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Diver-generated photomosaics
as a tool for monitoring
temperate rocky
reef ecosystems

Arie J. P. Spyksma1,2*, Kelsey I. Miller2 and Nick T. Shears2

1New Zealand Geographic, Auckland, New Zealand, 2Leigh Marine Laboratory, Institute of Marine
Science, University of Auckland, Auckland, New Zealand
Robust monitoring data provides important information on ecosystem

responses to anthropogenic stressors; however, traditional monitoring

methodologies, which rely heavily on time in the field, are resource intensive.

Consequently, trade-offs between data metrics captured and overall spatial

and temporal coverage are necessary to fit within realistic monitoring budgets

and timeframes. Recent advances in remote sensing technology have reduced

the severity of these trade-offs by providing cost-effective, high-quality data at

greatly increased temporal and spatial scales. Structure-from-motion (SfM)

photogrammetry, a form of remote sensing utilising numerous overlapping

images, is well established in terrestrial applications and can be a key tool for

monitoring changes in marine benthic ecosystems, which are particularly

vulnerable to anthropogenic stressors. Diver-generated photomosaics, an

output of SfM photogrammetry, are increasingly being used as a benthic

monitoring tool in clear tropical waters, but their utility within temperate

rocky reef ecosystems has received less attention. Here we compared

benthic monitoring data collected from virtual quadrats placed on

photomosaics with traditional diver-based field quadrats to understand the

strengths and weaknesses of using photomosaics for monitoring temperate

rocky reef ecosystems. In north-eastern New Zealand, we evaluated these

methods at three sites where sea urchin barrens were prevalent. We found key

metrics (sea urchin densities, macroalgae canopy cover and benthic

community cover) were similar between the two methods, but data

collected via photogrammetry were quicker, requiring significantly less field

time and resources, and allowed greater spatial coverage than diver-based field

quadrats. However, the use of photomosaics was limited by high macroalgal

canopy cover, shallow water and rough sea state which reduced stitching

success and obscured substratum and understory species. The results

demonstrate that photomosaics can be used as a resource efficient and

robust method for effectively assessing and monitoring key metrics on

temperate rocky reef ecosystems.
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urchin barren, underwater photogrammetry, structure from motion, survey
technique, benthic monitoring, photomosaic, seascape
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1 Introduction

Globally, human activities are increasingly shaping

ecosystems, though direct and indirect pathways such as

climate change, species invasion, habitat modification, and

harvest. Well-designed monitoring programmes can evaluate

key ecosystem trends and inform management, conservation

and restoration initiatives (Lovett et al., 2007; Lindenmayer and

Likens, 2010; Mihoub et al., 2017). Traditionally, ecosystem

monitoring has involved manual data collection in the field,

which provides high quality data, but typically at low spatial and

temporal scales due to the high effort and acquisition costs

required. This creates data collection trade-offs (Braunisch and

Suchant, 2010; Del Vecchio et al., 2019; D'Urban Jackson et al.,

2020). For example, increasing the spatial scale may require

reducing the amount of data collected at each site. Thus,

alternative methods of data collection have been sought.

Recent developments in cost effective remote sensing

techology such as high resolution satellites and unmanned

aerial vehicles (UAVs) have revolutionised many forms of

ecological monitoring, particularly in terrestrial environments

(Aplin, 2005; Klemas, 2015; Yao et al., 2019). Imagery from these

technologies, coupled with powerful computing software, allow

rapid data collection and analysis over greater spatial scales and

improved access to remote and less accessible locations (Klemas,

2015). The speed, access, and image quality can help to alleviate

some of the trade-offs between monitoring effort and data

quality and quantity that arise from traditional in-field data

collection methods, enabling a better understanding of

environmental change by allowing larger quantities of detailed

data to be collected or over larger spatial scales during the same

time frame.

Marine ecosystems are typically difficult to access and

expensive to monitor. The impacts of human activities are

acutely felt in coastal and nearshore marine regions (Halpern

et al., 2008) where the cumulative effects of climate change,

overfishing and terrestrial runoff result in large-scale ecosystem

degradation and collapse (Halpern et al., 2019). Benthic

ecosystems are particularly vulnerable as many species are

sessile or have limited mobility and are unable to avoid

disturbance (Solan et al., 2004). Nearshore, shallow subtidal

benthic ecosystems have traditionally been monitored through

in situ observations made by SCUBA divers with tools such as

quadrats and transect tapes. These methods are time consuming

and consequently spatially limited, and are prone to observer

variability (Pizarro et al., 2017; Marre et al., 2020). Alternatively,

aerial imagery and remote sensing data from satellite and UAVs

can increase the spatial coverage, but often lack the resolution

required to detect fine scale benthic patterns (Mizuno et al.,

2017) and are restricted by water clarity, tides and meterological

conditions, limiting their usefulness to very clear water habitats

(Casella et al., 2017) or shallow depths, such as near surface kelp
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cover (Bennion et al., 2019; Tait et al., 2019; Cavanaugh

et al., 2021).

Underwater structure-from-motion (SfM) photogrammetry

presents a useful middle ground, allowing rapid, fine scale benthic

observations to be made over larger spatial scales than are possible

using traditional methods. Imagery for underwater SfM

photogrammetry can be collected by divers with handheld

cameras (Bayley and Mogg, 2020), by systems towed behind a

vessel (Fakiris et al., 2022) and using remotely operated vehicle

(ROV) or autonomous underwater vehicle (AUV) technology (Ling

et al., 2016; Teague and Scott, 2017).While the extraction of benthic

data from underwater photos, photo-quadrats and video

(photogrammetry) is not new (Bohnsack, 1979; Logan et al.,

1984; Roberts et al., 1994; Preskitt et al., 2004), improvements in

computing power and photogrammetric software have allowed SfM

to become a powerful, flexible tool for benthic monitoring and

research, providing more methodological options for collecting data

that fits intended study aims. SfM photogrammetry reconstructs a

three-dimensional (3D) scene or feature from a series of

overlapping two-dimensional (2D) images (Bayley and Mogg,

2020). Underwater SfM image acquisition of large areas is rapid

(110m2 can be covered in approximately 15min by a diver [Pizarro

et al., 2017]), can be collected with low-cost camera equipment

(Raoult et al., 2016) and resulting reconstruction resolution can be

cm - mm per pixel due to the proximity of image capture (Marre

et al., 2019). Reconstructions can also be orthorectified (correctly

scaled) by using ground control points, scale references and/or GPS,

allowing for standardised, accurate measurements (Burns et al.,

2015; Teague and Scott, 2017; Marre et al., 2019; Nocerino et al.,

2020). The SfM process produces a range of 2D or 3D outputs

including photomosaics, digital elevation models, 3D meshers and

point clouds. Photomosaics, 2D data, allow extraction of biological

metrics such as species counts and cover percentages which can be

used for calulating community composition, density and diversity

(Raoult et al., 2016; Mizuno et al., 2017; Marre et al., 2019). 3D data

can also provide information on structural complexity, species

morphometrics and biomass (Palma et al., 2018; Bayley et al.,

2019), which are frequently used for ecosystem monitoring.

Machine learning classifiers, such as object based image analysis

(OBIA), can further enhance the utility of these data formats by

allowing the semi- or fully automatic classification of features (De

Oliveira et al., 2021; Ternon et al., 2022).

Despite the surge in popularity of diver-based SfM

photogrammetry for gathering benthic data in shallow water

tropical ecosystems, similar examples from temperate regions

remain limited. Temperate nearshore subtidal ecosystems are

typically turbid environments when compared to their tropical

counterparts making SfM image capture a greater challenge

(Lochhead and Hedley, 2022; Ternon et al., 2022). Wave

action is particularly problematic on rocky reefs dominated by

kelp or other algae. These non-rigid taxa will continuously move

in relation to water motion which has the potential to hinder the
frontiersin.org
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SfM reconstruction process, as has been shown in terrestrial

systems when surveying vegetation in windy conditions

(Dandois et al., 2015; Fraser and Congalton, 2018). Diver-

based SFM photogrammetry work on algal dominated rocky

reefs has to date been limited in spatial scale and focussed on

measuring a single metric such as reef rugosity (Monfort et al.,

2021), substrate composition (Ternon et al., 2022) or quantifying

crustose coralline algae cover underneath kelp canopies (Smale

et al., 2020). The potential for using SfM photogrammetry for

collecting data from temperate rocky reef ecosystems,

particularly as an alternative to, or supplement to traditional

SCUBA-based methods for benthic monitoring, requires

further investigation.

Here we assess the use of diver-generated photomosaics, a 2D

SfM photogrammetry output, for extracting biotic data used for

ecosystem monitoring from subtidal rocky reefs along the north-

eastern coastline of New Zealand. This coastline has been subjected

to significant commercial and recreational fishing pressure since the

early 1900s which has resulted in significant declines in the

abundance of predatory snapper (Chrysophrys auratus) and

lobster (Jasus edwardsii; Francis and McKenzie, 2015; Webber

et al., 2018). Without top-down predatory pressure, overgrazing

by the sea urchin Evechinus chloroticus has transformed areas of

productive Ecklonia radiata kelp forest to relatively impoverished

urchin barren (Shears and Babcock, 2002). Consequently, urchin

barrens are now commonly found on rocky reefs between 2 – 9 m

deep along much of the north-eastern New Zealand coastline

(Shears and Babcock, 2004). Benthic monitoring within these

ecosystems has traditionally been carried out by divers using field

quadrats, which is resource and time intensive resulting in limited

spatial and temporal sampling. To assess the potential of

photomosaics as a monitoring tool we compared data collected

from photomosaics to that of traditional quadrats surveys at three

sites primarily characterised by urchin barrens within north-eastern

New Zealand. At each site SCUBA divers surveyed transects across

the reef using quadrats. At the same time, overlapping imagery of

the surveyed reef areas was collected and photomosaics created.

From these mosaics sea urchin densities, benthic community

composition and macroalgae canopy cover, primary metrics

recorded in traditional field quadrats, were extracted for

comparison. Data collection time for these metrics from both

methods was also noted. We discuss these findings along with the

strengths and weaknesses of using photomosaics as a monitoring

tool within temperate rocky reef ecosystems.
2 Methods and materials

2.1 Field sites

The three sites selected for this study were within within

Tık̄ apa Moana Hauraki Gulf north-eastern New Zealand

(Figure 1). All sites were gradually sloping rock reefs that had
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been significantly impacted by sea urchin overgrazing. The reefs

were characterised by a narrow band of mixed algae in the

shallows (~ 0-2 m, mostly E. radiata and Carpophyllum spp.),

extensive sea urchin barrens and a deeper E. radiata kelp forest.

These sites also spanned an environmental gradient of

increasing wave exposure and decreasing sedimentation from

inner to outer Gulf (Seers and Shears, 2015). As such the lower

depth range of the urchin barrens, which is influenced by wave

action (Shears and Babcock, 2004), varied from 5–7 m at Leigh,

(sheltered bay) to 8-9 m at Hauturu-o-Toi (the most exposed site

with the clearest water).

At each site, line transects were laid out perpendicular to the

shoreline on a fixed bearing (Figure 1). These ran from the upper

limits of the subtidal zone (mean low water [MLW]), through

the extent of the urchin barren (the primary area of monitoring

focus) to the shallow edge of the kelp forest, sand, or

approximately 100 m (~10 m depth), whichever came first.

Markers were present every five meters along each transect

line. Photogrammetric scale bars (25 cm x 12.5 cm) were

placed along the transect length to aid the 3D model

reconstruction process. Each scale bar had six visible markers,

with exact distance between marker used for accurate scale

during the photomosaic processing. Start and end points for

each transect were marked by GPS and with heavy weights with

subsurface floats. Five transects were surveyed at Leigh and

Ōtata, and six surveyed at Hauturu-o-Toi (Table 1).

Data on macroalgae canopy cover, sea urchin density and

benthic community composition were collected at Ōtata in

November 2020 and at Hauturu-o-Toi in March 2021.

Macroalgal cover and benthic community composition data was

collected at Leigh in April 2021 however, sea urchin density data

was only collected from two transects (C1 and C2; Figure 1,

Table 1). This was because sea urchins had been removed from

T1 – T3 prior to the benthic survey for a simultaneous project.

Here benthic community composition refers to the sessile biotic

taxa and abiotic substrates occupying space on the rocky reef.

Benthic community composition categories were selected a priori,

with the same categories used in the traditional and

photogrammetric surveys for consistency (Table S1).
2.2 Traditional field quadrat surveys

A team of two divers collected benthic information along each

transect line at 5 m marked intervals, adapted from methods in

Shears and Babcock (2004). At each interval, a 1 m2 quadrat was

placed on the reef to assess in situ macroalgae canopy cover, sea

urchin densities, and the benthic community composition. Canopy

cover of large brown macroalgae (by species) and benthic

community composition categories were visually estimated and

expressed as percent covers. To provide an overview of each quadrat

a photo was captured using a GoPro Hero 7. The total time taken

for each dive team to collect this information from each transect
frontiersin.org
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was recorded. Additional information collected by divers but not

compared with photomosaic survey include general habitat

category, substrate type, depth, abundance and size categories of

laminarian (to 25 cm) or fucoid kelps (< or > 25 cm), abundance of

large mobile invertebrates, and size categories (to 20 mm) and

behaviour of sea urchins. The time taken to collect this additional

information was not included into the data collection time analysis,

however it was estimated to add an additional 10-20% to the total

time taken to collect data from within field quadrats at each site.
2.3 Photomosaic survey

2.3.1 Image collection
Concurrent with the field quadrat surveys, a diver carried

out a photographic survey of each transect using methods

adapted from previous papers such as Suka et al. (2019) which

have collected imagery suitable to produce photomosaics (Figure

2A). Using a wide-angle underwater camera (Nikon Z6 with

14 mm rectilinear lens) the diver slowly swam (~14 m/min) a

single pass over each transect line at a distance of 1 – 1.5 m above

the benthos. Imagery geospatial information (longitude, latitude

and depth) was collected along each transect using an ultra-short

baseline underwater geolocation system (UWIS®, x,y absolute

accuracy ± 2.5 m). Total time taken to collect the images per dive

was recorded after each transect. The camera was orientated

directly downward and recorded an image every second,
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resulting in ~80% overlap between sequential images. Camera

settings were aperture priority (f8) with ISO 800 – 3200. These

settings allowed for consistent lighting across the length of the

each transect, while enabling a high enough shutter speed to

counter the effects of motion blur.
2.3.2 Photomosaic assembly
Using the neutral grey tone of the scale bars, image sets for

each transect were batch processed to correct for white balance

in Adobe Lightroom before being imported into Agisoft

Metashape (Professional V1.7) to create the photomosaics

(Figure 2B). This was deemed a more appropriate method for

ensuring correct colour within the image set than setting the

white balance manually in the field as it avoided the need to stop

and adjust white balance as depth changed over the length of the

transect. Photomosaics were produced using a process similar to

that outlined in Bayley and Mogg (2020). Imagery was first

aligned (Accuracy = High, Generic preselection, Tie point limit

= 70,000, Key point limit = 7,000), creating a sparse point cloud.

Model accuracy was refined using the gradual selection tool to

remove points with high reconstruction uncertainty, high

projection error and poor projection accuracy (Threshold

values of 20, 0.5 and 4 respectively). Each sparse cloud was

then scaled using image geospatial reference information,

checked using the photogrammetric scale bars placed along

the transect line and refined using between marker distances.
FIGURE 1

Map of Hauraki Gulf in north-eastern New Zealand, with three benthic monitoring sites: (A) Leigh, (B) Ōtata (inner Gulf); and (C) Hauturu-o-Toi
(offshore island). Turquoise lines show approximate transect location.
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TABLE 1 Key comparison metrics for each transect between SfM photomosaics and field quadrats. Data collection times are highlighted in red if they were slower, green if faster and blue if the same.

Transect Site Sea Field Photomosaic Percentage of Total Data collection time
togrammetry method
minutes per quadrat

Data collection
time field

methodlogy -
minutes per
quadrat

Number of
quadrats com-

pared for
macroalgae
canopy cover

Number of
quadrats

compared for
substratum

cover

Percentage of
quadrats

assessed for
canopy cover
and benthos

3.5 8.3 11 11 100

3.3 4.4 15 15 100

3.2 5.0 17 16 94

3.0 8.1 21 21 100

2.8 7.6 18 18 100

3.1 6.3* 15 7 47

3.1 3.6 16 9 56

2.8 3.2 15 8 53

3.4 6.6* 15 10 67

3.0 6.0 23 16 70

2.9 2.5 17 16 94

3.4 3.4 11 11 100

3.4 3.8 5 5 100

3.0 3.1 15 13 87

2.6 3.5 18 15 83

2.8 3.7 19 18 95
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State Transect
Length

Transect
Length

total transect
length covered
by photomo-

saic

Number
Quadrats
assessed

ph
-

C1 Otata <0.5 m 5-65 m 5-55 m 83 11

C2 Otata <0.5 m 0-90 m 10-80 m 78 15

T1 Otata <0.5 m 0-100 m 0-85 m 85 17

T2 Otata <0.5 m 0-100 m 0-100 m 100 21

T3 Otata <0.5 m 0-95 m 0-85 m 89 18

C1 Hauturu-
o-Toi

<1.0m 0-85 m 0-50 m, 60-75 m 76 15

C2 Hauturu-
o-Toi

<1.0m 0-75 m 0-75 m 100 16

C3 Hauturu-
o-Toi

<1.0m 0-105 m 0-70 m 67 15*

T1 Hauturu-
o-Toi

<1.0m 0-85 m 10-85 m 88 15

T2 Hauturu-
o-Toi

<1.0m 0-110 m 0-110 m 100 23

T3 Hauturu-
o-Toi

<1.0m 0-100 m 0-95 m 95 17

C1 Leigh <1.0 m 0-85 m 35-85 m 59 11

C2 Leigh <0.5 m 15-35 m 15-35 m 100 5

T1 Leigh <1.0 m 0-90 m 5 -75 m 78 15

T2 Leigh <0.5 m 0-90 m 0-90 m 100 18

T3 Leigh <0.5 m 0-100 m 0-95 m 95 19

*Time values considered to be outliers and removed from analysis.
o
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The sparse cloud was re-optimised, and a dense cloud

created (Quality = High, Depth filtering = Mild). A digital

elevation model (DEM) was produced from the point cloud

which then allowed for the photomosaic to be created (Surface

= DEM, blending mode = Mosaic, Hole filling and ghosting

filter enabled). As with Raoult et al. (2016) photomosaic
Frontiers in Marine Science 06
assembly time was not included in the data collection

time analysis because much of this process is automated.

Additionally, the total processing time is dependent on camera

image resolution, the number of images being processed and

computing power available for use (Bayley and Mogg, 2020;

Couch et al., 2021).
FIGURE 2

Photomosaic data capture and processing. (A) Capture of raw imagery in the field, (B) image processing and creation of photomosaic,
(C) transfer of photomosaic raster into GIS software and (D) placement of virtual quadrats, annotation of random benthic community points and
marking of sea urchins. Transect line is visible crossing through the quadrat position. Insert Diver collecting data from field quadrat.
frontiersin.org
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2.3.3 Data extraction
Photomosaics were imported into ArcGIS Pro (V2.8) for data

extraction (Figures 2C, D). Metrics extracted from the mosaics

were: sea urchin density, large brown macroalgae canopy cover

and benthic community composition (later two expressed as a

percentage). These metrics were assessed at every 5 m interval that

could be positively matched to the corresponding 5 m interval

recorded during the field survey. Data was extracted fromwithin a

1m2 virtual quadrat, created using the feature envelope to polygon

tool around a 0.5 m circular buffer centred on each interval

marker. Virtual quadrats were populated with 25 randomly placed

points using the generate random points tool. Each point was

assigned a cover type following the coral point count method

(Kohler and Gill, 2006). Cover fell into three broad categories:

large brown macroalgae (three types), benthic community

composition (twenty-five types – including biotic and abiotic

covers) and unclassified for all points which could not be

positively identified (four types; Table S1). Following this, all sea

urchins were identified and marked within each virtual quadrat.

The total time taken to extract the above information was

recorded. At Leigh, the time taken to record sea urchin densities

along three of the transects was estimated (from the pooled

average per quadrats time for all transects across the three sites)

due to the absence of sea urchins following removal prior to the

survey (see Section 2.1).

A percentage value was calculated for macroalgae types and

benthic community composition categories recorded within

each virtual quadrat. Points classified as shadow/blur were

excluded from macroalgae canopy cover calculations as these

represented points where the presence or absence of macroalgae

could not clearly be determined. All macroalgae and unclassified

cover types were excluded from benthic community

composition calculations as these represented points where the

underlying benthic canopy type could not be accurately defined.

Any virtual quadrats where more than eight individual points

could not be used towards a cover percentage conversion were

discarded from the comparison analysis (Table 1).

To test the effect of reducing number of random points

assigned to each transect on overall benthic community

composition the first 15 points from each quadrat were

selected and compared to the results from 25 points. For this

comparison, any quadrat where more than five individual points

could not be used towards a percentage conversion were

discarded from the comparison analysis.

Because field quadrats were placed on 3D surfaces, while

virtual quadrats were placed in 2D space, slight differences in

quadrat placement were likely to have occurred between the two

methods. While not an issue for cover percentages, which were an

estimate for both methods, this would likely impact comparisons

of sea urchin counts. To account for this, five intervals were

randomly selected from each transect. At each a virtual quadrat

was drawn out to match the alignment of the field quadrats. The

photographs taken during the field quadrat survey was used to
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guide virtual quadrat placement. All visible sea urchins were then

recorded for comparison. Due to camera issues at Leigh (field

quadrat survey), sea urchin densities comparisons were made

from photomosaics and field quadrat data of transects C1 and C2

collected from a previous survey in August 2020.
2.3.4 Data analysis

Binomial logistic regression was used to assess the

probability of successfully stitching a five-metre section of

photomosaic (success = yes or no) relative to three variables:

biological habitat type, depth and wave action. Each section was

categorised as: barren (no macroalgae canopy), mixed (sparse

macroalgae canopy present) or macroalgae (dense macroalgae

cover present) and depth bracket (<3 m, 3 – 5.9 m, 6+ m). Wave

action (<0.5 m, 0.5 – 1.0 m) was applied to each transect based

on swell conditions on the day (Table 1). The optimal model was

selected through backwards elimination of non-significant

interaction terms. This resulted in the final model with one

interaction term (Biological habitat type*Wave action).

Two-way ANOVA was used to investigate any differences in

data collection time between data collection methods

(Photogrammetry, Field Quadrats), site (Leigh, Ōtata,

Hauturu-o-Toi), and this interaction. Time was standardised

to data collection time per quadrat and log transformed to meet

the assumptions of normality and equal variance (Shapiro-Wilks

and Levene’s Tests respectively). Time values for two Hauturu-

o-Toi transects (Field Quadrats) were considered outliers and

were removed, along with the times for the corresponding

photogrammetry transects from analysis. As a significant

interaction was found, post hoc t-tests for time differences

between data collection methods were performed for each site.

Two-way ANOVA was used to investigate any differences in

sea urchin densities and large brown macroalgae cover, for two

groups (Ecklonia radiata and Sargassum sinclairii), between data

collection methods (Photogrammetry, Field Quadrats), site (Leigh,

Ōtata, Hauturu-o-Toi) and the interaction. As all threemetrics meet

the assumptions of normality and equal variance (Shapiro-Wilks

and Levene’s Tests respectively) two-way ANOVA tests were

performed on untransformed data. Data on fucoid canopy cover

failed to meet the assumptions of normality and equal variance,

even after being square root transformed. Fucoid canopy cover

differences between data collection methods (Photogrammetry,

Field Quadrats), site (Leigh, Ōtata, Hauturu-o-Toi) and the

interaction were therefore investigated using univariate

PERMANOVA. Univariate PERMANOVA was chosen because it

is robust against the non-normality and heterogeneity of variance

that are often associated with ecological data (Anderson, 2014). This

test was performed on untransformed transect averaged data.

Multivariate PERMANOVA was used to compare benthic

community composition data between the two survey methods.

The test was performed on square-root transformed transect
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averaged data in PRIMER-e (V7) using Bray-Curtis dissimilarity

matrices. This tested the main effects of method (Photogrammetry,

Field Quadrats), site (Leigh, Ōtata, Hauturu-o-Toi), and their

interaction. Down-weighting the importance of the most

abundant species, through the square-root transformation, was

considered appropriate to ensured that less common species also

contributed towards similarity calculations within the data matrix

(Clarke et al., 2014). Nonmetric multidimensional scaling (nMDS)

was then used to visualise dissimilarity in benthic community

composition between the survey methods at each site. To

understand which benthic community composition categories

contributed most to observed dissimilarity between data

collection methodologies at each site, similarity percentage

(SIMPER) breakdowns were undertaken. At each site, the

benthic community composition categories that accounted for

the greatest dissimilarity between methodologies (to an

accumulated 70% of the observed dissimilarity) were identified.

An additional multivariate PERMANOVA analysis was

undertaken to assess differences in the data between

photogrammetry point counts based on 25 random points and

15 random points. This tested for main effects of method

(Photogrammetry 25 pts, Photogrammetry 15 pts), site (Leigh,

Ōtata, Hauturu-o-Toi) and their interaction.
3 Results

3.1 Photogrammetry metrics

A high resolution photomosaic was successfully created for

each of the 16 transects assessed. Thirteen photomosaics had sub-

millimetre image resolution, with the lowest quality resolution

being 1.4 mm/pixel. Photomosaic coverage across the total

transect length was high, averaging (± SE) 87 ± 1% (Table 1).

The probability of stitching success was typically greater than 90%

within areas of barren across all depths and levels of wave action

(Table 2). The lowest probability (85%) of success for barren areas

was seen in less than 3 m of water where wave action was 0.5 -
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1.0 m. Stitching success in areas of mixed barren/macroalgae

showed a similar trend to barrens and was typically high (> 88%)

except for in areas less than 3 m deep when wave action was 0.5 -

1.0 m. Here the probability of success fell to 67%. Stitching success

was lowest in biological habitats classified as macroalgae (10% –

83%), with the lowest probability of success in shallow water.

However, for macroalgae we found that overall success rates rose

when wave action was greater (Table 2).

We found that failed image alignment was the primary cause of

poor stitching success of kelp in deeper water. Image alignment, the

first step of the SfM reconstruction process, requires the precise 3D

coordinates for a feature (e.g. a corner or edge) to be calculated

across multiple overlapping images (Sieberth et al., 2014). A lack of

accurately mapped features may result in the failure to correctly

align subsequent images, limiting image reconstruction. In very

shallow water, failed image alignment also contributed to the poor

stitching success of areas of both mixed and macroalgae; however,

the impracticality of capturing imagery in very shallow water meant

that in some instances imagery from the upper extent of a transect

was simply not available for alignment and subsequent stitching.

Macroalgae canopy cover could be evaluated for all virtual

quadrats (Table 1). In contrast, benthic community composition

could only be calculated for an average of 84 ± 4% of virtual

quadrats on each transect (Table 1), which varied between sites.

For Leigh and Ōtata, the average number of quadrats where

benthic community composition could be determined be made

was above 90%. Virtual quadrats that could not be assessed were

those with high (> 50%) macroalgae canopy cover.

Consequently, not enough points were classified as a benthic

community composition type. For Hauturu-o-Toi, the average

number of virtual quadrats able to be assessed for benthic

community composition was noticeably lower (64 ± 7%.)

While high macroalgae canopy cover limited assessment for

some quadrats, the primary cause of low benthic assessment

rates was due to a filamentous algae bloom. It was extremely

difficult to accurately quantify benthic community composition

types in both methodological approaches where high densities of

overlying filamentous algae were present.
TABLE 2 Results from logistic regression assessing the probability of successfully stitching a section of photomosaic at different depths, within
different habitat types and under differing wave conditions.

Variables Coefficient SE Z p Odds ratio

Intercept 2.31 0.49 4.75 0.00 10.09

Depth (3–5.9 m) 1.78 0.51 3.50 0.00 5.91

Depth (6+ m) 1.34 0.58 2.30 0.02 3.84

Habitat (macroalgae) -4.43 0.96 -4.61 0.00 0.01

Habitat (mixed) 14.33 1429.39 0.01 0.99 >100

Wave action (0.5–1 m) -0.56 0.66 -0.85 0.40 0.57

Macroalgae x Wave action (0.5–1.0 m) 2.50 1.14 2.20 0.03 12.18

Mixed x Wave action (0.5–1.0 m) -15.35 1429.39 -0.01 0.99 0.00
f

In the model the intercept represents barren (Habitat) in <3 m of water (Depth) when wave action was <0.5 m (Wave action).
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3.2 Data collection

Photogrammetry data collection was faster than field

quadrat data collection at Ōtata and Leigh but not Hauturu-o-

Toi (Figure 3A, Table 3A). On average ( ± SE) traditional field

quadrat data collection took 4.7 ± 1.9 min/quadrat while
Frontiers in Marine Science 09
photogrammetric data collection took 3.1 ± 0.1 min/quadrat,

approximately 1 minute and 44 seconds faster per quadrat. Time

spent in the field accounted for 100% of the total data collection

time for field quadrats, whereas field time only accounted for

~10% of the total data collection time for the photogrammetry

method (Figure 3B). This equated to roughly 5 – 6 minutes of
A

B

FIGURE 3

(A) Mean (+ SE) time taken per 1m2 quadrat to collect data from virtual photogrammetry quadrats (grey bars) and in situ field quadrats (black
bars) at each of the three monitoring sites. (B) Proportion of total data collection time spent in the field (grey bars) and in the office (black bars)
for virtual photogrammetry quadrats (PG) and field quadrat (FQ) at each of the three monitoring sites.
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time collecting the required imagery per transect or ~19

sec/quadrat.
3.3 Sea urchin densities

Mean sea urchin densities did not differ significantly

between data collection methodologies, nor was there an

interaction between methodology and site (Figure 4A,

Table 3B). However, at Leigh, the photomosaics showed non-

significant lower densities of sea urchins. This was likely due to

higher densities of small (<40 mm test diameter) cryptic sea

urchins that were harder to detect within the mosaic.
3.4 Macroalgae cover

Mean canopy cover for all macroalgae groups (Ecklonia radiata,

Sargassum sinclairii and fucoids) did not differ significantly between
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data collection methodologies nor were there interactions between

methodology and site (Figures 4B–D, Tables 3C–E).
3.5 Benthic community composition

Results from the multivariate PERMANOVA showed a

difference in benthic community composition between the two

methodological approaches (Table 3F). SIMPER analysis found that

at all sites sediment cover was a primary contributor to the observed

methodological differences and that broadly consistent benthic

community compositions, with low levels of average dissimilarity,

were recorded between the methods (Figure 5, Table 4). At Leigh

and Hauturu-o-Toi sediment was the greatest contributor to overall

dissimilarity; sediment cover was four to five times higher within

field quadrats than in virtual quadrats. This is highlighted in the

nMDS plots for both sites where there is clear separation between

the methodologies in the direction of sediment (Figure 6). At Ōtata,

recorded sediment cover was approximately three times higher
TABLE 3 Results of two-way ANOVA tests on (A) data collection time, (B) sea urchin densities, (C) canopy cover of Ecklonia radiata and, (D)
canopy cover of Sargassum sinclairii, (E) a univariate PERMANOVA test on canopy cover of fucoid algae, (F) a multivariate PERMANOVA test on the
difference between photogrammetry and field quadrats, and (G) a multivariate PERMANOVA test on the difference in substratum covers between
25 and 15 random points.

A) Data collection time B) Sea urchin densities

Coefficient Df F p Coefficient Df F p

Method x Site 2 7.08 0.00 Method 1 0.01 0.91

Residual 22 Site 2 2.12 0.12

Method x Site 2 0.16 0.85

Residual 124

C) Ecklonia cover D) Sargassum cover

Coefficient Df F p Coefficient Df F p

Method 1 0.47 0.50 Method 1 0.90 0.36

Site 2 18.00 0.00 Site 2 12.25 0.00

Method x Site 2 0.40 0.68 Method x Site 2 0.17 0.84

Residual 26 Residual 26

E) Fucoid cover F) Photogrammetry vs Field Quadrats

Coefficient Df F p Coefficient Df F p

Method 1 0.20 0.66 Method 1 8.94 0.00

Site 2 9.03 0.00 Site 2 21.84 0.00

Method x Site 2 0.10 0.91 Method x Site 2 1.29 0.23

Residual 26 Residual 26

G) Photogrammetry point comparison

Coefficient Df F p

Method 1 0.19 0.95

Site 2 38.58 0.00

Method x Site 2 0.05 1.00

Residual 26
fron
Significant p values are bold. Main test p values omitted where a significant interaction term exists.
Each test for the main effects of Method, Site and Method x Site.
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within field quadrats than in virtual photogrammetry plots;

however, recorded brown encrusting algae (BEA) cover was

approximately four times higher in the virtual photogrammetry

quadrats than in the field quadrats (Figure 5). Both contribute

equally to overall dissimilarity and nMDS plots show

methodological separation, primarily in the direction of sediment/

BEA (Figure 6).

Within virtual quadrats for the photomosaics, we found that the

use of 25 random points per quadrat did not yield significantly

different overall substratum coverage percentages than 15 random

points per quadrat, nor was there any interaction between the

number of points and sites surveyed (Figure 5, Table 3G).

4 Discussion

In this study we compared commonly used ecosystem

monitoring metrics on temperate rocky reefs dominated by urchin

barrens between data extracted from high-resolution, SfM derived,

photomosaics and traditional diver-based field quadrats. Primary

surveymetrics, including sea urchin densities, kelp canopy cover and

benthic community composition data, were similar between the two

methodologies, consistentwith other papers comparing benthic data

collected by photography with traditional methods (Dodge et al.,

1982; Preskitt et al., 2004; Parravicini et al., 2009; Jokiel et al., 2015)

and more specifically comparing the use of photomosaics with

traditional methods (Ling, et al., 2016; Raoult et al., 2016; Burns

et al., 2020; Barrera-Falcon et al., 2021; Couch et al., 2021).
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Photogrammetric data collection required minimal in-field time,

and can increase the potential survey area. However, not all habitats

are suitable, as reconstruction success was hindered in areas of very

shallow waters and/or areas where high macroalgal canopy cover

existed. High macroalgal canopy cover and the presence of seasonal

algal growth restricted the ability to extract benthic community

composition information from photomosaics. A wider range of

data metrics were able to be collected from field quadrats than

photomosaics across all habitat surveyed.Overall we found that high

resolution photomosaics were a quick, efficent way of collecting

robust data on basic moniroting metrics from temperate rocky reefs

with low macroalgae canopy cover, whilst also providing a

permanent visual record of the site. In areas where macroalgae

cover was high, traditional diver-based field quadrat surveys

yielded more comprehensive data as sampling under the canopy

remained possible, whereas photomosaics only provided

information on macroalgae canopy cover. Decisions regarding the

level of detail, and consequently time and resources required for in-

field data collection, will ultimately depend on the aims of any study.

The strengths and limitations of photomosaics as a tool for

monitoring temperate rocky reef ecosystems are discussed

below (Table 5).
4.1 Strengths and limitations

Data collection from SfM derived photomosaics was

generally more time efficient than in-water monitoring using
A B

DC

FIGURE 4

(A) Mean (+SE) sea urchin density, (B) mean Ecklonia radiata canopy cover, (C) mean Sargassum sinclairii canopy cover and (D) mean fucoid
canopy cover recorded in virtual photogrammetry quadrats (grey) and field quadrats (black) at each of the three monitoring sites.
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field quadrats. It should however be noted that more data

metrics were able to be recorded (and were recorded in this

study) within field quadrats than photomosaics, such as specific

measurements and invertebrate records. Although this

additional data was not considered in the time analysis, some

metrics such as recording kelp abundance can be time

consuming, and would further increase the overall time taken

per field quadrat. The amount of time required for these metrics

varied greatly depending on density of invertebrates,

macroalgae, etc., but was estimated at roughly 10-20%

additional time. Within urchin barrens, where this comparison

was primarily conducted and where macroalgae was absent or

sparse, the additional time required to make algal and

invertebrate measurements was minimal. In this study, where

four to six divers conducting multiple dives were required to

collect the field quadrat data at each site, a single diver could

capture the required photogrammetric imagery within two dives.

Importantly, SfM methodolgy conferred the additional
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advantage of only one tenth of the total data collection time

occuring underwater. Monfort et al. (2021) discussed similar

findings where rugosity measured from SfM derived 3D point

clouds was quicker than in situ ‘chain and tape’ measurements,

while Couch et al. (2021) found that photomosaics yeilded

similar coral colony data to in situ data collection, but reduced

field time by 55%. This reduction in field time is consistent with

the use of other photographic techniques, such as photo-

quadrats, over field quadrats (Preskitt et al., 2004). Using SfM

photogrammetry can significantly reduce the field time and

resources required to collect benthic monitoring data and thus

can capture more data spatially, albiet from a more limited range

of data metrics, in restricted field seasons or windows. While

capturing photographic data requires the additional expenses of

camera equipment, a number of studies have found that low cost

cameras performs well for creating photomosaics (Raoult et al.,

2016; Neyer et al., 2019; Nocerino et al., 2019) and that initial

costs associated with purchasing equipment are quickly offset by
TABLE 4 SIMPER analysis results at (A) Leigh, (B) Ōtata and (C) Hauturu-o-Toi showing average site dissimilarity between data collection methods
(photogrammetry, field quadrats) and key benthic community composition categories contributing towards overall dissimilarity.

A) Leigh
Average Dissimilarity 20.6%

Benthic Community Cover Categories Individual Contribution (%) Cumulative Contribution (%)

Sediment 21.6 21.6

Crustose coralline algae (CCA) 14.77 36.37

Red foliose turf 9.75 46.12

Red/Green Turf (RGT) 9.03 55.15

Brown encrusting algae (BEA) 8.53 63.68

Sponge 6.99 70.67

B) Ōtata

Average Dissimilarity 25.0%

Benthic Community Cover Categories Individual Contribution (%) Cumulative Contribution (%)

BEA 15.9 15.9

Sediment 14.46 30.36

Bare rock (BR) 11.29 41.65

Coralline turf (CT) 7.54 49.19

Sand, shell, gravel (SSG) 7.48 56.67

Anemone 7.43 64.1

CCA 6.95 71.05

C) Hauturu-o-Toi

Average Dissimilarity 23.3%

Benthic Community Cover Categories Individual Contribution (%) Cumulative Contribution (%)

Sediment 21.59 21.59

BR 11.63 33.22

CCA 10.41 43.63

SSG 9.94 53.57

RT 9.65 63.22

BEA 9.41 72.62
Benthic community composition categories up to a cumulative total of 70% of the average dissimilarity have been included.
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A

B

C

FIGURE 5

Mean (+SE) benthic community composition percentage covers recorded at (A) Leigh, (B), Ōtata and (C) Hauturu-o-Toi using virtual
photogrammetry quadrats with 25 random points (white), virtual photogrammetry quadrats with 15 random points (grey) and field quadrats
(black). For display purposes only benthic community composition categories with a mean cover greater than 1% are included.
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FIGURE 6

Non-metric multidimensional scaling (nMDS) plots of dominant benthic community composition categories at (A) Leigh, (B) Ōtata and
(C) Hauturu-o-Toi as recorded within virtual photogrammetry quadrats (PG, grey) and field quadrats (FQ, black). nMDS plots based on Bray-
Curtis distance matrices constructed from square-root transformed transect centroid data. Black lines show directional influence of key benthic
community composition categories from SIMPER analysis.
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the cost-savings made from reduced field and resources

requirements (Jokiel et al., 2015).

The consistency between data collected from the two

methods suggests both provide robust forms of benthic

monitoring data for key metrics. We did, however, find two

notable differences in the datasets. Firstly, sediment cover was

consistently higher in field quadrats than in the photomosaic

data. This was largely due to different methods for benthic

community composition estimates: visual (for field quadrats)

and point count (photomosaic) estimates. Visual estimates tease

out sediment bound within other substrate types, increasing

sediment cover while decreasing other cover types (particularly

encrusting and turfing algae). In the point count method, only

points where a substrate type could not be identified due

overlying sediment were recorded as sediment, resulting in

lower sediment estimates. Secondly, brown encrusting algae

cover (BEA) was consistently higher in photomosaics at Ōtata.

Larger field teams require more training and increase the risk of

inter-observer variation and errors. Surveyor experience can

play an important role in the quality of collected data

(Bernard et al., 2013) and an individuals interpretation of a

given classification type, can result in substantial differences

from one recorder to another (Cherrill and McClean, 1999;

Beijbom et al., 2015). Observer error was considered the likely

cause for this differences in BEA cover at Ōtata. Many encrusting

algae look superficially similar and different interpretation of

BEA between divers may have resulted in misclassificaion. This

would result in consistency issues when trying to compare

results with future monitoring data. In contrast, extracting

data from the photomosaics required a single desk-based
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annotator who could rest when fatigued, could revisit sections

of the imagery if discrepancies were picked up, and could confer

with other ecologists for identification, reducing overall error

and increasing quality control.

With SfM photogrammetry, a significant time investment is

required to process the imagery into usable formats such as

photomosaics (Couch et al., 2021). However, once processed, a

photomosaic represents a permanent visual archive of a study

area that can be repeatedly returned to without the need for

further field time. It also allows for a significantly greater area of

reef to be surveyed. Where 15 – 20 m2 of data was collected from

a transect using field quadrats as much as 100 m2 was available

for data extraction from the photomosaics. These benefits need

to be carefully considered against the costs associated with the

lengthy processing times required to create these and other SfM

outputs. In this study photomosaic processing time was roughly

3 – 4 hours per transect. We did not include photomosaic

processing as part of the ‘timed’ data collection because

processing timeframes can vary signficantly with image

resolution, the number of images being processed and

available computing power (Bayley and Mogg, 2020; Couch

et al., 2021). Overall processing time will increase with image

resolution, larger areas, number of images and less computing

power. However, much of the process is fully automated, with

batch processing allowing simultaneous processing requiring

only periodic manual intervention. For this study the manual

processing components included image georeferencing and

white balancing, intial workflow set up within Metashape and

scaling/refining the sparse cloud. The time taken for this was

relatively consistent across transects (~1.5 hours) and accounted
TABLE 5 Comparative strength and weaknesses of field quadrats and photomosaics within temperate rocky reef ecosystems.

Metric Method

Field quadrats Photomosaics

Data extraction Moderate Fast

In-water data extraction component 100% 10 - 15%

Dive team required (per site) 4 - 6 divers 1- 2 divers

Area coverage (per dive) 15 - 25 m2 300+ m2

Permanent visual record Limited Yes

Visual perspective 3D in field 2D digital image

Level of detail within areas of low
macroalgae cover

High High

Level of detail within areas of high
macroalgae cover

High Low

Ability to identify cryptic species Easy Difficult

Feasibility in very shallow water Yes Yes, but difficult in areas of shallow mixed algae

Feasibility in rough conditions Feasible within all habitat types but strenuous Only feasible over areas of low macroalgae cover

Quality control Relies on well trained field team and accurate in-
field data entry

High, can re-evaluate data and confer with others at leisure

Processing time ~2 hours per transect. ~3 – 4 hours per transect. ~1.5 hours per transect of manual input;
remainder is automated
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for at most 50% of the total photomosaic processing time. In

contrast, data recorded from field quadrats does not require

computer-orientated post processing but does require

transcription into a digital format for analysis. For this study

this included copying field data into a digital spreadsheet,

labelling and validating photos for each quadrat and data

quality checks. This can be slowed or compromised by

transcription errors, illegible handwriting or reliance on

individuals recollections if data does not make sense. As with

photomosaic processing we did not include this transcription

into the ‘timed’ data collection processed however this

accounted for roughly 2 hours per transect. While overall

photomosaic processing time was approximately twice as long

as the field quadrat data transcription process, the manual

processing time was similar for both methods. Thus, we

constrained the activities for time comparison to include data

collection only (field and data extraction).

The number of sampling points within a given area can affect

both precision and sampling time. We found that reducing the

number of sampled points from 25 to 15 did not alter the overall

breakdown of substratum covers within a 1 m2 quadrat but

decreases the time required to analyse a virtual quadrat. Perkins

et al. (2016) found the precision of targeted monitoring species,

when analysing benthic imagery, was increased by increasing the

number of images sampled, as opposed to increasing sampling

rate within images. However, the appropriate number of points

per unit area will depend on the distribution and abundance of the

species of interest (Pante and Dustan, 2012). For comparitive

purposes this study only examined point count data within 1 m2

quadrats, however the methodological approaches for data

extraction from photomosaics are highly varied. In the case of

community composition data, this could have also been collected

across the length of our transects by hand-drawing polygons

around various community catagories (Urbina-Barreto et al.,

2021), or with the aid of machine learning classification

algorithms (Mohamed et al., 2020; Ternon et al., 2022). This

affords researchers the choice of selecting different data extraction

method to best meet study aims as well as the ability to use the

same underlying data set, but different methodological approaches

for data extraction if new questions arise.

Despite increased sampling availabilty within a given

photomosaic, reconstructing the entire transect was not always

possible. Coverage in the shallowest areas (<1.5 m) was often

impractical, while areas of dense macroalgae (typically the upper

and lower extents of a transect) suffered from image alignment

issues. Image misalignment was likely caused by macroalagal

movement between images due to wave action and/or because

dense macroalgae represents a homogenous, low contrast surface

where the feature matching algorithms failed to pick out distinct

points (Mancini et al., 2013). Vegetation movement, caused by high

wind speeds, can cause feature mismatches and poor image

alignment in UAV forest surveys (Dandois et al., 2015; Fraser

and Congalton, 2018). Similarly, water motion can cause
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macroalgal movement between images, also resulting in feature

mismatches and a failure to properly align images. In terrestrial

systems, these alignment issues can be overcome by flying at greater

altitiudes (Fraser and Congalton, 2018), which increases the area

available in each image to detect features and reduces perspective

distortion between images. We recommend that underwater

imagery for SfM processing over macroalgae be captured at least

1 m above the benthos to improve the chances of success.

Alternatively, issues matching homogeneous, low contrast features

might explain why images over dense monospecific stands of

macroalgae failed to align while areas along the same transect,

surveyed under the same sea state conditions and dominated by a

mixture of dense turfing and foliosed algae along with juvenile

macroalgae, were able to be aligned. Overall, we found

photomosaics provided limited monitoring information over

areas of dense macroalgae cover.

Dense macroalgal canopies conceal underlying substratum,

thereby reducing the utility of the imagery for substratum

assessment (Tait et al., 2019). Where field quadrats can access

under the kelp canopy and collect underlying benthic data, the

photomosaics were only able to provide basic macroalgae canopy

cover data. Seasonal filamentous algal blooms also caused data

collection issues for photogrammetry and to a lesser extent for

field quadrats. Where possible, imagery collections should occur

outside of key growth periods for filamentous algae. Although not a

major issue for this study, 2D imagery, such as photomosaics and

photo-quadrats, are limited in their ability to detect organisms or

substrate types occupying in deep cracks or overhangs (Jokiel et al.,

2015; Couch et al., 2021).We found that photomosaics were less able

to detect small sea urchins (<40 mm) hidden in cracks and crevices.

Similarly, Ling et al. (2016) found that daytime density estimates of

the sea urchin Centrostephanus rodgersii, which preferentially occupy

crevices during the day, were lower in photomosaics than estimates

from divers who were able to inspect crevices as they surveyed the

area.While this study was designed to investigate data captured from

2Dphotomosaics, three-dimensional forms of photogrammetry data,

such as point clouds and 3D meshes, may be able to be utilised to

gather additional data from highly complexity reefs.

It has been suggested in tropical systems that there is unlikely to

be a single method that can be considered the ‘gold standard’ for

benthic monitoring (Burns et al., 2020; Couch et al., 2021). This

appears true within temperate rocky reef ecosystems as well. As SfM

derived photogrammetry has increased in popularity, and data

derived from photogrammetry can be standardised with that

collected from more traditional means (Jokiel et al., 2015),

researchers have the ability to select and develop monitoring

approaches that draw upon the strengths of different

combinations of traditional and emerging techniques. For

example, a study could incorporate field quadrat-based

approaches in very shallow or highly layered habitats but using

SfM photogrammetry in areas with low macroalgal cover, or a

broad-scale SfM photogrammetry across a large area with fine detail

collected from a smaller number offield quadrats. The ability to use
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diverse and perhaps complementary techniques will allow benthic

ecologists tomaximise data collection across the spectrum of habitat

types present throughout an ecosystem within realistic time and

resource constraints.
5 Conclusion

The results from this study build our understanding of the

strengths and weakness of utilising diver-generated photomosaics, a

form of SfM derived photogrammetry, for monitoring temperate

rocky reefs. Photomosaics provide robust, spatially extensive data

for a number of key rocky reef metrics, but is limited with respect to

cryptic or understory species. Photogrammetry data collection is

generally more time efficient than in situ field quadrat monitoring

and requires minimal dive time. It also provides a permanent record

of a site which can be reinvestigated without more time in the field.

Their utility is lessened in areas of high macroalgae canopy cover,

very shallow water or heightened sea state. Thus diver-generated

photomosaics are a valuable monitoring tool in areas of low

macroalgae cover, such as urchin barrens, but of limited value

within kelp forests. As with comparative studies in tropical systems,

highlighting the strengths and weakness of different data collectiong

methodolgies reveals there is unlikely to be a ‘gold standard’ for

monitoring temperate rocky reef ecosystems. Instead developing

flexible monitoring programmes that utilise a range of techniques,

including photogrammetry and more traditional methods, will

result in the greatest level of data capture and spatial coverage,

while reducing in-field resource and time related costs.
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