and Yariv [32], based on a semi-classical
model, a coherent build-up of the quantum state of the TLS
may be possible, including full Rabi oscillation between the TLS
quantum levels. Such a Rabi oscillation process that initially
scales quadraticlly with the number of interacting electrons
N, would be the analog of spontaneous superradiance (in the
sense of Dicke [36]) by a density modulated electron beam,
which is characterized by an emission rate proportional to N2

where N is the number of interacting electrons. This process
is well established for bunched classical particle electron
beams [18, 37], but was also shown to take place when the
electrons are density-modulated on the level of the quantum
wavefunction (in expectation value) and modulation-correlated
[22, 38] Likewise, the semiclassical analysis of the FEBERI effect
results in quadratic growth ∝N2 of the transition from the
ground state to the upper state of the TLS at resonance
condition [39].

In this paper, we study the dynamics of a TLS excited by
multiple finite size or modulation-correlated QEWs under the
assumption that the interaction period is smaller than the
relaxation time T1 and the decoherence time T2 of the TLS.
The analytical model is based on a semiclassical approximation of
the Schrodinger equation for the entangled free and bound
electrons. We present an approximation in which the free-
electron quantum recoil is neglected. This amounts to using a
probabilistic model for the free electron location, relying on
Born’s interpretation of the quantum electron wavefunction.
In parallel, we present for the first time a fully quantum
model for single and multiple electrons FEBERI interactions,
and use it to compute numerically the transition probability
dynamics of the TLS. This is employed to evaluate the
applicability range of the approximate analytical model, and
specifically, to rigorously affirm the N2 scaling of the FEBERI
effect predicted in the semiclassical theory [26] which has been
under debate [27–29].

The paper is organized as follows: In the first section we
present the model and the theoretical framework of the FEBERI
setup. In the subsequent two sections we apply the probabilistic
model to interpret the excitation of a TLS with a single near point-
particle (short size) QEW and with a beam of such QEWs. In the
next two sections we present the excitation of a TLS with a single
density modulated QEW and then, with a beam of such

FIGURE 1 | Setup of free-electron bound-electron resonant interaction.
A beam of multiple finite size or modulation-correlated QEWs interacts with a
bound electron which is modeled by a quantum two-level system.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9207012

Ran et al. Excitation of TLS With FEBERI

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


modulation correlated QEWs. All approximate analytical
expressions are compared to the results of the quantum
density matrix computations. Conclusions are presented in the
final section.

SYSTEM MODEL AND THEORETICAL
FRAMEWORK

The setup of our system model is shown in Figure 1, in which a
thin free-electron QEW propagates in proximity to a Hydrogen-
like atom that is modeled as a TLS. The interaction of the free
electron and bound electron is considered to be the Coulomb
interaction. We denote the joint wavefunction of the free and
bound electrons by |Ψ(r, r′, t)〉. Then the dynamics of the
considered system are governed by the Schrödinger equation,

iZ
z
∣∣∣∣∣Ψ(r, r′, t)〉

zt
� (H0 +HI)

∣∣∣∣∣Ψ(r, r′, t)〉 (1)

where H0 � H0F +H0B is the unperturbed Hamiltonian of the
free electron and bound electron. HI represents the interaction
Hamiltonian. In order to apply the analysis also to relativistic
electrons, we use a “relativistic”Hamiltonian for the free electron
of energy which we have derived by second-order iterative
approximation of the Klein-Gordon equation, neglecting the
spin effect [41,48]:

H0F(r) � ϵ0 + v0 · (−iZ∇ − p0) + 1

2γ30m
(−iZ∇ − p0)2. (2)

This corresponds to second-order expansion of the relativistic
energy dispersion of a free electron Ep � ϵ0 + v0 · (p − p0) +
(p − p0)2 / 2γ30m, where ϵ0 � γ0mc2 and p0 � γ0mv0. This
“relativistic Hamiltonian” has been derived recently also
directly from the Dirac equation [40] without the quadratic term.

For the simplified model where the spin is neglected, we
assume that the free and bound electrons do not overlap
spatially. Therefore, there are no exchange energy or spin-
orbit interaction effects, and we can avoid the intricate second
quantization of the many-body interaction theory [41]. For the
Coulomb interaction in the near field and neglecting retardation
[42], the interaction Hamiltonian is

HI(r, r′) � e2

4πϵ0
γ

[(γz − z′)2 + (r⊥0 − r⊥
′)2]1/2 ≃

e2

4πϵ0
⎡⎣ 1

(γ2z2 + r2⊥0)1/2
+ r′ · (êzγz − êrr⊥0)(γ2z2 + r2⊥ 0)3/2 ⎤⎦.

(3)
Here we used Feynman’s expression for the Coulomb potential

[43] in order to keep the analysis valid in the relativistic regime. A
more accurate form would be to use the Darwin potential for
relativistic Coulomb interaction between moving charged
particles [44, 45]. However, for the parameters of the cases
delineated here, the corrections due to this model are negligible.

Having the bound electron modeled as a TLS, the
eigenfunction solutions of the Hamiltonian H0B satisfy

H0B

∣∣∣∣∣Ψj(r′, t)〉 � Ej

∣∣∣∣∣Ψj(r′, t)〉, (j � 1, 2) (4)
where |Ψj(r′, t)〉 � φj(r′)e−iEjt/Z. Then the general wavefunction
of the bound electron can be represented as
|ΨB(r′, t)〉 � ∑2

j�1Cj|Ψj(r′, t)〉, where ∑2
j�1|Cj|2 � 1. The

wavefunction solution of the free electron in zero-order is
taken to be a general wavepacket

∣∣∣∣Ψ(0)
F (z, t)〉 � ∫ dp����

2πZ
√ c(0)p e−iEpt/Zeipz/Z, (5)

The shape of the wavepacket is determined by the
coefficients in momentum dimension - c(0)p . Here we
consider two cases. The first case is a finite size QEW of
Gaussian shape, arriving at the FEBERI interaction point z �
0 after a free drift length Ld from its waist position. In 1-D
momentum space it is presented as:

c(0)p � 1

(2πσ2p0)1/4 exp
⎛⎝−(p − p0)2

4σ2p0
− iEpLd

Zv0
⎞⎠, (6)

The second case is a PINEM phase-modulated Gaussian
wavepacket arriving at the FEBERI interaction point z � 0
after a free drift length Ld from the PINEM modulation point:

c(0)pM � 1

(2πσ2p0)1/4 ∑m Jm(2∣∣∣∣gL

∣∣∣∣) exp⎛⎝−(p − p0 − δpL)2
4σ2p0

− im(ϕ0

+ ωbt0) − iEpLd

Zv0
⎞⎠,

(7)
Such a wavepacket represents in spatiotemporal space a

density modulated finite-size QEW [14]. Here gL is the
PINEM coupling strength parameter, ωb and ϕ0 are the
frequency and reference phase of the laser-beam-induced field
at the PINEM interaction point, and σp0 is the QEW momentum
spread. For simplicity, we assume that the QEW reaches the
interaction point z � 0 at a time t0 at its longitudinal waist so that
the axial coordinate spread of the QEW is σz0 � 1

2Zσp0
(the

expansion of the QEW during the short interaction time is
negligible [19]).

During the interaction process, the expansion coefficients of
the QEW c(0)p get entangled with the coefficients of the bound
electron Cj. Then the generally combined wavefunction of the
free electron and bound electron during the interaction can be
represented in terms of the eigenfunctions:

∣∣∣∣∣Ψ(r, r′, t)〉 �∑2
j�1
∫ dpcj,p(t)φj(r′)e− iEjt

Z c(0)pp e−
iEpt
Z e

ipz
Z . (8)

After substituting this expression into Eq. (1) and canceling
out the no-interaction terms, we are left with
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iZ∑2
j�1
∫ dp _ci,p(t)φ(r′)e− iEjt

Z e−
iEpt
Z e

ipz
Z

� HI(r, r′)∑2
j�1
∫ dp _cj.p(t)φ(r′)e− iEjt

Z e−
iEpt
Z e

ipz
Z (9)

By multiplying by φ*
i(r′) and integrating over space, we reach

an integrodifferential equation that needs to be solved as a
function of time

iZ∫ dp _ci.p(t)e−
iEi t
Z e−

iEp t
Z e

ipz
Z � e−

iEj t

Z ∫ dp cj≠i,p(t)Mi,j(r⊥0, r)e−
iEpt
Z e

ipz
Z , (10)

where
Mi,j(r⊥0, r) � 〈i|HI(r, r′)|j〉 � ∫ d3r′φ*

i(r′)HI(r, r′)φj(r′), and
we have used the ortho-normality relation ∫φ*

i(r′)φj(r′)d3r′ �
δi,j and defined the self-interaction term < i|HI(r, r′)|i> � 0. If
|r′|≪ |r − r′| ≃ (r2⊥ 0 + γ2z2)1/2, the integration over r′ in
Mi,j(r⊥0, r) can be carried out independently of r, and for the
interaction Hamiltonian (3) we have

Mi,j(r⊥0, r) � − e

4πϵ0
μi,j · (êzγz − êrr⊥0)
(γ2z2 + r2⊥0)3/2 , (11)

where μi,j � −eri,j � −e∫d3r′φ*
i(r′)r′φj(r′) is the dipole

transition matrix element.

PROBABILISTIC MODEL FOR THE
EXCITATION OF TLS WITH SINGLE FREE
ELECTRON
In order to describe the TLS dynamics analytically, we present in
this section an iterative approach to solving the source equation
(10). Substituting

cj,p(t) ≃ C(0)
j (t)c(0)p , (12)

on the RHS of (10) allows calculation of the development in time
of the TLS, neglecting the recoil dynamics of the QEW.
Multiplying Eq. (10) by the complex conjugate of the free
electron wavefunction Eq. (5) and integrating over space, one
obtains

i

2π
∫ dp′ _ci,p(t)c(0)*p′ ei(Ep′−Ept/Z) ∫ dzei(p−p′)z/Z
� C(0)

j (t)eiωi,jt ∫ d3rMi,j(r⊥0, r)
∣∣∣∣Ψ(0)

F (r, t)∣∣∣∣2. (13)

With ∫dzei(p−p′)z/Z � 2πZδ(p − p′), we have

2πiZ∫ dp′ _ci,p(t)c(0)*p′ � C(0)
j (t)eiωi,jt ∫ d3rMi,j(r⊥0, r)

∣∣∣∣Ψ(0)
F (r, t)∣∣∣∣2,

(14)
This presentation is reminiscent of interaction with an

unperturbed point-particle that arrives at time t0 at the
interaction point z � 0 with Born’s quantum wavefunction

probability |Ψ(0)
F (r, t)|2. It should be stressed that

|Ψ(0)
F (r, t)|2 is not well determined for a single electron. We

assume that it is possible to solve Eq. (14) with substitution of
its expectation value - 〈|Ψ(0)

F (r, t)|2〉, and the solution will then
represent the result of interaction with an ensemble of
identical QEWs.

The probability distribution of a single electron QEW of
narrow width is:

<
∣∣∣∣Ψ(0)

F (r, t)∣∣∣∣2 > � δ(r⊥0)fez(z − v0(t − t0))
� δ(r⊥0)fet(t − t0 − z/v0)/v0, (15)

where fet is normalized over time. Then Eq. (14) can be
simplified to

iZ∫ dp′ _ci,p(t)c(0)*p′ � C(0)
j (t)eiωi,jtf(t − t0), (16)

where f(t − t0) � ∫ dzMi,j(z)fet(t − t0 − z/v0)/v0 is the
weighed interaction strength, which for a Gaussian can be
calculated from the wavepacket (5). By neglecting the
dynamics of the QEW around the interaction time t0 also on
the LHS, we can turn Eq. (16) into coupled differential equations
for the TLS:

_Ci(t) � 1
iZ
Cj(t)e−iωi,jtf(t − t0), (17)

and after integration

Ci(t+0 ) � Ci(t−0 ) + ΔCi � Ci(t−0 ) + 1
iZ
∫ t+0

t−0
dtCj(t)e−iωi,jtf(t − t0)

(18)
For a single Gaussian wavepacket at its longitudinal waist

σz0 � v0σet, we have

fet(t − t0 − z

v0
) � 1���

2π
√

σet
exp( − (t − t0 − z

v0
)2/2σ2

et).
(19)

Normalizing time to the transit time parameter �t � t/tr ,
where tr � r⊥0/γβc, and defining t′ � z/v0tr , the weighed

FIGURE 2 | The weighed interaction strength f(t, t0) for (A) Mi,j,‖(z) and
(B) Mi,j,⊥(z).
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interaction strength f(t − t0) can be recast into a convolution
relation

f‖/⊥(t − t0) � ∫ dzMi,j(z)fet(t − t0 − z/v0)/v0
� K‖/⊥ ∫+∞

−∞
d�t′ t′

(t′2 + 1)3/2

1���
2π

√
�σet

e−(�t−�t0−�t′)2/2�σ2et ,

(20)
with the parameter �σet � σet/tr being the ratio of the wavepacket
duration and the transit time K‖/⊥ � e2ri,j · êz/r/4πϵ0r2⊥ 0. Figure 2
shows the weighed interaction strength (20) between the TLS and
free-electron for the longitudinal and vertical dipole moment
orientations with different electron wavepacket sizes quantified by
parameter �σet. The maximum interaction strength decreases with
the increase of the wavepacket size. The longitudinal component of
the electric field induced by the traversing electron at the position of
the dipole reverses the sign. This is the reason for the antisymmetric

shape of the interaction strength as a function of time when the
dipole moment is oriented longitudinally (Figure 2A), and its
symmetry when it is oriented vertically (Figure 2B).

Defining Fourier transform
F(ω) � F {f(t − t0)} � ∫+∞−∞ dte−iωtf(t − t0), the TLS transition
amplitude during the interaction (17) turns out to be
proportional to the Fourier transform of the weighted function
(19) at the transition resonance frequency:

ΔCi � 1
iZ
Cj(t0)F(−ωi,j), (21)

where

F(−ωi,j) � 1
v0
∫+∞
−∞

dt eiωi,jt ∫+∞
−∞

dzMi,j(z)fet(t − t0 − z

v0
)

� 1
v0
∫+∞
−∞

d ze
iωi,j(t0+ z

v0
)
Mi,j(z)Fet(−ωi,j)

� 1
v0
eiωi,jt0 ~Mi,j(ωi,j

v0
)Fet(−ωi,j).

(22)

For a Gaussian QEW with fet(t − t0) � 1
(2πσet)1/2 e

−(t−t0)2/2σet ,
Fet(−ωi,j) � e−ω

2
i,jσ

2
et/2. Then the incremental transition

probability amplitude in Eq. (21) reads

ΔCi � 1
iZv0

Cj(t0)eiωi,jt0 ~Mi,j(Zωi,j

v0
)e−ω2

i,jσ
2
et/2. (23)

Therefore, the transition probability of TLS after the interaction is

Pi(t+0 ) � ∣∣∣∣Ci(t−0 ) + ΔCi

∣∣∣∣2 � P(0)
i + ΔP(1)

i + ΔP(2)
i , (24)

where P(0)
i � |Ci(t−0 )|2, ΔP(1)

i � 2Re[Ci(t−0 ) · ΔCi], and
ΔP(2)

i � |ΔCi|2. For a finite-size QEW, the transition
probability to the upper-level quantum state for excitation of
the TLS from its ground state (C1(t−0 ) � 1 and C2(t−0 ) � 0) is

P2(t+0 ) � ΔP(2)
2 (t+0 ) � 1

Z2v20

∣∣∣∣∣∣∣∣ ~Mi,j(Zωi,j

v0
)∣∣∣∣∣∣∣∣

2

e−Γ
2
, (25)

where Γ � ωi,jσet, and the first-order term vanishes. In the case of
excitation of the TLS from a superposition state, the second-order
transition term is the same as Eq. (25), while the first-order
transition term in Eq (24) is:

ΔP(1)
i � 2

Zv0

∣∣∣∣∣∣∣∣ ~Mi,j(Zωi,j

v0
)C(0)p

i (t0)C(0)
j (t0)

∣∣∣∣∣∣∣∣e−Γ2/2 sin ζ , (26)

where ζ � ϕ − ω2,1t0 with ϕ being the phase of the quantum state
of the TLS.

The probabilistic model approximation is presumed to apply in
the very short QEW regime σet ≪T2,1, corresponding to the limit of
short interaction time tint < 1/ω2,1. Eqs. (25, 26) manifest through
the parameter Γ the wavepacket size dependence of the transition
probabilities for excitation of the TLS from ground state or
superposition state in the near-point-particle parameters regime.
Note that for excitation from a superposition state, the incremental

TABLE 1 | The typical values of the simulation parameters.

Physical Parameters Typical Values

Beam Energy ϵ0 � 200keV(γ0 � 1.4)
Free electron impact parameter r⊥ � 2nm
TLS energy gap (transition frequency) E2,1 � 2eV(ω2,1 � 3 × 1015rad/s)
Dipole moment μi,j � 5Debye

FIGURE 3 | Numerical solution of Schrodinger equation (1) and the
analytical solution expressions of equation (24) for the transition probability
dependence of the TLS on the QEW size: (A) for the initial TLS in the ground
state and (B) for the initial TLS in a superposition state |ψBin �
(||1〈+ 2i|2〉)/ ��5√

.
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transition probabilityΔP(1)
i also depends on the relative phase of the

quantum state of the TLS. The phase-match timing dependence on
the dipole oscillation phase of the short interaction impulse at the
QEW arrival time to the interaction point, is predictive of a coherent
interaction enhancement by multiple electrons with correlated
arrival timing, as discussed in the following section.

In order to check the validity of the analytical approximations,
we have developed numerical computation codes for solving the
FEBERI problem of interaction between a single finite-size QEW
and a TLS at any initial state, starting from the Schrödinger
equation (1). The computation examples of the FEBERI effect
were performed for a model of a Gaussian QEW and were studied
as a function of its size σet, in order to examine the claimed
dependence of the interaction on the wavepacket shape. In all the
current examples the dipole polarization was taken to be
transverse. The parameters used in the examples are typical of
electron microscope PINEM-kind experiments [14], shown in
Table 1. Note that the Hamiltonian of the combined system is
time-independent so that the solution of the Schrödinger
equation (1) can be represented by the density matrix

ρ((t) � U†(t)ρ(t0)U(t), (27)
where the evolution operator is U(t) � exp{− i

Z (H0 +HI)t} and
the initial state of the combined system is ρ(t0) � |Ψ(t0)〉〈Ψ(t0)|.
Because we are interested now in the excitation of the TLS, the state
of the TLS can be obtained by tracing out the free electron states

ρb(t) � Trf[ρ(t)]. (28)
The transition probability to the TLS upper quantum state is

defined as P2 � 〈2|ρb(t)|2〉. This procedure makes it possible to
generalize the simulation of the FEBERI to multiple QEWs, in
which case a train of QEWs sequentially interacts with the bound
electron. After each interaction of an electron with the TLS, we
trace out the free electron states to find the state of TLS Eq. (28),
which is used then as the initial state for the interaction with the
next electron. We then repeat the calculation of Eq. (27). The
computation algorithm details are given in the appendix of
Ref. [39]. This algorithm provides a fully quantum multiparticle
interaction computation formulation, valid for rigorous evaluation
of the TLS final state, and we employ it in the coming sections to
examine the range of validity of the analytical expressions and the
semiclassical FEBERI theory.

We first apply the quantum numerical computation to check the
validity limits of the analytical expressions for the TLS transition
probability for a single QEW (Eq. 24–Eq. 26). Figures 3A,B display
the upper-level probability after interacting with a single QEW as a
function of wave-packet size for the initial TLS in the ground state
and superposition state, respectively. Numerical simulation results
show that the transition probability is independent of the wave-
packet size if the TLS starts from the ground state (blue curve), which
contradicts the analytical result (Eq. 25) of exponential decay (red
curve). This discrepancy is expectable, because our probabilistic
model approximation, neglecting the free-electron recoil, is
presumed to apply only in the very short-size QEW regime.
Indeed, the quantum numerical computation result of finite
wavepacket size-independent transition probability from the

ground state, seems to be more agreeable than the analytical
result even from the philosophical point of view of Born’s
probability interpretation of the electron wavefunction: when σet
is large, the probability of the point-particle arrival to the TLS
location is spread over a longer time, but it always happens at
some time during the passage of the QEW, and must exhibit the
same inelastic scattering, but the phase of the TLS dipole moment
oscillation, undefined initially, is random after an interaction. On the
other hand, when the initial state of the coherently pre-excited TLS is
a quantum superposition state of a well-defined dipole oscillation
phase, the quantum-mechanical numerical simulation result of the
post-interaction probability is consistent with the analytical
approximation expression of near point particle QEW with well-
defined phase relative to the TLS dipole oscillation phase. In this case,
the transition probability strongly depends on the wavepacket size,
decaying with the increase of the wave-packet size in either model.

EXCITATION OF TLS WITH A BUNCHED
ELECTRON BEAM

The excitation of a TLS with multiple QEWs is theoretically an
intricate multi-particle quantum interaction problem that
involves the entanglement of the free electron wavefunction
with the states of TLS. Here, we resort again to the simple
analytic approximate probabilistic model, in which we extend
Eq. (15) to multiple particles

<
∣∣∣∣Ψ(0)

F (r, t)∣∣∣∣2 > � <∑N
k�1

∣∣∣∣Ψ(0)
k (r, t)∣∣∣∣2 > , (29)

where < |Ψ(0)
k (r, t)|2 > � δ(r⊥0)fet(t − t0k − z/v0). We then

solve for the cumulative incremental transition probability for
the case of periodically injected near-point-particle QEWs. Under
the assumption that the relaxation time of the TLS is much longer
than the duration of the N QEWs pulse, we substitute the N
particles probability function f(t − t0) �∑N

k�1 1
v0
∫ dzMi,j(z)fet(t − t0 − z/v0) in Eq. (18), and changing

order of integration in z and t results in

Ci(t+0N) � Ci(t−0 ) + 1
iZv0

∫t+0

t−0
dzMi,j(z)∑N

k�1
Cj(t0k)∫ dt e−iωi,jtfet(t

− t0k − z/v0)
(30)

With change of variable t′ � t − z/v0,

Ci(t+0N) � Ci(t−0 )
+ 1
iZv0

∫t+0

t−0
dzMi,j(z)e

iωi,jz

v0 ∑N
k�1

Cj(t0k)∫ dt′ e−iωi,jt′fet(t′ − t0k)

� Ci(t−0 ) + 1
iZv0

~Mi,j(ωi,j

v0
)∑N

k�1
Cj(t0k) eiωi,jt0kFet(ωi,j). (31)

The incremental probability amplitude in this equation
averages to zero for random t0k, except when ωi,j � nωb,
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where t0k � 2πk/ωb, namely, when the QEWs arrive at the
interaction point at a rate that is a sub-harmonic of the
transition frequency ωi,j. Then, with the approximation of a
small change in the amplitude C1(t0k) � C1(t−0 ) � 1, the
amplitude of the upper level is

C2(t+0N)∣∣∣∣∣ωi,j�nωb
� N

1
iZv0

~M2,1(ω2,1

v0
)Fet(ω2,1). (32)

For a Gaussian QEW (19), the transition probability to upper
level for the N QEWs case is

P2(t+0N) � N2{ 1
Zv0

∣∣∣∣∣∣∣∣ ~M2,1(ω2,1

v0
)∣∣∣∣∣∣∣∣}

2

e−ω
2
i,jσ

2
et . (33)

As we learned from the previous chapter, this approximate
result may not be rigorous in the initial stage of the multiple
electrons transition buildup from the ground state, when the
phase of the dipole moment oscillation is not well-defined. We
conjecture that whenN is large enough, the phase of the TLS gets
established by the first near-point-particle QEWs of the train, and
the subsequent QEWs then continue to build up the transitions
in-phase.

This case of a periodically spaced train of near-point-particle
QEWsmay be realistic for low (microwave or THz) frequency TLS
transitions, where classical Klystron-kind electron current
modulation is available. It has thus been termed a “Quantum
Klystron” in [30]. It can be comprehended as the quadratic
approximation of the sin 2(ΩRt/2) scaling of a Rabi oscillation
process with Rabi frequencyΩR, and it is the analog of the classical
bunched-particles beam superradiance effect [18] Note that in the
classical point particle limit and low (microwave) frequencies [30]
high current density of the electron beam is allowed (with the
limitations of beam quality and space charge effect) and there may

be then multiple electrons per period. We also point out that the
case of multiple periodic trains of QEWs, is closely related to the
earlier studied effect of “pulsed beam scattering” [46, 47].

It is instructive to compare the quadratic dependence of (33)
on the number of QEWs -N2 to the same dependence in the case
of superradiance [18, 23]. In this comparison, the exponential
decay factor e−Γ2 that originates from the finite size of the
Gaussian QEW (19), is the quantum limit of the “bunching
coefficient” in a bunched point-particle beam superradiance
[18]. Note that when the QEWs arrival times t0k are random,
then the second term in Eq. 31 averages to zero, but its averaged
absolute value squares is proportional toN. This case is analogous
to “shot-noise” spontaneous radiation emission by point-particle
beam radiators.

Figure 4 shows a simulation of the buildup of the TLS upper-
level probability with N1 � 20 particles arriving at times
tj � t0j + njTb, which nj is a random number. For the electrons
arriving to the interaction point in-phase with the modulating laser
modulo the bunching period Tb � T2,1, the probability growth is
evidently quadratic, P2 ∝N2 as claimed. For comparison, we show
in the figure by the magenta curve the case that tj is taken to be
entirely random. The growth rate is linear and the upper-level
probability of arriving at the same value requires N2 � N2

1 � 400
particles [29].

EXCITATION OF A TLS WITH A
MODULATED SINGLE FREE QUANTUM
ELECTRON WAVEPACKET
Here we extend our Born’s probability interpretation of the
electron wavefunction to model the case of a density
modulated QEW. In Eq. (29) we model the density
expectation value of a single electron wavepacket as

<
∣∣∣∣Ψ(0)

F (r, t)∣∣∣∣2 > � δ(r⊥0)fet(t − t0 − z

v0
)fmod(t − z

v0
− tL),

(34)
where fet(t − t0 − z

v0
) is the envelope function of the drifting

QEW and the modulation function is periodic, and therefore can
be expressed in terms of a Fourier series
fmod(t) � ∑∞

m�−∞fme−imωbt. The coefficients fm were derived
in Ref. [22] for the case of the wavefunction of a modulated
Gaussian QEW, ωbtL which is the modulation phase, is
determined by the modulating laser beam.

We next derive the incremental excitation probabilities in Eq.
(24). For a modulated QEW, the weighed probability function
becomes

f(t − t0) � 1
v0
∫ dzMi,j(z)fet(t − t0 − z/v0) ∑∞

m�−∞
fme

iωb(t− z
v0
−tL)

.

(35)
We substitute this probability distribution of a modulated

QEW in Eq. (18) and change the order of integrations

FIGURE 4 | Simulation results of the TLS upper-level probability buildup
by electrons arriving to the interaction point at random (magenta) and by
electrons arriving in-phase with the modulating laser (modulo the bunching
period Tb � 2π/ωb) at the resonance condition ω2,1 � nωb (blue). The
light blue-dash and red-dash curves are the linear and quadratic curve-fittings,
respectively.
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Ci(t+0 ) � Ci(t−0 ) + 1
iZv0

∫ dzMi,j(z)Cj(t0) ∑∞
m�−∞

dte−iωi,jtfet(t − t0

− z/v0)fme
iωb(t− z

v0
−tL)

.

(36)
With a change of variables t′ � t − z/v0,

Ci(t+0 ) � Ci(t−0 )
+ 1
iZv0

~Mi,j(ωi,j

v0
)Cj(t0) ∑∞

m�−∞
fme

−i(ωi,j−mωb)t0Fet(ωi,j

−mωb)eimωbtL . (37)
Then the first-order incremental transition probability is.

ΔP(1)
i (t+0 ) � Re

⎧⎨⎩ 1
iZv0

~Mi,j(ωi,j

v0
)C(0) ′

i (t0)C(0)
j (t0) ∑∞

m�−∞
fme

i(ωi,j−mωb)t0Fet(ωi,j

−mωb)e−imωbtL
⎫⎬⎭.

(38)
If the envelope Gaussian distribution is a wide function

-σet > 2π/ωb, then the spectral function Fet(ωi,j −mωb) �
exp{−(ωi,j −mωb)2σ2et/2} is a narrow function around a
harmonic m � n that is resonant with the transition frequency
ωi,j � nωb. In such a case, only one harmonic - n can excite
resonantly the transition:

ΔP(1)
i (t+0 ) � Re{ 1

iZv0
~Mi,j(ωi,j

v0
)C(0)p

i (t0)C(0)
j (t0)

fne
i(ωi,j−nωb)t0e−inωbtL e−(ωi,j−nωb)2σ2et/2}, (39)

under the condition that the QEW modulation phase is matched
to the TLS initial dipole moment oscillation phase
C(0)p
i (t−0 )C(0)

j (t−0 ).
Likewise, the second-order incremental transition probability

can be calculated.

ΔP(2)
i (t+0 ) �

∣∣∣∣∣∣∣∣ 1Zv0 ~Mi,j(ωi,j

v0
)C(0)

j (t0)
∣∣∣∣∣∣∣∣
2∣∣∣∣fn

∣∣∣∣2e−(ωi,j−nωb)2σ2et . (40)

It can be seen that both first order and second-order
expressions of the incremental probabilities are dependent on
the QEW shape and modulation features and display resonant
excitation characteristics around the condition ωi,j � nωb, which
would manifest the QEW modulation characteristics in a
properly set experiment. Note that in a modulated QEW the
QEW envelope is necessarily longer than the modulation period:
ωi,jσet > 1. Comparing the first and second-order transition
probability expressions of the modulated QEW (39, 40) to the
corresponding terms of the unmodulated finite-size QEW (25,
26), we find out that at this limit the latter decay to zero, but the
former (modulated QEW expressions) do not decay, as long as a
harmonic of the modulation frequency is synchronous with the
transition frequency –(ωi,j − nωb)σet ≪ π. This indicates a
possibility for measuring the modulation features of the QEW.
However, quite remarkably, for single modulated QEWs, there is
no enhancement of the transition probability even at resonance.
At resonance, Eqs. (39, 40) reduce to Eqs. (25, 26), except for a
Fourier series component coefficient.

We check the results of the probabilistic model approximation
by comparing it to the results of the quantum density matrix
model numerical computation that is based on the solution of
Schrodinger equation (1), (described in the appendix of Ref.
[39]). While the analytical expressions provide only post-
interaction transition probabilities, the numerical computation,
interestingly enough, lets us follow the dynamics of the TLS
quantum transition probability during the interaction time (the
QEW transit time at proximity to the TLS) and the final transition
probability after passage. Figures 5B,C display computation
results of the dynamics of quantum transition to the upper
state of the TLS for two cases of pre-shaped QEW
distributions (see Figure 5A): an unmodulated (broad) QEW
( σetT2,1

� ω2,1σet
2π � 1) (red curve) and a modulated QEW with the

same size envelope ( σet/T2,1 � 1) (blue curve). The density
modulation was pre-evaluated assuming a PINEM process [20]
with the beam parameters of Table 1 and gL � 0.75.

Figures 5B,C present the dynamic buildup of the transition
probability starting from the ground state |ΨB〉tin � |1〉 and from
a coherent superposition (qubit) state |ΨB〉in � sin 3π

8 |1 +
cos 3π

8 |2〉, correspondingly. The bunching frequency was set
to synchronize with the transition frequency at the fundamental
harmonic ωb � ω2,1. The dynamics of transitions with the

FIGURE 5 | (A) Density distribution of a broad QEW (σet/T2,1 � 1) (red
broken line) and a modulated QEW having the same size envelope (blue
continuous line). (B) Numerical computation results of the dynamics of the
FEBERI interaction transition probability P2 starting form ground state,
based on the quantum model [solving the Schrodinger equation (1)] for the
corresponding unmodulated and modulated QEWs. (C) The computed
dynamics of the FEBERI interaction incremental transition probabilities for the
same unmodulated and modulated QEWs, starting from a coherent
superposition state of the TLS |ΨB〉in � sin 3π

8 |1 + cos 3π
8 |2〉.
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modulated QEW suggest gradual “quantum jumps” any time a
sub-bunch of the QEW arrives at the FEBERI interaction point.
This seems to be consistent with the Born picture of the probability
of point particle arrival. However, these are only probabilities of
interaction events, the measurable post-interaction transition
probability of the TLS from the ground state (Figure 5B)
generated by a single passing-by resonantly modulated QEW is
the same as with a single unmodulated near-point-particle QEW.
This is in partial agreement with Eqs. (25, 40) except for the
exponential decay factors in these two expressions that should be
set equal to 1 because the analytical model, neglecting quantum
recoil, is not rigorous for a long QEW (see also blue curve in
Figure 3A). On the other hand, when starting from a coherent
superposition state of the TLS (Figure 5C) the computation
confirms the analytical expressions (39) (for modulated QEW at
resonance) and (26) (for unmodulated long QEW): high transition
probability in the first case and diminished transition probability
in the latter (note that in this case, the simulation result
reflects practically only the contribution of the dominant first-
order incremental probability term because the second-order
contribution is minute for a long unmodulated QEW).

EXCITATION OF A TLS WITH A BEAM OF
MODULATION-CORRELATED QUANTUM
ELECTRON WAVEPACKETS
In this section, we extend our Born’s probability interpretation
analytical model to the case of multiple modulation-correlated
QEWs. Consider the case of multiple long-size QEWs, all phase-
(energy-) modulated at a PINEM interaction point at the level of
their quantum wavefunctions [14] by the same coherent laser
beam of frequency ωb and phase ωbtL. Passing all the same drift
lengths to the FEBERI interaction point, the expectation values of
their density are modulation phase correlated. We extend the
probability distribution expression of a single electron QEW Eq.
(15) to the modulation-correlated multiple particles by
substitution in Eq. (29)

〈
∣∣∣∣Ψ(0)

k (r, t)∣∣∣∣2〉 � δ(r⊥0)fet(t − t0k − z

v0
)fmod(t − z

v0
− tL),

(41)
where t0k are the centroid arrival times of the envelopes of the
modulated QEWs, and the modulation function, common to all
QEWs is periodic in time fmod(t) � fmod(t + 2π/ωb). For
modulation-correlated QEWs, the weighed probability
distribution function is

f(t − t0) � 1
v0
∑N
k�1
∫ dzMi,j(z)fet(t − t0k − z/v0) ∑∞

m�−∞
fme

iωb(t− z
v0
−tL)

. (42)

Then, substitution in Eq. (18), changing the integration order of z
and t, results in.

Ci(t+0N) � Ci(t−0 ) + 1
iZv0

~Mi,j(ωi,j

v0
)∑N

k�1
∑∞

m�−∞
Cj(t0k)fme

i(ωi,j−mωb)t0k

Fet(ωi,j −mωb)e−imωbtL . (43)
Again, for broad Gaussian distribution σet > 2π/ωb, the

spectral function Fet(ωi,j −mωb) � exp{−(ωi,j −mωb)2σ2et/2} is
a narrow function around a harmonic m � n that is resonant at
the transition frequency ωi,j � nωb. Take i � 2, j � 1 (upper and
lower levels), then with the approximation of a small change in
the amplitude C1(t0k) � C1(t−0 ) � 1, we have

C2(t+0N) � 1
iZv0

~M2,1(ω2,1

v0
)∑N

k�1
∑∞

m�−∞
fme

i(ω2,1−mωb)t0k e−(ω2,1−mωb)2σ2et

/2e−imωbtL . (44)
This averages to zero for random arrival times t0k of the
wavepacket centroids, except at the resonance case ωi,j � mωb,
where.

C2(t+0N)∣∣∣∣∣ωi,j�mωL
� N

iZv0
~M2,1(ω2,1

v0
)fne

−imωbtL . (45)

And independently of the arrival times t0k, the transition
probability to the upper level is

P2(t+0N) � N2{ 1
Zv0

∣∣∣∣∣∣∣∣ ~M2,1(ω2,1

v0
)fn

∣∣∣∣∣∣∣∣}
2

. (46)

FIGURE 6 | Numerical simulation results of the transition probability P2

based on the quantum density matrix model (solution of the Schrodinger
Equation 1) in the cases of modulation-correlated and random QEW beams.
In the first case (modulation correlated QEWs), the centroids of the
QEWs arrive at the FEBERI interaction point at a random time t0j , but the
modulation phase ϕ0 of all of them is the same. This results in quadratic
scaling of the TLS excitation build-up (blue curve). In the second case (an
entirely random beam of modulated QEWs), the scaling of the TLS excitation
build-up is a noisy linear curve (red). In comparing these curves to the
semiclassical model results of Figure 4, note that the horizontal axis here
represents electrons number rather than time.
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This expression explicitly manifests the N2 scaling buildup of
the upper quantum level probability in the case of multiple
modulation-correlated QEWs, similar to the case of
periodically modulated point particles and in analogy to the
superradiance of bunched particles [18].

To check the result of the probabilistic model approximation,
we compare it to the results of the quantum model
(Schrodinger equation) numerical computations (see
details in appendix of Ref. [39]). For simulating the
dynamics of multiple QEWs in interaction with the TLS,
we consider a train of incoming QEWs, sequentially
interacting with the TLS, and repeat the calculation for
each electron passing by. Equation 7 is used to represent
the initial quantum electron wavefunction of each electron
upon arrival at the FEBERI interaction point. In Eq. 7 we use
a random value t0j (replacing t0) corresponding to the
random arrival of the QEW envelope centroids to the
interaction point. The initial state of the TLS in each
interaction is obtained by tracing out the free electron
states in the post-interaction density matrix of the prior
interaction. Possible overlap of QEWs is neglected,
assuming a sparse electron beam. In Figure 6, we show the
results of the simulation for the parameters given in Table 1.
The modulation density of each QEW in the spatiotemporal
domain is shown in Figure 5A. The wavepacket envelope size
is σet/T2,1 � 1. The simulation results, depicted in Figure 6
display the quadratic buildup (blue curve) of the upper
quantum level probability in the case of multiple
modulation-correlated QEWs at the resonant fundamental
harmonic FEBERI interaction condition ωb � ω2,1. Even
though the QEW centroids arrive at random times t0j, the
phase ϕ0 (in Eq. 7) of all QEWs is the same, determined by the
phase of the coherent laser beam that pre-modulates them all
by a PINEM process. The noisy linear buildup curve (red)
corresponds to the case of PINEM interaction with an
incoherent light, where the phase ϕ0j (replacing ϕ0 in Eq.
7) is random, as well as the envelope centroid arrival times t0j.

CONCLUSION

We studied the excitation of a bound electron in an arbitrary
initial quantum (qubit) state by a free electron beam, where
the bound electron is modeled as a quantum two-level system
(TLS) and the free electrons are represented as quantum
electron wavepackets (QEWs). We developed an analytical
model for the FEBERI interaction based on Born’s
probabilistic interpretation of the quantum electron
wavefunction and derived expressions for the transition
probability of the TLS subject to interaction with a shaped
QEW (finite size gaussian), optically modulated QEWs, and a
beam of such QEWs. We tested the analytical results against
the simulation results of an accurate quantum model of the
FEBERI effect, based on the density matrix solution of the
Schrodinger equation for the entangled free-bound electron
wavefunctions.

The accurate quantum model simulations show quadratic
growth of the TLS quantum transition probability as a
function of the number of electrons in a train of modulation-
correlated QEWs, when a harmonic of the QEW modulation
frequency is resonant with the TLS quantum transition
frequency, and the modulation initial phase of all electrons is
the same (e.g., they are modulated by the same coherent laser
beam in a PINEM process). This result confirms the prediction of
the analytical approximation model based on Born’s probabilistic
interpretation of the electron wavefunction and the earlier
semiclassical analysis of the FEBERI effect [26].

The quadratic scaling of the TLS excitation build-up in the
FEBERI process can be explained as the second-order expansion
of the sinus-squared scaling of a Rabi oscillation process [26],
where the optical frequency near-field of the beam ofmodulation-
correlated QEWs play the same role as a laser beam in a
conventional Rabi oscillation experiment. Another instructive
observation that came out of the numerical simulations is that in
the case of modulation-correlated QEWs beam, the temporal
intervals between the probability-density micro bunches of the
QEWs (Figure 5) are spaced apart at resonance an integral
number of times the TLS transition period ( T2,1 � 2π/ω2,1)
even though the centroids of the QEWs arrive at random. The
coherent quadratic buildup can be then viewed in Born’s
probabilistic interpretation as a result of quasi-periodic arrival
times of a train of quantum- probability-determined “point-
particles” in-phase with the TLS dipole moment oscillation at
the quantum transition frequency. This is a bridge to the
semiclassical case of FEBERI interaction with a point-particle
density-modulation beam (quantum klystron [30]) and an analog
of the radiative process of bunched electron beam
superradiance [18].

To test the surprising result of coherent transition probability
buildup with a modulation-correlated electron beam
independently of the random arrival times of the electrons to
the FEBERI point, we show in Figure 6 (red curve) a simulation
of interaction with a beam of modulated QEWs that are not
modulation phase-correlated (random ϕ0j). In this case, that
corresponds to electron beam PINEM modulation with an
incoherent laser beam, the FEBERI scaling is a noisy linear
curve, indicating uncorrelated excitation of the TLS. This
observation is in line with recent observations that PINEM
modulation carries the coherence properties and even the
quantum statistical fingerprint of the modulating light beam
and transfers it to the cathodoluminescence spectrum [25] and
to the EELS spectrum [24].

We point out that coherent control and demonstration of Rabi
oscillation of a single TLS with the proposed FEBERI effect is
attractive in comparison to such operations with a laser beam,
because of the atomic-scale resolution of an electron beam.
However, the experimental realization of this scheme is
challenging due to the very small value of the interaction
coupling factor in typical TLS targets (g ≈ 10−3). Enhancement
of the interaction may be possible in consideration of high dipole
moment targets, such as multiple TLS in a Dicke (“super-qubit”)
state [35].
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