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Microalgae are essential parts of marine ecology, and they play a key role in

species balance. Microalgae also have significant economic value. However,

microalgae are too tiny, and there are many different kinds of microalgae in a

single drop of seawater. It is challenging to identify microalgae species and

monitor microalgae changes. Machine learning techniques have achieved

massive success in object recognition and classification, and have attracted a

wide range of attention. Many researchers have introduced machine learning

algorithms into microalgae applications, and similarly significant effects are

gained. The paper summarizes recent advances based on various machine

learning algorithms in microalgae applications, such as microalgae

classification, bioenergy generation from microalgae, environment

purification with microalgae, and microalgae growth monitor. Finally, we

prospect development of machine learning algorithms in microalgae

treatment in the future.
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Introduction

Microalgae in the ocean are usually single-celled organisms that play a crucial part in

marine ecology (Chew et al., 2017). Microalgae are primary organic matter producers in

the sea. Microalgae absorb carbon dioxide and convert it into organic matter, while

releasing oxygen through photosynthesis (Chakdar et al., 2021). As a result, microalgae

are crucial food sources for organisms in ocean, and they could reduce the greenhouse

effect (Mochdia and Tamaki, 2021). In addition, microalgae have considerable social and

commercial value. Microalgae are capable of purifying sewage, because they can absorb

nitrogen and phosphorus. The high content of oil and fat in microalgae makes them an

ideal raw material for biodiesel product (Adamczak et al., 2009; Chowdhury and

Loganathan, 2019; Mofijur et al., 2019).

Microalgae species recognition and growth monitor are crucial steps in actual

applications (Gomez-Espinoza et al., 2018). Microalgae are commonly microscopic, and

there are usually many different kinds of microalgae species in a single sample (Ferro et al.,
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2018) (Figure 1). These characteristics make the identification,

classification, and analysis of microalgae a very challenging task

(Andersen and Kawachi, 2005). Traditional manual methods are

not only time-consuming, they also require much skill and

experience for the operators (Peniuk et al., 2016; Saputro et al.,

2019). As a result, the efficiency and scope of microalgae

applications are greatly limited. Faster and more efficient methods

for the classification, identification, and analysis of microalgae are

needed. (Sá et al., 2013; Wei et al., 2017).

Machine learning is a collection of data-driven algorithms in

essential (Rosenblatt, 1958; Rumelhart et al., 1986). In recent
Frontiers in Marine Science 02
years, data resource and computer computing power have

enhanced significantly. Machine learning has achieved great

success and is applied widely in many fields (El Naqa and

Murphy, 2015; Jordan and Mitchell, 2015; Liakos et al., 2018).

In particular, machine learning has greatly facilitated the

development of digital image processing and speech

recognition (McCulloch and Pitts, 1990; He et al., 2015). Many

researchers have introduced machine learning techniques into

the field of microalgae process to identify the species of

microalgae, and monitor the growth process of microalgae

with outstanding results as well (Carleo et al., 2019).
FIGURE 1

Microscopic images of microalgae: (A)Glycophilic Chlorella or Chlorella saccharophilus; (B)Chlorellasorokiniana; (C) Chlorella vulgaris; (D)Coelastrella; (E)
Desmodesmus; (F)Desmodesmus; (G) Scenedesmus obliquus; (H) Scenedesmus. (reproduced with permission from Ferro et al., 2018).
frontiersin.org

https://doi.org/10.3389/fmars.2022.947394
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ning et al. 10.3389/fmars.2022.947394
This paper summarizes the state of machine learning

algorithms used in microalgae treatment, with a focus on

summing up the advances made in recent years. Firstly, the

article explains the basic principle of machine learning

algorithms such as support vector machine, decision tree,

random forest, and neural network. The development of

microalgae classification, the conversion from microalgae to

bioenergy, microalgae for environmental protection, and the

monitoring of microalgae growth stage with machine learning

algorithms are then explained in detail. With all the summaries,

we list machine learning methods different from traditional

manual operation in microalgae treatment. This is a pretty

reference for the following researchers and workers in the field.
Basic principles of several machine
learning algorithms

Artificial intelligence is the theory and method that allows

computers to reason and simulate human thinking based on

previous perceptions or experiences (Sain, 1996). Computers

with artificial intelligence is able to do more complicated work

that needs logical ability. As an implementation of artificial

intelligence, machine learning has not only become increasingly

mature in its theoretical basis, but has achieved great success in

practical applications (Dietterich, 1997). Machine learning is a

multi-disciplinary interdisciplinary discipline that integrates

statistics, data mining, probability theory, information theory,

algorithmic analysis, and other fields (Vapnik, 1999).
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The basicmachine learning process is the analysis and learning of

datawith algorithms, and subsequent judgment and prediction about

the actual situations are made automatically (Wei et al., 2019)

(Figure 2A). A framework with many parameters is first built, and

then the prepared data is fed into the model. The parameters are

continuously adjusted until they match or close to the correct result

(Bishop, 2013). Machine learning contains supervised learning,

unsupervised learning, semi-supervised learning, and reinforcement

learning,dependingonthe trainingmodel.Manydifferentmodels can

be used for machine learning training, and a comprehensive

description of centralized representative models are in the following

(Mahesh, 2020).
Support vector machine

Support vector machine(SVM) is a supervised learning

framework mainly utilized in classification and regression

calculations (Boser et al., 1992). The SVM constructs a

hyperplane in the existing data to differentiate the known data

according to the specific needs. When the SVM processes the

new data, it is continuously optimized according to the output

results (Hearst et al., 1998; Suykens and Vandewalle, 1999).

Assume that the data will be processed by the SVM is a

sample set: D = (xi, yi), i = 1, 2,…,nx is the input data, y is the

output result, and n is the total amount in the case.

Linear separable model
If the data is linearly separable, data types can be classified by

a hyperplane (Chen et al., 2005). The optimal plane with the
B

CA

FIGURE 2

(A) Flowchart for machine learning. (reproduced from an open access article). (B) Schematic diagram of SVM. (reproduced with permission from
Deka, 2014). (C) A decision tree for identification based on iris. (reproduced from an open access article).
frontiersin.org

https://doi.org/10.3389/fmars.2022.947394
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ning et al. 10.3389/fmars.2022.947394
farthest distance from the two types of data and the plane can be

represented as:

wT·x+b=0

w means the coefficient vector that judges the hyperplane

direction, and b represents the bias vector which describes the

distance between the hyperplane and the data sample set (Deka,

2014) (Figure 2B).

The closest hyperplane between the positive and the negative

samples can then be expressed as:

wT·x+b=1  and  wT·x+b=−1

The hyperplanes between different sample data can then be

uniformly expressed as:

f xð Þ=wT·x+b

The correctness of the sample classification is converted to

the interval distance between the sample data to the hyperplane,

g= 2
jjwjj. The coefficients w and b for optimal hyperplane can be

found by searching the maximum value of the equation,max
w,b

2
jjwjj

. The equation is equivalent to: min
1
2

w,b

jjwjj.

This is a programming problem of convex quadratic, the

solution of which should be obtained by introducing the

Lagrange multiplier ai, w =o
n

i=1
a*i yixi b = yj −o

n

i=1
a*i yi(xi : xj) a*i

is the solution to the pairwise optimization issue, and the

subscript j satisfies a*j >0.

Nonlinear model
SVM handles nonlinear data by introducing kernel function

to enhance the dimensionality of the feature space (Pradhan,

2012). Suppose that the kernel function f(x) is employed to

represent the feature vector after the map of the sample set, the

hyperplane representation can be denoted as:

f xð Þ=wT:f xð Þ+b
After introducing the Lagrangian operator ai and using the

equation k(xi,xj)=〈f(xi)f(xj)〉 to represent the inner product f
(xi)

Tf(xj) , the solution of the hyperplane equation can be

obtained:

f xð Þ=o
n

i=1
aiyik x,xið Þ+b

The type of the kernel function denotes the changed

distribution of the original sample in one-higher dimensional

space (Widodo and Yang, 2007). The function is the most

significant variable for a nonlinear support vector machine

framework. Much research reveals that the efficiency of the

framework relays greatly on the kernel function (Meyer et al.,

2003; Shahid et al., 2015). The common kernel functions are
Frontiers in Marine Science 04
linear kernel function, polynomial kernel function, radial basis

kernel function, and Sigmoid function (Wang et al., 2008).
Decision tree

The decision tree algorithm is also a classification and

regression method that belongs to unsupervised learning

(Quinlan, 1986). The internal node in a decision tree means

an attribute, a branch is a chosen path to obtain the final result,

and each leaf node indicates a species (Li et al., 2019)

(Figure 2C). To construct a decision tree model, a training

dataset is essential.

Decision tree learning essentially generalizes features in the

training dataset and gains the rules to partition final sample data

into smaller ones. Based on the different partition ways, many

decision trees can be obtained through the same training dataset

(Myles et al., 2004). A decision tree with excellent performance

depends less on the training dataset, and it means the tree owns

perfect generalization ability. The most commonly used

probability fits the training dataset well, and predicts the

following unknown data perfectly. The process of decision tree

construction has three steps: feature selection, decision tree

generation, and decision tree pruning.

Feature selection
Feature selection refers to the choice of features in the

training dataset suitable for the current dataset to be divided

into many parts, and one part means a leaf in the decision tree

(Pal and Mather, 2003). The dataset will be divided recursively

until the sample points can be classified into their respective

categories, and the complete tree is constructed. Many

prediction criteria can be used to choose features, and each

choice leads to a different decision tree algorithm. The standard

commonly employed construction tree algorithms are the ID3

algorithm, the C4.5 algorithm, and the CART algorithm. The

algorithms utilize information gain, information gain rate, and

Gini index respectively, to determine the features that divide the

dataset (Patel and Prajapati, 2018).

The essence of the ID3 algorithm is the attributes chosen with

the information gain benchmark, and the attribute with the

maximum information gain will be utilized to divide the dataset

recursively (Wellner et al., 2017). The less the expected information

is, the greater the information gain will be, and the dataset owns

higher purity. To describe the information gain clearly, the entropy

and conditional entropy need to be explained first.

The entropy of the random variable X is expressed as:

H Xð Þ=−o
n

i=1
p(xi)logp xið Þ

n represents the n different discrete values of X, p(xi)
represents the probability that X takes the value i.
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To describe the non-determinacy of a random variable Y in

the situation that the variable X is known, the conditional

entropy is introduced:

H YjXð Þ=o
x∈X

p xð ÞH(YjX=x)

The ID3 algorithm evaluates the information gain of feature

A in the sample set D and the prediction is computed as:

Gain D,Að Þ=H Dð Þ−H D,Að Þ
After the information gains of all features are calculated, the

feature with the largest information gain will divide the sample

set D.
The disadvantage of information gain is that features could

have a bias toward characteristics that have many taken values. If

the count of different values taken by a feature is greater, the

more likely the feature will be used as a split point. The most

extreme case is that each result of the feature refers to a different

outcome of the feature, then the information entropy is found to

be 0, and the information gain is maximized. After improving

the defect of the ID3 algorithm, the C4.5 algorithm is derived.

The C4.5 algorithm utilizes the information gain rate to

measure the ability of features in ensemble classification

(Elomaa, 1994). The information gain rate is described in the

following:

GainRatio Að Þ=Gain Að Þ
H Að Þ

Gain (A) represents the information gain generated by

dividing the dataset using feature A, and H (A) is the

information entropy of feature A. The C4.5 algorithm selects

the property with the maximum information gain rate as the

division attribute to partition the dataset (Sharma et al., 2013;

Nugraha et al., 2020).

The CART algorithm uses the Gini index, which reflects the

mixture of the framework as the splitting criterion (Ayyagari,

2020). The smaller the Gini index is, the lower the mixture will

be, and the selected feature is better. The Gini index is defined as:

Gini Dð Þ=o
n

i=1
p(xi) 1−p xið Þ½ �=1−o

n

i=1
p2 xið Þ
Generation of decision tree
The decision tree generation process grows from the root

node and generates sub-nodes recursively top and down

according to the chosen feature classification until the dataset

is indistinguishable (Zhou and Chen, 2002). Based on various

algorithms to generate a decision tree, we traverse the entire data

sample from the root node downward to search for the most

influential node in the current feature vector as the child node of

the layer. Then, we continue to traverse downward and take the

child node just obtained as the new parent node, and keep the
Frontiers in Marine Science 05
recursion until the traversal stops at the leaf node (Swain and

Hauska, 1977).

Pruning of decision tree
Decision trees are prone to overfitting and often require

pruning to minimize the degree of the tree, alleviating overfitting

by actively removing some branches and reducing the risk of

overfitting. Pruning is one of the methods used to break decision

tree branching. There are two pruning ways: pre-pruning and

post-pruning. Pre-pruning sets a metric during tree growth and

stops growing when that metric is reached. During post-pruning,

the tree grows fully until minimum impurity values for all leaf

nodes. Post-pruning is often more computationally costly than

the pre-pruning manner, particularly in the enormous dataset.

But the post-pruning method is still superior to the pre-pruning

method in a small sample dataset (Friedl and Brodley, 1997).
Random forest

Random forest is an integrated learning approach, and the

decision tree is the primary component unit of the random forest

algorithm (Breiman, 2001). Since a single decision tree has the

problem of low accuracy and overfitting, it overcomes the

limitations by bringing numerous decision trees together.

Compared to the decision tree algorithm, the random forest

algorithm has better classification and regression performance.

Compared with other machine learning algorithms such as SVM

and deep learning algorithms, as convolution neural network an

example, the random forest algorithm has quicker prediction speed

and superior accuracy with relatively lower computing power.

The random forest algorithm is a unite of the Bagging

algorithm and decision tree algorithm, which commonly

utilizes a decision tree as a basis for classification training.

Finally, it makes accurate classification for samples with

unknown outcomes by a voting method (Belgiu and Drăgut,̧

2016) (Figure 3).

Sample to generate train sets
Each tree in a random forest is different, and different

datasets are needed to generate other trees. So different

datasets are extracted from the original dataset to form

different sub-datasets, which are used to train different

decision trees (Paul et al., 2018). A standard method for

extracting subsets of data is the Bagging method, which

ensures that each tree is unrelated to the other, and thus

reduces the risk of overfitting. The Bagging algorithm is a

typical parallelized integrated learning method with no strong

dependencies between the individual learners.

The Bagging method randomly draws a dataset from the

original dataset and then puts the extracted data back into the

original dataset before the next random draw. Thus, the dataset
frontiersin.org
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would be divided into many training subsets, which are used to

construct different decision trees (Shi and Horvath, 2006).

Construct of decision trees
Once the training set for each tree is determined, it is time to

construct the decision trees (Qi, 2012). During the construct

process of each decision tree for the random forest, some

features from the feature set of the sub-dataset are randomly

selected to participate in the node split selection calculation as

nodes to build the decision tree, and no pruning is done for each

generated decision tree. The detailed decision tree construction

process can be found in the section 2.2.

Result confirm by vote
The process of sections 2.3.1 and 2.3.2 above is repeated

continuously, and will not stop until the number of trees reaches

the required quantity. In this way, many different decision trees are

built, and these trees are combined (Bonissone et al., 2010;

Boulesteix et al., 2012). The classification result of each tree is

voted on according to specific rules. The final random forest

algorithm classification result is the decision tree result that gains

the most votes. In the final vote, there are generally three methods:

absolute majority vote, relative majority vote, and weighted vote.

The principle of absolute majority vote indicates that only

more than half of the entire votes are cast for an option, and the

option is chosen as the predicted outcome (Farnaaz and Jabbar,
Frontiers in Marine Science 06
2016). The relative majority vote is that the result with the most

votes is selected as the expected outcome, and if there is more

than one vote owns the most count. The final result is chosen

randomly (Speiser et al., 2019). The weighted vote method

means that all results are given a weight, which is equivalent

to the weighted average process. The classification results of each

decision tree are multiplied by the weight, and the weighted

choices for each group are added. The category with the

maximum number will be considered as the final result

(Rodriguez-Galiano et al., 2012).
Neural network

The neural network technique is one of the machine learning

ways, and it is skilled in dealing with non-linear data. A neural

network is a simulation of the nervous system in the human brain,

and the basic building blocks are neurons. The different

arrangements of neurons divide neural networks into many types,

for example, convolutional neural network, which is ideal for

processing image and waveform data (McCulloch and Pitts, 1943).
Neuron
Neurons are the essential components of various neural

networks and are the mathematical models of biological

perceptual machines (Mohammed et al., 1995; Bakirtzis et al.,
FIGURE 3

(A) Training steps of random forest. (B) Classification application of random forest. (reproduced with permission from Belgiu and Drăgut,̧ 2016)
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1996). By feeding training data into the neuron, a corresponding

output can be obtained by some mathematical calculations on

the neuron. A neuron is called a perceptron as well.

The structure of a neuron contains many inputs, but only one

output (Sagheer et al., 2019) (Figure 4A). x1, x2,…,xn2are the input
data of a neuron, andw1,w2…,wn are weights for input data; b is the
bias, and f() expresses the activation function. The input parameters

are multiplied by the weights and summed. Then biases are added

and input into the activation function for processing (Tian and

Noore, 2004; Cheng et al., 2015). The result of the activation

function is the consequence of this perceptron. The whole process

can be represented with the following equation:

y=f o
n

i=1
wixi+b

 !

If >x=(x1,x2,…,xn) and w=(w1,w2,…,wn)
T , the above

equation could be transferred into y=f(wx+b )

Common activation functions include f(x)= 1
1+e−x ,f(x)=max

(0,x ), f(x)= ex−e−x

ex+e−x etc.

Artificial neural network
Neurons have a simple structure and can only deal with

linear problems, and neural networks are generally used to

handle non-linear problems. Neural networks can solve

complex non-linear input-output applications. The network is

composed of numerous tiny neurons. In fact, a neural network is

a combination of massive neurons according to specific rules.

The neural network is called an artificial neural network

(Abiodun et al., 2018) (ANN Figure 4B).
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The typical ANN has three layers, namely, the input layer,

the hidden layer, and the output layer according to their position

in the left, middle, and right of the network. The input layer

receives input data, the hidden layer is invisible to the outside

world and calculates object features, and the output layer gives

the final result. Each neuron in the N layer is contacted with all

neurons in the N-1 layer, which is also called a fully connected

neural network (Hsu et al., 1990).

Deep neural network
If there are more hidden layers in an ANN, there is a more

powerful analysis ability, that the neural network owns. If a

neural network contains more than two hidden layers, it is called

a deep neural network (Montavon et al., 2018) (DNN

Figure 4C). In practice, a neural network that includes just one

hidden layer can satisfy any requirement, but the hidden layer

needs a large number of neurons. A deep network performs the

same role with fewer neurons.

DNN determines the relevance of features better through the

mapping relations among the input and output data. Any data from

the input layer is sent to every neuron in the hidden layer.When the

size of the input data is too large, it is easy to over-fit the model with

too many parameters. When the input data is unduly small, it is

difficult for the model to learn helpful information from the limited

data, resulting in underfitting (Cichy and Kaiser, 2019).
Convolutional neural network
Traditional neural network representations are constructed

with one-dimensional vectors, which miss the spatial information
B

C D

A

FIGURE 4

(A) Structure of a perceptron. (reproduced from an open access article). (B) Schematic diagram of an artificial neural network. (reproduced from
an open access article). (C) Data forward propagation and error back propagation of a deep neural network. (reproduced from an open access
article). (D) Diagram of convolution operation. (reproduced with permission from Sarıgül et al., 2019).
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of the objects. Researchers have devised a convolutional neural

network (CNN) by introducing convolutional and pooling

operations (LeCun and Bengio, 1995). The CNN can entirely get

the local spatial semantic characteristics of an image, and pooling

operations are able to extend the perceptual field to obtain more

advanced image features for object recognition. Convolutional

neural networks are composed of a cascade of a convolutional

layer with a local field of perception and pooling layers with a

down-sampling effect. The CNN holds the ability to extract

hierarchical, multi-scale image features from images. The main

application area of the convolutional neural network is image

recognition, but it can also be used in video analysis and natural

language processing (Albawi et al., 2017).

The convolution layer implements feature detection, extracts

crucial information from the input data, and adds non-linear

factors to the feature information through the activation

function. Convolution is a regional operation in which native

information of an image is acquired with a specific size

convolution kernel applied to an image (Sarıgül et al., 2019)

(Figure 4D). In the convolution layer of a CNN, the

convolutional kernel extracts local features by sliding samples

over the image matrix. The process is called the convolution

operation. The operation could be described with the following

formula:

y i,jð Þ=o
M−1

u=0
o
N−1

v=0
W u,vð ÞX i−u,j−vð Þ+b

M is the width of the convolution kernel, N is the height of

the convolution kernel, W is the weight of the convolution

kernel, X is the input data, and b is the bias.

The pooling layer is based on the convolutional layer to

extract meaningful information from the image further,

reducing the parameters in the network and the amount of

computation by reducing the space size. The pooling layer also

reduces the overfitting of the model and improves the fault

tolerance of the model (Kuo, 2016). There are two main types of

pooling, maximum pooling and mean pooling. The maximum

pooling is a typical pooling operation that reduces the amount of

data through a maximum value. Mean pooling, on the other

hand, involves calculating the average value of an convolutional

field as the pooling value for that space.

In a CNN, one or more fully connected layers are connected

to pooling layers after multiple convolutional layers. Among the

layers, each neuron in the N layer connects all neurons in the N-

1 layer, but not in the same layer. The fully connected layers play

two roles in the overall convolutional neural network. Firstly, it

classifies the features based on different details extracted from

the convolutional layers. Secondly, it reduces the impact of

feature position shifts on the classification to a greater extent.

The fully connected layer acts as a classifier (Acharya et al., 2017;

Gu et al., 2018).
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Microalgae detection and
classification with machine learning

As unicellular organisms, microalgae are not only very

microscopic, but also do not differ much from one species to

another. Combined with the fact that thousands of species of

microalgae may be present in a tiny sample, microalgae

classification is a very challenging job. Traditional manual

classification under a microscope is not only laborious, but

also requires a high level of skill and experience for the

operators. Therefore, the manual classification method of

microalgae is usually inefficient and unsatisfied in terms of

accuracy (Barsanti et al., 2021).

Machine learning algorithms based on data-driven models

are very advantageous in dealing with different types of

unstructured data (Rani et al., 2021). Much progress has been

made in introducing machine learning algorithms in microalgae

detection and classification work. The scheme allows computers

to automatically learn the characteristics of different algae based

on existing data and give classification results for new data. The

data processed by machine learning algorithms are microalgae

images obtained through microscopy, so no-marker and

invasion-free data acquisition can be achieved. The operations

avoid the tedious process of traditional staining and labeling

steps and the damage to the microalgae growth environment

(Zheng et al., 2021).

A label-free analysis model was devised by Claire Lifan Chen

et al. to perform a rapid classification of microalgae (Chen et al.,

2016). High-throughput imaging technology allowed the

acquisition of 100,000 images of microalgae per second, while

capturing rich information about microalgae and summarizing

it into 16 features. They employed multiple machine learning

algorithms to classify the unlabeled data. Practical experiments

showed that the method was 17% more accurate than the

traditional method and was well suited for high-throughput

label-free microalgae classification. Çağatay Is ̧ıl et al. devised a

novel portable cytometer to conduct label-free identification and

analysis of microalgae (Is ̧ıl et al., 2021b). The device could

analyze chemical perturbation in the external environment

based on spectral features in microalgae images and classify

microalgae based on deep learning technologies. In addition, the

device could count the number of microalgae and analyze the

interactions between them. The group also utilized a

convolutional neural network to analyze the label-free spatial

and spectral characteristics of microalgae to analyze the

composition and growth status of microalgae (Is ̧ıl et al.,

2021a). The ultimate goal was to confirm the interactions

between microalgae and the response of microalgae to external

contamination. The effect of the method was demonstrated by

the mixed culture of single microalgae and multiple microalgae

in copper-containing solutions. Thanks to the label-free
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technique, the tested microalgae samples could be directly put

back into the original solution without contamination.

Iago Corrêa et al. utilized a convolutional neural network

with five convolutional layers and three pooling layers, total

eight layers, to classify microalgae (Correa et al., 2017). The

dataset consisted of microalgae images and labels. The

microalgae images were obtained by the team from South

Atlantic seawater using FlowCAM equipment, and the tags

were manually classified by multiple experts. The input data of

the model could be low-resolution raw microalgae images

without feature extraction based on microalgae images. The

fully automated microalgae classification accuracy given to the

model without image preprocesses and human intervention had

reached 88.59%. The performance could be further improved if

the data enhancement technique was added. D.P. Yadav et al.

improved the traditional ResNeXt convolutional neural network

for the recognition and classification of microalgae (Yadav et al.,

2020). The dataset was sourced from the Physiology Research

Center and the Internet, and the initial dataset contained only

100 images. After data augmentation, the dataset was expanded

to 80,000 images, 80% employed for model training and the rest

20% for model validation. The scheme was experimentally

validated to achieve 99.97% classification accuracy. P. Otálora

et al. presented two frameworks with neural networks to classify

microalgae (Otálora et al., 2021). The first framework handled

microalgae data from the device FlowCAM, providing 30

features of microalgae. The artificial neural network included

30 neurons in the input layer, and 25 neurons in the hidden

layer, and the final output was two types. The second framework

processed microalgae images with a convolutional neural

network, including 25 layers. The model could achieve 96%

accuracy in training and 93.5% accuracy even in actual tests.

Mesut Ersin Sonmez et al. used multiple structured

convolutional neural networks and a coupled support vector

machine algorithm to classify microalgae, all of which yielded

excellent results (Sonmez et al., 2022). All microalgae images

were obtained from an inverted microscope, with only 20 images

of each microalgae in the initial dataset. To ensure the final

result, the dataset was extended by applying the data

enhancement technique. The final recognition accuracy of the

convolutional neural network based on the AlexNet structure

with various modifications was as high as 99.66%. In addition,

the microalgae features identified by the convolutional neural

network were utilized as input parameters for the support vector

machine algorithm to improve its recognition accuracy to the

same level as the convolutional neural network. Jeffrey Harmon

et al. conducted a classification study of spherical microalgae

based on a support vector machine approach (Harmon et al.,

2020). They first utilized fluorescence imaging technology to

obtain trichromatic images of microalgae to quantify the

morphological characteristics of microalgae. Then, the

morphological features of microalgae were analyzed and finally

classified based on the support vector machine algorithm. The
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accuracy of the method reached 99.8% in experiments, which

was higher than the convolutional neural network algorithm in

some specific cases. An additional advantage of the model was

that it provided morphological information on the microalgal

populations. Anaahat Dhindsa et al. designed a new scheme to

classify microalgae (Dhindsa et al., 2021). The microalgae images

were segmented, and 25 features were extracted by a generalized

segmentation algorithm, and then various machine learning

algorithms were applied for classification. The classification

accuracy increased from 96.1% to 98.2% after the modification

of the support vector machine algorithm. The authors

mentioned that the introduction of transfer learning into the

classification progress was expected to develop the accuracy in

the future. Zhanpeng Xu et al. introduced a spectral imager that

allowed classification and growth cycle analysis of microalgae

(Xu et al., 2020). The device acquired spectral images of

microalgae and then analyzed them with a support vector

machine algorithm. The last classification accuracy was 94.4%.

Based on the random forest algorithm, the growth of microalgae

could be predicted from the above data, and the accuracy could

reach 98.1%. The accuracy and effectiveness of the model were

confirmed after the identification of a mixture of microalgae.

Paulo Drews-Jr et al. applied semi-supervised learning in their

work on microalgae classification (Drews et al., 2013). The

dataset was microalgae data obtained through the FlowCAM

device in the Atlantic Ocean. Experiments confirmed that the

method could get better results than SVM, and the final

recognition accuracy could reach 92% if the active learning

algorithm was added. The performance of the method could

be further enhanced by improving the dataset and optimizing

the image segmentation algorithm.

Sansoen Promdaen et al. performed an in-depth research on

the classification of microalgae with unclear boundaries and

blurred textures (Promdaen et al., 2014)(Figure 5A). To deal

with the issue of vague boundaries, the authors utilized the

method of microalgae segmentation based on the image

background. To handle the situation of blurred textures, the

authors proposed a new texture description method. The dataset

with 720 images had multiple sources, including universities,

waterworks authorities, networks, etc. The accuracy of the

method reached 97.22% in the experiment. Hui Huang et al.

employed multiple machine learning algorithms to classify

microalgae and microplastics in seawater (Huang et al., 2021).

The data processed by the various algorithms were the image

data acquired by spectral microscopy. The image stitching

technique was introduced to expand the imaging range of

images. The effectiveness of each algorithm was verified by

testing in a real-world environment. Jhony−Heriberto Giraldo

−Zuluaga et al. utilized a digital microscope to take images of the

microalgae and obtained the microalgae species through the

image process (Giraldo-Zuluaga et al., 2016). Images were

characterized by statistical features, which were derived from

the calculation and analysis of texture features. The dataset used
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for training was obtained by processing the original images

acquired by the digital microscope. The experiments showed

that the effect of the support vector machine algorithm was

better than the artificial neural network algorithm, which could

reach 98.63%. Zepeng Zhuo et al. constructed a dataset

containing 35 species of microalgae specifically for microalgal

classification (Zhuo et al., 2022). The content of the dataset was

polarized light scattering data of microalgae. They investigated

the performance of many machine learning algorithms based on

the dataset, and the final result proved that the non-linear

support vector machine algorithm could achieve the best

performance of 80%. The research work had significant

implications for the search for better light polarization.

A model for automatic classification of live and dead cells in

Chlorella was proposed by Ronny Reimann et al (Reimann et al.,

2020) (Figure 5B). Microalgae images were acquired by

fluorescence microscopy, and features were extracted. Multiple

machine learning algorithms were used for the classification

prediction of live and dead cells of microalgae, and the random

forest algorithm gave the best result with a precision of 96.6%.

The model could classify not only individual microalgae, but also

the whole microalgae population in terms of live and dead cells

with an accuracy of 82%. The dead microalgal cells were

significantly larger in diameter and area than the live

microalgal system. Yanyan Wang et al. utilized machine

learning algorithms to classify live and dead microalgae in the

ocean as well (Wang et al., 2021) (Figure 5C). The microalgae
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features used for machine learning algorithm analysis were all

acquired through digital holographic microscopy, which

eliminated the need for tedious staining and labeling processes

on the microalgae. The method also ensured that there was no

impact on the growth environment of the microalgae. The

framework achieved an accuracy of 94.8% in the laboratory

and reached the same accuracy as the conventional staining

method even when validated in practice. B.M. Franco et al.

classified a variety of microalgae simultaneously based on an

artificial neural network (Franco et al., 2019). The input data for

the mode were spectral features of microalgae, and the model

was trained using 550 sample data. In the experiment, the model

achieved 98% accuracy in the identification of single microalgae.

Even for mixtures of multiple microalgae, the model could

identify the species of microalgae and analyze the proportion

of the total.

The YOLOv3 network was applied in the detection of

microalgae by Jungsu Park et al (Park et al., 2021). A dataset

of 1114 microalgae images collected using microscopy was

composed. Depending on the quantity of extracted microalgae

attributes, the dataset was divided into four parts. After the

YOLOv3 network was trained on these four datasets, the

measured recognition accuracy reached more than 80%. The

result fully proved the effectiveness of the approach in

recognizing microalgae. Further research by the group showed

that the accuracy of recognition could be further improved by

replacing the images in the dataset and recognizing objects with
B C

A

FIGURE 5

(A) Images of twelve species of microalgae. (reproduced with permission from Promdaen et al., 2014). (B) Procedure of microalgae classification and
recognition based onmachine learning. (reproduced with permission from Reimann et al., 2020). (C) Procedure of microalgae classification and
recognition based onmachine learning. (reproduced with permission fromWang et al., 2021).
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color ones. An improved framework based on the YOLOv3

network was proposed by Mengying Cao et al. to identify

microalgae (Cao et al., 2021). Features were extracted by the

MobileNet network, and the elements could be fused in later

operations of this model. The dataset was generated manually by

the team through a camera, with a total of 10,000 images after

data enhancement. The experiments showed that the correctness

of the model for the microalgae identification was improved by

8.59% over the original model, reaching 98.90%. Daniele

Gaetano Sirico et al. reported a novel scheme to detect the

movement of microalgae in 3D space (Sirico et al., 2022).

Mechanical scanning microscope was often challenging to

obtain the complete data of microalgae movement, so a digital

holographic microscope was employed in the framework to

track the trajectory of microalgae movement. Computer

software and digital image process algorithms synthesized 3D

images of microalgae movements and finalized the tracking of

their trajectories. Finally, the model visualized the activity of

the microalgae.

Many machine learning algorithms have been widely used in

the detection and classification of microalgae, such as support

vector machine, random forest, and neural network (Table 1). In

particular, deep learning technology represented by convolutional

neural network is most widely utilized. The datasets applied in

deep learning are essentially acquired by the device FlowCAM.

The YOLOv3 network is a kind of deep learning model, which is

widely used in microalgae detection due to its perfect recognition

effect on small targets.
Conversion from microalgae
to energy

Fossil fuels such as oil have insurmountable problems: the

non-renewable issue and environmental pollution (Brennan and

Owende, 2010). Renewable biofuels are an excellent solution to

these problems. Microalgae can be used to make biofuels, and

the technology has long been used in reality. But the transfer

from microalgae to biofuels has faced issues such as the
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complexity of the microalgae culture and the uncertainty of

the conversation (Enamala et al., 2018; Aghbashlo et al., 2021).

Machine learning algorithms can play an essential role in

microalgae culture and conversion to biofuels to solve the

above problems (Georgianna and Mayfield, 2012). By

analysing the existing data, the machine learning algorithms

can estimate the optimal environmental and light conditions in

the microalgae culture process, predict the biofuel output rate,

verify the quality of biofuels, etc. Machine learning algorithms

can make the conversion of energy more efficient and the quality

of biofuels more assured (Rock et al., 2021; Wang et al., 2022).

Unlike previous methods of population lipid content

analysis of microalgae, Baoshan Guo et al. conducted a study

of lipid content analysis of individual microalgae by combining

optofluidic microscopy images with machine learning (Guo

et al., 2017). The method allowed to obtain analytical results

in a non-invasive way, without destroying the microalgal

structure. The authors demonstrated the effectiveness of the

approach through practical experiments with slender-eyed

worms and E. coli. They predicted that better results could be

achieved if deep learning or unsupervised learning techniques

could be introduced. Ahmet Coşguna et al. used a machine

learning approach to explore the optimal growth conditions and

lipid production factors for microalgae to generate biofuels

(Cos ̧gun et al., 2021)(Figure 6). The dataset and potential

influence factors were derived from a summary of 102

scientific studies. Through the analysis of the decision tree

algorithm, they found 11 combinations of influence conditions

for high microalgal production and 13 incorporations of

influence factors that could lead to increased lipid content.

Rakesh Chandra Joshi et al. reported a new way to estimate

the oil content of microalgae with a machine learning method

(Joshi et al., 2021). They first obtained images of the microalgae

through microscopy. Then, the oil-containing particles in the

microalgae images were segmented and analysed for lipid

content. A comparison of the results between the traditional

method with the model confirmed that the model significantly

reduced the computation time, and the predictions were more

accurate. Ehecatl Antonio del Rio Chanona et al. devised a novel
TABLE 1 Machine learning algorithms and models used in microalgae classification and detection.

Machine learning
algorithm

Model Feature Merit Demerit Reference

Support Vector
Machine

Best Hyper Parameters: gamma:
92.0, C: 4.3

Remove extreme values in
each attribute

Data balance More computation Dhindsa
et al., 2021

Random Forest Statistical model Voting for the last result Prevent overfitting Poor effect on data
with few features

Xu et al.,
2020

Neutral Network Fully connected feed-forward
neural network (3 layers)

Data were normalized No need for much time or
chemical analysis

Less accurate for
mixed microalgae

Franco
et al., 2019

Deep Learning YOLOv3 network a lightweight network as the
backbone network

reduce the position error when
detecting small objects

Dataset is inadequate Cao et al.,
2021
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framework combined with deep learning technology to

investigate optimal conditions for microalgae growth and the

conversion from microalgae to biofuels (del Rio-Chanona et al.,

2019). The behavior of the underlying organisms was studied by

coupling hydrodynamic and biodynamic techniques together,

and the dataset for deep learning was constructed. The

framework reduced the calculation time from months to days

and predicted the more appropriate light conditions for

microalgae growth and the configuration requirements for the

conversion to biofuels. In order to obtain low-cost bio-oil, Bin

Long et al. applied machine learning algorithms in the

cultivation process of microalgae, hoping to get cheaper

microalgae (Long et al., 2022). Factors such as algal density

and light condition were thoroughly analysed to provide optimal

conditions for the growth of microalgae. A better culture

environment and minimal light shading were also considered.

The results of the study were equally applicable to the calculation

of conditions for the growth of microalgae in large-scale cultures

of algae plants in industry and other types of installations.

Due to the high price of biodiesel produced from

microalgae, some people mixed cheap cooking oil such as

canola oil into the biodiesel. Mahdi Rashvand et al.

introduced SVM and ANN algorithms in biodiesel quality

identification (Rashvand et al., 2019). The SVM algorithm

was used to analyse the biodiesel phase shift coefficient and

voltage coefficient obtained through the capacitive sensor. In

contrast, the ANN was used to analyse the image characteristics

of the biodiesel. The experimental data showed that the

combination of the two methods together led to optimal

identification results. Hossein Moayedi et al. compared several

machine learning algorithms that could evaluate the purity of

biodiesel obtained from microalgae conversion (Moayedi et al.,

2020). The training sample data were obtained from existing

biodiesel research results, and eight factors including reaction
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temperature and catalyst type were used as input parameters for

the analysis. The performance of the alternating model tree

algorithm was the best after the available metrics argument. A

numerical model containing ANN utilized to evaluate the

behaviour of biodiesel combustion, emission, etc., produced by

microalgae was designed by Satishchandra Salam et al (Salam and

Verma, 2019). ANN was trained through the data obtained from a

software called Diesel-RK. The model accurately predicted the

combustion and emission factors of the internal combustion

engine under different response conditions. The redundancy

of part system parameters indicated that the model had

the potential for further optimization. Hao Chen et al.

researched the viscosity of microalgae slurry used in the

biofuel manufacturing process with ANN (Chen et al., 2021).

The dataset was derived from 1691 experimental data, and the

considered parameters included temperature, microalgal mass

fraction, shear rate, etc. Experiments demonstrated that this

method had better prediction and outperformed the already

widely used curve-fitting method. Abhijeet Pathy et al. carried

out the prediction of the yield and biochar composition from

microalgae to biochar based on machine learning algorithms

(Pathy et al., 2020). After drilling the model with the training

data, the model was further refined by comparing experimental

data on 13 different parameter combinations. The analysis

results revealed that temperature played a dominant role in

the final yield of biochar. Fangwei Cheng et al. assessed the

energy productivity and carbon capture capacity of microalgae

through hydrothermal reaction based on machine learning

algorithms (Cheng et al., 2020). The dataset contained

800 items, all extracted from the existing literature.

Numerous experiments had confirmed that the random

forest algorithm was better in the task than the multiple

linear regression algorithm and the regression tree model.

Hydrothermal reaction methods typically had higher energy
FIGURE 6

The flowchart of production from microalgae to biodiesel. (reproduced with permission from (Coşgun et al., 2021).
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production efficiency and carbon capture capacity than

conventional methods.

Jie Li et al. introduced the machine learning algorithm to the

hydrothermal liquefaction process of converting microalgae into

bio-oil to produce high quality, low nitrogen bio-oil (Li et al.,

2021). Experiments confirmed that the random forest algorithm

was the optimal choice for this multi-task prediction process.

Both predicted results and experimental data showed that the

lipid content in microalgae and temperature had the most

significant effect on oil production. The nitrogen content of

microalgae and temperature played a decisive role in the

nitrogen content of the final bio-oil. Weijin Zhang et al.

researched optimal conditions used to produce bio-fuel for

different types of microalgae with machine learning methods

in the hydrothermal liquefaction process (Zhang et al., 2021).

The hyperparameters included the composition content of

microalgae and the primary conditions of hydrothermal

liquefaction. After several validations, it was finally shown that

the gradient propelled regression algorithm was better than the

random forest algorithm for both single-task and multi-task

estimation. So far, the whole process has a lot of potential for

improvement. The adaptive neuro-fuzzy inference system is a

new scheme inference that organically connects fuzzy logic and

neuron network. The system employs an integrated algorithm

containing the back propagation technique and the least squares

method to modulate the model parameters. The algorithm was

introduced into the conversion of microalgae to biodiesel

production by Momir Milić et al. The training data were

obtained from experimental data in the published literature

(Milić et al., 2021). The method was a fundamental guide for

the conversion of microalgae to biodiesel. Sashi Sonkar et al.

utilized machine learning algorithms to study the drying of

microalgae pulp for biodiesel production (Sonkar and Mallick,
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2020). The collected experimental data were trained by a logistic

regression algorithm with regularization to build the binary

classification model. Factors such as blower speed and

temperature were used as input parameters to evaluate the

residual water content and lipid yield of the microalgal slurry.

The predictions obtained by the method fundamentally

improved the drying speed of microalgae pulp. Nahid Sultana

et al. proposed a new model with ANN and a support vector

regression algorithm to predict biodiesel produced from

microalgae (Sultana et al., 2022). Parameters such as catalyst

dosage, reaction time, and reaction temperature were used as

input hyperparameters, and the hyperparameters were

automatically adjusted by combining the Bayesian algorithm

with ANN. The model was validated using a lot of published

data, which proved its effectiveness. These numerical

simulations used to estimate the yield of microalgae to

biodiesel were not only more accurate but also more time and

cost efficient.

In addition, traditional machine learning algorithms are

often applied in the transformation process from microalgae

to bioenergy, while deep learning is rarely applied (Table 2). An

important reason for this phenomenon is that there are fewer

datasets available for deep learning.
Important role of microalgae in
environment protection

Microalgae play an important role in environment

protection and pollution prevention. Their absorption of

carbon dioxide through photosynthesis can mitigate the global

greenhouse effect. (Sundui et al., 2021) In addition, they have an

irreplaceable role in wastewater treatment. The addition of
TABLE 2 Machine learning algorithms and models used in biofuel generation from microalgae.

Machine
learning
algorithm

Model Feature Merit Demerit Reference

Support
Vector
Machine

Using the general search
algorithm to create the final
model

Based on statistical theory Multi algorithms such as Linear,
Quadratic, Cubic and Gaussian

Higher training cost Rashvand et al.,
2019

Decision Tree “fitctree” function and CART
algorithm

Minimize the validation error Classify any new data correctly Extra training to get
generalization ability

Coşgun et al.,
2021

Random
Forest

Binary splitting Results using predictions derived
from multiple decision trees

Better fitting Complicated to interpret Cheng et al.,
2020

Gradient
boosting
regression

Gradient boost strategy Ensemble learning algorithm Good compatibility for unbalance
datasets

Complicated operations Zhang et al.,
2021

Neutral
Network

4 neurons in input layer, 18 in
hidden layer, 1 in output layer

Hidden layer neuron numbers can
be varied during training

Better represent ability Higher training cost Chen et al.,
2021

Deep
Learning

A CNN consists of two hidden
layers

Capabilities of tolerate noise and
uncertainty

Prevent overfitting neurons increasing but
accuracy not increase

del Rio-
Chanona et al.,
2019
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machine learning algorithms makes the role of microalgae even

more apparent (Cruz et al., 2021) (Figure 7A).

Microalgae could be used to treat E. coli in wastewater, and

M Žitnik et al. applied a machine learning algorithm to search

conditions that worked best for treatment (Žitnik et al., 2019).

Parameters such as microalgae concentration, E. coli

concentration, pH, and conductivity were analysed by the

decision tree algorithm. The results showed that conductivity

had the most important effect on the treatment effect of E. coli.

Based on the results, targeted optimization of the wastewater

treatment system could be carried out. Vishal Singh et al.

researched the ways to increase microalgal production and

enhance their ability to treat wastewater with machine

learning methods as well (Singh and Mishra, 2022). The

dataset was derived from publicly available results from recent

years and was fully justified by the decision tree algorithm for

parameters such as temperature, CO2 content, and pH value.

The authors gave different combinations of parameters for

improving microalgal production. The way treated wastewater

with high nitrogen content and high phosphorus content after

experimental validation admirably. They also applied the

decision tree algorithm in the prediction of microalgae growth

conditions and wastewater treatment conditions (Singh and

Mishra, 2021) (Figure 7B). Parameters that were less involved

in other algorithms, such as initial inoculum, reactor type, and
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nutrient concentration in the wastewater, were fully considered

in this method. Different combinations of parameters suitable

for high yield, high phosphorus removal performance, and high

nitrogen removal capability were calculated by this method. The

method provided solid theoretical support for the large-scale

treatment of wastewater. S. M. Zakir Hossain et al. provided an

in-depth analysis of the ability of microalgae to treat municipal

sewage (Hossain et al., 2022a). They aimed to use microalgae to

remove both nitrogen and phosphorus from sewage. The impact

of factors such as temperature, light, and dark cycles on the final

results was well demonstrated. The final consequence revealed

that the support vector regression algorithm predicted more

accurate and efficient results. They also combined the support

vector regression algorithm with the crow search approach for

single and multi-objective optimization to further improve the

effect of microalgae in removing nitrogen and phosphorus from

wastewater (Hossain et al., 2022b). Experimental data confirmed

the best treatment of wastewater by microalgae at the

temperature of 29.3 degrees Celsius, 24 hours of uninterrupted

light, and nitrogen to phosphorus ratio of 6:1.

Muzhen Xu et al. investigated the treatment of heavy metals

in wastewater by microalgae based on artificial intelligence

technology (Xu et al., 2021a). They utilized microscopy to take

images of individual microalgae to analyse their behaviour to

determine their removal effect on heavy metals. The effect
B

A

FIGURE 7

(A) Block diagram of Shellfish contamination prediction based on machine learning. (reproduced with permission from an open access article).
(B) Process diagram of wastewater treatment with microalgae. (reproduced with permission from Singh and Mishra, 2021).
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of parameters such as eccentricity and compactness were

specifically examined. Copper ion experiments proved that this

method had a more effective heavy metal removal efficiency.

The team also used machine learning algorithms to study the

morphology of microalgae in more depth to obtain the

characteristics of microalgae that could efficiently treat heavy

metals in wastewater (Xu et al., 2021b). The process used

microscopy to acquire images of microalgae, enabling the

assessment of the efficiency of heavy metal removal by

microalgae in a non-invasive and label-free way. The

experimental results showed that the morphology of E. gracilis

cells was more conducive to the efficient removal of heavy

metals. Microalgae can mitigate the greenhouse effect by

absorbing carbon dioxide from the atmosphere through

photosynthesis. Domenico D’Alelio et al. studied the impact of

microalgae on the global warming issue based on machine

learning algorithms (D’Alelio et al., 2020). They trained the

model based on known data downloaded from the Web, and

then analysed their collection data of 27 years in the North

Atlantic. The final analysis showed that as seawater temperature

increased, the number of microalgae decreased, and distant

marine areas faced nutrient deficiencies in seawater.

At present, there are few machine learning algorithms used to

assist microalgae in wastewater treatment and other environmental

protection work, mainly support vector machine algorithm and

decision tree algorithm (Table 3). The application record of deep

learning in this field has not been found yet.
Application of machine learning in
the growth phase of microalgae

The yield of microalgae and the ease of harvesting can

directly affect their cost. There are many factors influencing

the growth and morphology of microalgae, and various

investigation has been conducted previously to obtain lower

cost microalgae. However, it is either laborious or poorly

predicted, making it difficult to provide valuable suggestions

for actual production. Numerous factors have been analyzed

with machine learning algorithms to predict the growth and final

yield of microalgae in recent years.
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Susanne Dunker et al. proposed a deep learning scheme for

identifying microalgae species and growth cycles (Dunker et al.,

2018). 47,000 microscope high-throughput images at 60x

magnification were trained on the model. The model achieved

97% accuracy in natural experiments, which was quite good. The

framework offered great help for the rapid assessment of water

quality. D. M. J. Purnomo et al. studied the growth behavior of

microalgae in solutions with different pH values based on an

extreme learning machine (Purnomo et al., 2015). The team

observed the growth of microalgae for 20 consecutive days and

normalized the data to construct the dataset. A cross-validation

method was introduced to prevent overfitting problem during

model training. Experiments had shown that the method had a

high accuracy rate, which could be further improved if used in

conjunction with a genetic algorithm. Bi Xiaolin et al. investigated

the impact of pH on the growth of microalgae by analyzing

hyperspectral images with a machine learning algorithm (Bi et al.,

2019). The spectra of all microalgae were represented by 900

pixels, 300 pixels were then randomly selected as the training set,

and another 300 pixels were randomly chosen as the validation

set. The experimental data revealed that the support vector

machine algorithm was the most effective method in identifying

microalgae and could reflect their growth conditions. The study

provided excellent technical support for monitoring the growth

process of microalgae and analyzing their directional movements.

Wendie Levasseur et al. studied the effect of light on the growth of

microalgae, especially in an environment with alternating light

and dark light based on a machine learning algorithm (Levasseur

et al., 2022). Medium and high light, and dark light switch

frequencies were used as the focus of the analysis. The growth

data of low-density green microalgae under different light switch

frequencies were compiled and analyzed by inferential statistics.

Finally, the authors described different experimental setup to

observe the growth of microalgae. Shixuan He et al. analyzed

the growth of microalgae based on the support vector machine

algorithm to assess the degree of eutrophication in water bodies

(He et al., 2018). They first obtained the characteristic of

microalgae by Raman spectroscopy to get their growth stages.

Then they analyzed the relationship between algal growth and

environmental changes. The authors presented a full paper on the

effectiveness of the method. A framework that brought together
TABLE 3 Machine learning algorithms and models used in environmental protection.

Machine learn-
ing algorithm

Model Feature Merit Demerit Reference

Support Vector
Machine

Using the general search algorithm
to create the final model

Based on statistical theory k-fold cross-validation is
applied against overfitting

Easy to
overfitting

Hossain et al.,
2022b

Decision Tree Governed by if-then rules The ‘cvpartition’ function and ‘HoldOut’
validation procedure split the dataset

Variable combinations are
easy to change

High
training
cost

Singh and
Mishra, 2021
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multiple machine learning algorithms was employed to study the

growth process of microalgae and the amount of CO2 fixation by

S. M. Zakir Hossain et al. Factors such as temperature, nitrogen to

phosphorus ratio, and frequency of light and dark cycles were

used as input parameters for the whole framework (Hossain et al.,

2022c) (Figure 8). All algorithms were utilized together with

Bayesian optimization for various predictions. The advantages

and disadvantages of each algorithm in prediction were listed in

detail in the article.

A model used to estimate the daily productivity and final

production of microalgae in open ponds was surveyed by

Supriyanto et al. Based on an existing dataset, a decision tree

method was employed to calculate the effect of temperature,

solar radiation, and other condition on the growth and final yield

of microalgae (Supriyanto et al., 2018). The efficiency of the

model had been validated by practical evaluation. Its

performance could be further improved in the future if more

parameters were added to the model. The group investigated the

production of mixed microalgae in semi-continuous open ponds

based on an artificial neural network as well (Supriyanto et al.,

2019) (Figure 9). The neural network included a hidden layer

and an output layer, and the input layer contained eight

parameters such as algae concentration, temperature, solar

radiation, and pH value. The network was trained through a

mature dataset. The final prediction was the concentration of

microalgae. The data showed that the three-layer neural network

model worked well for various input parameters. Victor

Pozzobon et al. constructed a machine learning scheme to

check nitrate and nitrite levels in the microalgae growth

environment (Pozzobon et al., 2021). First of all, different

concentrations of nitrate and nitrite samples were extracted

from the microalgal growth environment and analyzed

spectroscopically with a spectrometer. These data were then

analyzed based on a least square regression algorithm and
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ultimately used to predict nitrate and nitrite concentrations.

The method not only significantly reduced the time required for

detection but also ensured a sufficiently high accuracy. A novel

framework coupling support vector machine algorithm and

random forest algorithm was reported by Patricio López

Expósito et al. to measure microalgae concentration (Expósito

et al., 2017). The laser irradiated the suspended particles of

microalgae to get reflectance spectra, which could be analyzed to

obtain the concentration of microalgae. The team constructed a

dataset of 76 vectors through practical experiments to solve the

hyperparameters in the model. The results demonstrated that

the model could quickly and accurately estimate the

concentration of microalgae. The team also analyzed the floc

length and geometric shape during the growth of microalgae in a

random forest regression model to reduce the cost of microalgae

at harvesting (Lopez-Exposito et al., 2019). A set of length

collected by computer software generating virtual flocs after

focused reflection operations was employed as the data set for

the training model. The trained and optimized model achieved

very high accuracy in actual tests. An additional advantage of the

model was that it could be quickly adapted to the floc structure

according to the actual requirements.

Machine learning algorithms can analyze the effect of

periphyton factors such as DNA, in addition to macroscopic

factors that affect the growth of microalgae (Teng et al., 2020).

Appropriate edit of the microalgae genes could rapidly increase

the production and oil content of microalgae. However, the

genomes of microalgae were not only long, but also particularly

complex. Therefore, they could not be rapidly localized and

analyzed by conventional methods. Likai Wang et al. applied a

logistic regression algorithm to learn the 32 known characteristic

expressions of stress genes to predict the function of the

remaining stress genes (Wang et al., 2018). The authors’ study

showed that the method had high accuracy. If more feature
FIGURE 8

Process diagram of microalgae cultivation environment. (reproduced with permission from Hossain et al., 2022c).
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expressions were learned in known data by deep learning

technique, the performance of the framework was promising

to be further improved. Supreeta Vijayakumar et al. analyzed the

genomes of microalgae based on machine learning algorithms to

explore the feedback of microalgae to changes in light and

salinity in the environment (Vijayakumar et al., 2020). They

firstly collected data on photosynthesis and genome-based

energy metabolism of microalgae. These data were then

analyzed by methods such as k-means clustering. The team’s

further results showed that the combination of machine learning

algorithm and genomic model accomplished the work well.

Victor Pozzobon et al. analyzed the viability of microalgae by

researching the flow cytometer readings through a machine

learning algorithm (Pozzobon et al., 2020). The microalgal

activity was obtained by studying the integrity of the cell wall

of microalgae after double staining. The validity of the model

was verified by freezing the microalgae and observing their

activity. The results showed that the model predicted data

were consistent with those listed in the published literature.

Among all the microalgae treatment modules in this paper, the

microalgae growth status detection module uses the most machine

learning algorithms (Table 4). Although deep learning has not been

widely used in this work, it has achieved very significant results.
Conclusion

This paper provides a detailed summary of machine

learning techniques used in microalgae treatment. The
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overview refers to the classification and identification of

microalgae, the conversion of microalgae into bioenergy, the

treatment of waste by microalgae, and the growth of

microalgae. Microalgae are critical part of the marine

ecological cycle and have a very significant economic value.

However, the classification, identification, and purification of

microalgae have always been a problem for practitioners

because they are so small and diverse. Machine learning

techniques are good at operations such as classification and

regression, and have been highly successful in digital image

processing and speech recognition. The introduction of

machine learning techniques to microalgae applications has

been equally fruitful. This paper illustrates how data-driven

machine learning techniques process input data and calculate

the output results, with algorithms such as support vector

machine, decision tree, random forest, and neural network as

examples. How machine learning algorithms have been applied

and the results have been achieved in the areas such as

microalgae classification, conversion of microalgae into

bioenergy, microalgae purification of the environment, and

microalgae growth are then summarized. The paper has

tremendous implications for future extensions of machine

learning in microalgae applications.
Prospect

Many achievements have been made in the application of

machine learning in microalgae identification and treatment.
FIGURE 9

Schematic representation of a framework used to estimate microalgae growth with ANN. (reproduced with permission from Supriyanto et al., 2019).
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However, there are still many aspects that can be further

optimized. First of all, there are very few datasets available for

machine learning algorithms in microalgae process. Even though

some datasets have been widely used in some specific areas, they

still face the problem of over-fitting (Rani et al., 2021). Secondly,

when the performance of a single machine learning algorithm is

limited, multiple algorithms can be coupled to build a hybrid

model. The dataset that accompanies the hybrid model also need

to be studied in depth (Sundui et al., 2021). Besides, the

improvement of the performance of existing machine learning

models is also a key work in the future. For example, the current

cost of biodiesel converted from microalgae is significantly

higher than diesel derived from fossil fuels. Both modification

of existing models and construction of new models to assist the

conversion of microalgae to biodiesel require a lot of work

(Chowdhury and Loganathan, 2019).
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