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In this work we study microwimmers, whether colloids or polymers, embedded in bulk or in
confinement. We explicitly consider hydrodynamic interactions and simulate the swimmers
via an implementation inspired by the squirmer model. Concerning the surrounding fluid,
we employ a Dissipative Particle Dynamics scheme. Differently from the Lattice-Boltzmann
technique, on the one side this approach allows us to properly deal not only with
hydrodynamics but also with thermal fluctuations. On the other side, this approach
enables us to study microwimmers with complex shapes, ranging from spherical
colloids to polymers. To start with, we study a simple spherical colloid. We analyze the
features of the velocity fields of the surrounding solvent, when the colloid is a pusher, a
puller or a neutral swimmer either in bulk or confined in a cylindrical channel. Next, we
characterise its dynamical behaviour by computing the mean square displacement and the
long time diffusion when the active colloid is in bulk or in a channel (varying its radius) and
analyze the orientation autocorrelation function in the latter case. While the three studied
squirmer types are characterised by the same bulk diffusion, the cylindrical confinement
considerably modulates the diffusion and the orientation autocorrelation function. Finally,
we focus our attention on a more complex shape: an active polymer. We first characterise
the structural features computing its radius of gyration when in bulk or in cylindrical
confinement, and compare to known results obtained without hydrodynamics. Next, we
characterise the dynamical behaviour of the active polymer by computing its mean square
displacement and the long time diffusion. On the one hand, both diffusion and radius of
gyration decrease due to the hydrodynamic interaction when the system is in bulk. On the
other hand, the effect of confinement is to decrease the radius of gyration, disturbing the
motion of the polymer and thus reducing its diffusion.
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1 INTRODUCTION

Active Matter is a branch of Physics that focuses on the study of
intrinsically out-of-equilibrium systems due to energy being
constantly supplied, converted into directed motion and
dissipated by individual constituents. Active Matter is a field
that has raised a lot of interest in the last decade, since it captures
complex collective behaviours, often exclusively associated to
living matter, and might enable a wide range of technological
applications [1]. One of the paradigmatic systems of Active
Matter consists of a suspension of active particles. Active
particles can be living (such as bacteria) or synthetic (such as
active colloids). Active colloids are micron-size particles which
self-propel through a medium by converting energy extracted
from their environment into directed motion [2, 3], with
potential medical and technological applications [4–10]. The
collective behaviour of systems constituted by a large number
of these particles is rich and complex as shown by a series of
recent numerical [11–17] and experimental [18] works, and in
many cases cannot be ascribed solely to the particles motion since
hydrodynamics due to the surrounding solvent might need to be
taken into account [19]. This is the case for microswimmers [20],
whose motion is an essential aspect of life.

Microswimmers are usually ciliated and/or flagellated
microorganisms that achieve propulsion thanks to the
movement of their cilia located on their outer surface: for this
reason one can consider them as self-propelled microorganisms.
In the last few years microswimmers have been intensively
studied, being of interest in several interdisciplinary sciences.
Examples of living microswimmers are Escherichia coli
bacterium, Paramecium or sperm cells, or algae (such as
Chlamidomonas or Volvox). Whereas examples of synthetic
microswimmers are Janus colloidal particles. When
considering the effect of hydrodynamic interactions, numerical
studies of a two dimensional suspension of self-propelled
repulsive swimmers have demonstrated that hydrodynamics
affects, not only the phase behaviour of a dense suspension
[21], as suggested by Ishikawa [22] in an early work, but also
the dynamics of transient clusters at lower densities [23].
Moreover, other theoretical, numerical and experimental
results have also revealed the importance of hydrodynamics in
these systems [24–27].

To model microswimmers, Blake and Lighthill proposed the
so called squirmer model [28, 29]. The squirmer model
reproduces the induced hydrodynamic flow around a spherical
swimmer while preserving the main features of the active stresses
generated by it [30]. The spherical squirmer particle mimics the
effect of the cilia on the fluid as a prescribed slip velocity
tangential to the surface. The described mechanism is the one
that leads to the swimmer’s propulsion. A squirmer is
characterized by two modes accounting for its swimming
velocity and its active stress. Depending on the active stress, it
is possible to classify squirmers as pushers (e.g., E. coli, sperm),
pullers (e.g., Chlamydomonas) and neutral (e.g., Paramecium)
swimmers [31, 32]. The squirmer model has been expanded for
complex swimmers, such as non-spherical swimmers [32] and
explicitly ciliated microorganisms [31].

Besides mimicking the swimmer’s behaviour, it is important to
choose a model to mimic the features of the surrounding fluid.
The applicability of atomistic algorithms (Molecular Dynamics-
like) to simulate the fluid is limited, since they only allow to study
short time and length scales (few hundreds of nanoseconds and
few tens of nanometers). To explore longer length/time scales,
more relevant for living swimmers, atomistic methods become
computationally inefficient. Thus, one might consider
mesoscopic methods, that bridge the gap between the
microscopic and the macroscopic continuum scale [33]. These
methods span longer length and time scales: from several
nanometers to micrometers and from nanoseconds to
microseconds. The most renown mesocopic numerical models
used to simulate fluids that fully consider hydrodynamic
interactions are Lattice-Boltzmann [34], Multiparticle Collision
Dynamics [35–37] and Dissipative Particle Dynamics [38]. The
Lattice Boltzmann (LB) approach consists in describing the
solvent in terms of the density of particles with a given
velocity at a node of a given lattice. The discretized velocities
join the nodes and prescribe the lattice connectivity [39]. The LB
model reproduces the dynamics of a Newtonian liquid of a given
shear viscosity η. Relevant hydrodynamic variables are recovered
as moments of the one-particle velocity distribution functions.
The total force and torque the fluid exerts on a particle embedded
in it are obtained by imposing that the total momentum exchange
between the particle and the fluid nodes vanishes. Since a Lattice
Boltzmann code is computationally expensive, from a practical
point of view it is possible to parallelize it using Message Passage
Interface to exploit the excellent scalability of LB on
supercomputing facilities [40]. In the Multiparticle Collision
Dynamics (MPCD) approach [35–37] a fluid is represented by
N point particles with continuous positions and velocities. The
particle dynamics proceeds in two steps: streaming and collision.
During the streaming step, particles move ballistically. Whereas
in the collision step particles interact locally via an instantaneous
stochastic process, that could be based on stochastic rotation
dynamics with angular momentum conservation [32]. For this
purpose, the simulation box is partitioned into cubic collision
cells. Within MPCD Galilean invariance is ensured, together with
thermal fluctuations. The algorithm conserves mass, linear, and
angular momentum on the collision cell level, which gives rise to
hydrodynamics on large length and long time scales. Dissipative
particle dynamics (DPD) is one of the most efficient mesoscale
coarse-grained approaches for modeling soft matter systems.
DPD was originally proposed by Hoogerbrugge and Koelmann
[38] as an off-lattice, momentum conserving, Galilean invariant
mesoscopic method, the coarse-grained dynamics of which obeys
the Navier-Stokes equations and preserve hydrodynamics. Later
on, Espanol and Warren [41] reformulated the DPD model in
terms of stochastic differential equations. DPD consists in
modified Langevin equations that operate between pairs of
particles interacting via three different forces: conservative,
dissipative and random (thermal) forces. The DPD model has
already been used to model complex colloidal suspensions, such
as proteins [42] or red globules in blood [43].

Along with hydrodynamics, confinement also plays a major
impact on the dynamics of microswimmers. Their interaction
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with bounding walls is different depending on the type of
microswimmer we are dealing with and can lead to different
transport and aggregation phenomena. As of today, this facts
have been studied theoretically [44–46], numerically [47–49] and
experimentally [31, 50]. While in these works the study focuses
mainly in the interaction of microswimmers with plane
boundaries, other types of confinement also display relevant
features, for instance the effect of porous media in bacterial
suspensions has also been reported [51]. Finally, of course it is
worth noting that the effect of confinement is not only limited to
active matter systems but also plays a role in a wide range of
systems, such as passive hard spheres [52].

In the present work we propose to model suspensions of
microwimmers with DPD hydrodynamics inspired by the
squirmer model. When the agent is a sphere we choose a
raspberry-like structure [53–55] and we will directly consider
the squirmer model. Whereas when the agent is a polymer, we
will build the polymer as a chain of monomers, and treat each
monomer similarly, but not rigorously, as a squirmer. To
properly deal with hydrodynamics, we will mimic the
surrounding fluid via DPD interactions, using an in-house
extension of the LAMMPS [56] open source package
implementing appropriate reaction forces on the swimmer’s
particles that balance the forces exerted on the fluid and
enable its propulsion [57, 58]. Our choice is motivated by the
fact that differently from LB [34], DPD easily allows to take into
account thermal fluctuations and to simulate colloids with
complex shapes (not only spherical). Moreover, it is also easier
to control compressibility and Schmidt number in DPD than
MCPD. Hence, in DPD it is easier to control the appropriate
dynamic regime that couples the solvent and solute dynamics.
Although this is not the focus of his paper, DPD also allows for a
more thorough control of the phase diagram of the solvent and
how to deal with fluid phase coexistence. Firstly we study the
dynamical behaviour of either microwimmer in bulk. In the case
of active colloids, we establish the flow fields surrounding the
particle and compute their diffusion, comparing pushers, pullers
and neutral swimmers. In the case of active polymers, besides the
dynamics we also study its conformational features. Next, we
confine either microwimmer in a cylindrical channel, and unravel
the effect of hydrodynamics as compare to the equivalent systems
where hydrodynamics is not present. For each system we explore
different Reynolds and Péclet numbers. The Reynolds number
[59] is the ratio of inertial to viscous forces within a fluid
subjected to relative internal motion: this number measures
the amount of turbulence of the solvent in the system. The
Péclet number [11, 60] is defined as the ratio of the rate of
advection of a physical quantity by the flow to the rate of diffusion
of the same quantity. This number quantifies the degree of
activity of microwimmers.

The manuscript is organised as follows. In Section 2 we
describe the relevant physical quantities and the technical
details of the implementation. We first describe the DPD
method to simulate the solvent (Section 2.1), implemented
within the LAMMPS open source numerical package [56].
Next, we present the two microwimmers under study: the
active colloid (Section 3.1) and the active polymer (Section

3.2). In Section 3.1, we introduce the raspberry-like active
colloid (Figure 1A) in bulk and when interacting with a
cylindrical surface (Figure 1C). In Section 3.2, we report the
active polymer (Figure 1B), as in ref. [11], in bulk and under
cylindrical confinement (Figure 1D). The way we implemented
hydrodynamics is reported in Section 2.4, being the same for
both active objects embedded in a DPD solvent. In the same
section we characterize the physical quantities of a fluid such as
the kinematic viscosity (]) and the solvent diffusion coefficient
(Dsol), and parameters to quantify the activity of the colloid/
polymer embedded in a fluid, such as the Reynolds number and
the Péclet number. Finally, in Section 2.5 we report the analysis
tools used to study the microwimmers in bulk or under
confinement. In Section 3 we present the results obtained,
first for the colloid (Section 3.1) and then for the polymer
(Section 3.2). In Section 4 we discuss the results and
comment on future avenues.

2 MATERIALS AND METHODS

In this work we study an active colloid and an active polymer
embedded in a fluid solvent either in bulk or confined inside a
cylindrical channel. We simulate the active colloid as a spherically-
shaped collection of particles merged together by rigid interactions.
Whereas the active polymer is built as a chain of monomers glued
together by harmonic interactions that enable their relative
movement. The rest of the interactions are the DPD-like
interactions between any two particles, the hydrodynamic force-
field that enables the agents’ propulsion and, in the case of the
confined polymer, a repulsive (WCA-like) potential between
channel (particles) and polymer/solvent particles.

2.1 Modeling the Solvent With Dissipative
Particle Dynamics
Our system consists of microwimmers embedded in a solvent,
where hydrodynamics is explicitly taken into account. The fluid
surrounding the microwimmer is simulated as a collection of
individual particles interacting via Dissipative Particle Dynamics
[38]. According to DPD, below a given cutoff rc, the force acting
on the i-th solvent particle consists of three contributions,

�Fi � ∑
j

�F
C

ij + �F
D

ij + �F
R

ij( )r̂ij if r< rc, (1)

being r̂ij � ( �ri − �rj)/rij the inter-particle unitary direction
between the i-th and j-th particles. The conservative term is
�F
C

ij � Aw(rij), where A is the amplitude and w (rij) = 1 − rij/rc a
weighting factor varying between 0 and 1 as in ref. [33]. The
dissipative contribution reads �F

D

ij � −γw2(rij) (r̂ij · �vij) with
friction coefficient γ. Finally, the thermal contribution �F

R

ij �
σ αw(rij) /

��
Δt

√
is a random force, where α, is a Gaussian

random number with zero mean and unit variance, Δt the
chosen time-step for the time integration and σ � ������

2 kBT γ
√

is
related to the mean of the random force via fluctuation-
dissipation, being T the temperature of the system.
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In the current work, we implement the DPD solvent via the
LAMMPS open source package [56], setting the time step to Δt/τ
= 10–2 for the simulations of the active colloid and Δt/τ = 5 · 10–3
for the simulations of the active polymer. In both systems, we
choose an equilibration time of ~ 104 steps, while the production
run is of the order of 106 steps. The number of solvent particles
for the system contaning the active colloid in bulk is N = 10,125,
distributed in a cubic simulation box of L = 15. In cylindrical
confinement, depending on the channel radius Rcyl = {3.5, 4.5, 5.5,
6.5} the number of solvent particles is Nsol = {3464, 5726, 8553,
11,946}, respectively, and the channel length is fixed to Lcyl = 30.
The number of solvent particles for the polymer system in bulk is
around Nsol = 24,000 distributed in a cubic simulation box of L =
20. In the polymer confined case, with channel radius Rcyl = 6 and
length L = 50, the number of solvent particles is around Nsol =
17,000. For all simulations, the mass of the solvent particles is
fixed to m = 1 and the numerical density to ρsol = 3. The
characteristic length scale for all our simulations is the DPD
cutoff distance between solvent particles rc ≡ rssc � 1, the mass

scale is fixed by the mass of one solvent particlem = 1, and for the
time scale we fix τ = 1. Following ref. [33], the DPD interaction
parameters between solvent-solvent particles are set to Ass = 25.0,
γss = 4.5 and rssc � 1.0 (see Tables 1, 2 in the following
subsections). The physical properties of a DPD fluid depend
on its viscosity [33] that can be computed from the Green-Kubo
relation [61] for the stress autocorrelation function (zero-shear
viscosity). Later on we will discuss our choice for the fluid’s
viscosity. Whereas the DPD parameters used for each
microwimmer are reported in their corresponding sections.

It is worth noting that when confining the DPD fluid in a
cylinder we observed concentric ring-shaped density fluctuations
in the vicinity of the wall at T = 0.1. These fluctuation have been
previously observed and can lead to undesirable effects [62]. For
this reason we chose T = 1 for all our confined simulations in
which these fluctuations were not observed.

2.2 Colloids in Bulk and in Confinement
To study a spherical squirmer, we build a raspberry-like [53–55]
colloid made of 19 particles rigidly bonded. In Figure 1A, we
represent the active colloids, consisting of one particle (the
thruster particle) located at the center of the sphere and the
remaining 18 (filler particles) evenly distributed on the surface of
a sphere of radius Rcol around the center particle. The reason for
choosing this structure has been guided by simplicity, balancing
the number of particles and sphericity, and is inspired by
previously proposed models for complex colloids [53–55]. The
reason to consider only one thruster particle is because such an
approach is enough to generate activity with a minimal
disturbance on the geometrical properties of the swimmer.
The shell of passive particles is necessary to control the
dimension and shape of the colloid, rendering it an extended
body that has an orientation. The propulsion mechanism of the
thruster particle will be explained in the next section, when
detailing the implementation of the hydrodynamic interactions.

The orientation of the colloid is defined by the “active axis”
identified by three chosen co-linear particles. This axis is also the
symmetry axis of the force field we will apply to the solvent, and
thus will define the colloid’s direction of propulsion. All particles
belonging to each colloid interact via DPD: 1) with the solvent, 2)

FIGURE 1 | (A): A raspberry-like active colloid composed of 18 filler particles and one thruster particles at the center. Note that in these figures the filler particle
radius is scaled down to 1 for better visibility, but in all simulations we use rsfc � 2 as the solvent-filler DPD cutoff in order to obtain a more spherical colloid and to prevent
the solvent particles from stepping into the colloid. (B): An active polymer composed of 20 beads. (C): An active colloids in a cylindrical confinement. (D): An active
polymer in a cylindrical confinement. Red: thruster particles. Gray: filler particles. Blue: wall particles composing the confining channel. Yellow: solvent particles.

TABLE 1 | DPD parameters used to study a spherical colloidal squirmer for (COL)
embedded in a solvent (SOL), in bulk or in a cylindrical confinement (CYL). All
parameters are in reduced DPD units.

SOL-SOL SOL-COL SOL-CYL COL -COL COL -CYL

A 25.0 25.0 100.0 25.0 25.0
γ 4.5 4.5 4.5 4.5 4.5
rc 1.0 2.0 1.0 2.0 2.0

TABLE 2 | DPD parameters used to study an active polymer (POL) embedded in a
solvent (SOL), in bulk or in a cylindrical confinement (CYL). All parameters are
in reduced DPD units.

SOL-SOL SOL-POL SOL-CYL POL-POL POL-CYL

A 25.0 25.0 25.0 25.0 0.0
γ 4.5 4.5 4.5 4.5 0.0
rc 1.0 1.0 1.0 1.0 0.0
ϵ 0.0 0.0 0.0 0.0 1.0
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with particles belonging to other colloids and 3) with particles
building the channel. However, particles belonging to each colloid
do not interact between them (so their overlap does not cause any
trouble), except for the rigid interactions that keep them glued
together. In Table 1 we report the chosen DPD parameters for all
interactions between particles: solvent-solvent, solvent-colloid,
solvent-cylinder, colloid-colloid, colloid-cylinder.

In Section 2.4wewill describe different squirmer models, such
as pushers, pullers and neutral swimmers, each one characterised
by a different velocity field in the surrounding fluid. In order to
check whether the raspberry-like colloid reproduces the features
of the different squirmers, we compute the velocity fields and
compared them to those reported for the different squirmers in
ref. [49].

Having studied the active colloid in bulk, we study its physical
behaviour when confined in cylindrical environments of different
radii. The cylinder is composed of DPD overlapping particles,
properly aligned along the x axis at given angles. Overlapped
DPD particles are left out of the time integration and their DPD
interactions are switched off thus they can be used to model a
wall. Particles are first evenly distributed along a circumference in
the yz-plane and then this circumference is repeated through the
x-axis. The separation of the particles is chosen so that the
roughness of the inner surface of the cylinder is the same
along the angular and longitudinal directions. Periodic
boundary condition (PBC) are applied along the longitudinal
direction (x axis). Particles’ interaction parameters are reported in
table 1. Choosing DPD interactions for modelling the collisions
with the channel allows us to maintain a large time step Δt = 10–2.
Due to the softness of the DPD interactions, we have
appropriately set the DPD parameters for the channel particles
to avoid leaking of solvent particles through the channel wall.
Moreover, DPD enables adding a friction between the solvent and
the channel wall. In our case, we have tested that for high enough
values of γ we are able to simulate Poiseuille flow. However, for
our study we have decided to explore low values of γ, which
correspond to the implementation of slip boundary conditions at
the channel’s surface.

2.3 Polymers in Bulk and in Confinement
Following ref. [11], we model the active polymer as a chain of
active monomers. As shown in Figure 1B, each of the Nb

monomers is composed by a single thruster DPD particle,
except the head and tail monomer. Since the first (last)
particle of the polymer does not have previous (posterior)
neighbors, no force is applied on them. Alternatively, one
could consider that the activity direction is extrapolated from
the neighbor monomer in the chain. However, this alternative
approach will not affect the main results and features described in
the manuscript. Previously proposed models for active polymers
have also taken this approach [11]. Monomers are held together
to their first neighbours via a harmonic potential
Vharmonic(r) � K(r − r0)2, acting between thruster particles of
the connected beads separated by a distance r, with
K � 30kBT/r2c , being r0 ≡ 1.5 rc. Since all interaction between
particles are soft (DPD-like), we can choose dt = 10–2 as the time
step to integrate the equations of motion. As in ref. [11], we

assume that all monomers are active apart from the first and the
last (in grey in Figure 1). An active force Fa,i acts on each thruster
monomer at ri. The force is characterised by a constant
magnitude Fa and a direction of ri+1 − ri−1 parallel to the
polymer backbone tangent, being ri+1 and ri−1 the position
vectors of the thruster particles first neighboring monomers.

To characterise the bulk properties of an active polymer, we
study a dilute system of 4 active polymers in a box with edge L =
20 at a solvent density of ρ = 3. Care must be taken if the volume
fraction of polymers is not low enough, since polymers might
interact between each other via hydrodynamics. In our case we
avoid this by working with a polymer volume fraction that is
always lower than 5%.

To study the effects of confinement we embed the active
polymer and the solvent in a cylindrical channel with periodic
boundary conditions along the axial axis. The cylinder consists of
Nc = 24,415 frozenWCA-like particles that interact with the DPD
particles (solvent and polymers) via a WCA-like potential

VLJ r( ) � 4ϵ σ

r
( )12

− σ

r
( )6[ ] + ϵ; for r< 21/6 σ,

0; for r≥ 21/6 σ,

⎧⎪⎪⎨⎪⎪⎩ (2)

where ϵ is the unit of energy and σ represent the channel’s particle
diameter set to σ = rc = 1. In all simulations we set kBT = 1.0
(Lennard-Jones units). Cylinder particles are located close
enough to avoid DPD solvent particles to cross the cylinder’s wall.

The chosen values for the DPD parameters are reported in
Table 2 for all interactions between particles: solvent-solvent,
solvent-polymer, solvent-cylinder, polymer-polymer, polymer-
cylinder.

We should stress the fact that when dealing with active colloids
or active polymers we have chosen to simulate the cylindrical
channel in a different way. In the former case, the channel has
been simulated by means of particles interacting via DPD, as
explained earlier. Whereas in the latter case, the channel has been
built using particles interacting via a repulsive WCA potential, to
compare with ref. [11].

2.4 Swimming Induced by Hydrodynamics
In order to numerically consider full hydrodynamic interactions
between the microwimmers and the surrounding solvent, we
prescribe a force field for the solvent particles surrounding the
thruster particles (the red particles in Figure 1).

When dealing with a spherical squirmer, the usual approach
consists in prescribing tangential velocities to the solvent particles
at the swimmers surface [28]. Note that we have not followed the
usual squirmer approach. In our case, tangential solvent forces,
instead of velocities, are prescribed over a hydrodynamic active
volume ΓH around the colloid, instead of just at the colloid’s
surface. This approach is more general since it enables the
possibility of studying different agent shapes and inertial
effects, which are present in many active systems [63].

In this study we only consider axisymmetric force fields (Eq.
3). We choose the hydrodynamic region ΓH as a spherical shell
around the thruster particles of inner and outer radii Rc and RH,
respectively. The expressions of the force fields considered for the
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colloid and the polymer are reported in what follows (see the
Supplementary Appendix for more details). The general
expression for an axisymmetric force field that vanishes
everywhere except inside the aforementioned spherical shell is
given by,

f r, θ( ) � fr r, θ( )êr + fθ r, θ( )êθ[ ]PRc,RH r( ) (3)
where r is the distance from the thruster to the solvent particle, θ
the angle between the colloid’s orientation vector ê and the
solvent position vector, êr and êθ are the radial and tangential
unitary vectors with respect to the colloid frame of reference and
PRc,RH(r) � Θ(r − Rc)Θ(RH − r) is a pulse function in the radial
dimension which defines the spherical shell.

In order to have more control over the propelling force, we
normalize the force field over the hydrodynamic region ΓH, and
multiply by a factor Fp. Fp is the input parameter for the
magnitude of the self-propelling force. Thus the hydrodynamic
force field that will be applied to the solvent reads,

fH r, θ( ) � Fp
f r, θ( )
N

, where N � ∫
ΓH
f r, θ( ) dV

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (4)

Since in our case we are dealing with a discrete fluid (made of
solvent particles), the i-th solvent particle will feel a force,

f i
H � Fp

f ri, θi( )
N

, where N � ∑
j∈ΓH

f rj, θj( )ΔV
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ (5)

where the sum is taken over all the solvent particles that are inside
ΓH and ΔV � r3c � 1. Similarly to the squirmer model, here we
only consider the two first surface modes of the polar component,
fθ(r, θ), while the radial component is neglected fr (r, θ) = 0 (see
Supplementary Appendix Section 5.1 for the details). Thus, the
force field becomes,

f r, θ( ) � B1 sin θ + B2 sin θ cos θ( )PRc,RH r( )êθ ≡ f col, (6)

for which N � (R3
H − R3

c )B1π2/4. In this way, the total
propulsion force (which is precisely the integral appearing in
Eq. 4) experimented by the colloid is just Fp. B2 controls the force
dipole contribution to the force field and thus wether we are
dealing with pushers (B2 < 0), neutrals (B2 = 0) or pullers (B2 > 0).
Because of this formulation, B1 plays no role and will be fixed to
1.0 from here on. As in the squirmer model, we define β = B2/B1 as
the active stress parameter that controls the type of squirmer (see
Figure 2). Under the assumption of Stokes flow (low Reynolds
number), it is reasonable to think that the velocity field of the
solvent particles will resemble that of the squirmer model1

[28, 49].
Now we need to deal with the reaction force that is exerted on

the colloid which will result in its thrust. Moreover, since an active
colloid is an extended rigid object we would like to preserve the
torque that may arise due to density fluctuations or interactions
with other objects. The reaction thrust force, fT, is applied on the
nearest colloid particle (thruster or not) to each of the solvent
particles and it is equal and opposite to the redistributed force on
that solvent particle:

f k
T r, θ( ) � −f i k( )

H r, θ( ) (7)
where i(k) represents the nearest solvent particle to the k-th
colloid particle.

At each step, we implement the following algorithm:

1. Starting from a reference microswimmer, we identify the
neighboring solvent particles around the swimmer’s
thruster particles located between the swimmer’s radius

FIGURE 2 | Examples of 2D hydrodynamic redistribution force fields for all the studied cases: a pusher (A)with β = −5, a puller (B)with β = 5, a neutral squirmer (C)
with β = 0 and a monomer of the active polymer (D). These correspond to a section of the 3D field passing through the equator of the redistribution sphere. The arrow
inside the central colloid indicates the direction of the propulsion force Fp, with magnitude indicated in each panel. Here, the hydrodynamic region ΓH would be the area
contained between the solid and dashed circles.

1Under the same Stokes flow assumption, the colloid’s propulsion velocity vp can be
computed from the self-propulsion force Fp via the Stokes law Fp = 6πηRcvp.
However, this assumption may not hold in some cases that are also worth studying.
For these cases, we “measure” vp as the time averaged projection of the colloids
velocity vcol over its orientation axis vp � 〈vcol · ê〉t as will be explained later on.
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(Rcol for the colloid; rc for the polymer) and the
“hydrodynamic” radius RH.

2. We compute the force field fH in Eq. 4 at each of the neighbors
positions, consistently with the swimmer’s orientation. The
norm of the total distributed force is also computed.

3. For each neighbor:
3.1 We apply the corresponding normalized force.
3.2 We find the nearest agent particle and apply the same and
opposite force.

In this way self-propulsion is achieved, while linear and
angular momenta are locally conserved at each step. This
procedure enables physically realistic modeling of the
propulsion mechanism of a wide range of self-propelled
systems, both living and artificial.

In case of the active polymer, we have considered a constant
field modulated by cos(θ/2) for each thruster monomer,

f r, θ( ) � −cos θ

2
( )PRc,RH r( ) ê ≡ f pol, (8)

where ê � cos θ êr − sin θ êθ is the self-propulsion direction of the
thruster particle. In this case, a reaction force that provides thrust
to the agent is applied on each thruster particle. This force is equal
and opposite to the total force distributed among the solvent
particles in each step. Since in this case we are dealing with a
flexible object that has many thruster particles, we need not to
worry about finding the nearest agent particle, since this is already
taken care of, as the force that each thruster particle redistributes
is equal and opposite to the one that is exerted on it.

In Figure 2 we can see the hydrodynamic force fields, f, we
have used in this work. The continuous and dashed
circumferences represent the inner (Rc), and outer (RH) radius
respectively and define the region ΓH where redistribution occurs.
As an example, in this figure the propulsion force is computed as
the surface integral of the vector field inside this region,
Fp � −∫ΓH

fH(r, θ) dS, in this case computed in 2D. Since the

force field is asymmetric there exists a net propulsion force that
provides thrust to the agent. In the case of the polymer (d), each
polymer bead (or monomer) acts as a small colloid with its own
redistribution field, so in this case Rc = rc would represent the
beads radius, i.e. the thickness of the polymer.

To conclude, the total force experienced by an agent particle
consists of the following contributions

F � FC + FD + FR + FT (9)
where FT is the total thrust force, computed as the sum of all the
reaction forces on each colloid’s particle FT � ∑k f kT.

It is worth noting that while in this study we have restricted
ourselves to axisymmetric force fields, the code implementation is
made for general force fields, allowing for example azimuthal
flows, like those of the Volvox algae [64].

2.4.1 Quantifying Activity
To characterise a microwimmer in the solvent, we will define
dimensionless numbers such as the Reynolds number and the
Péclet number. For this, we will need to establish the viscosity η of

the fluid. η can be numerically computed in a DPD fluid, as
recently shown in ref. [65], or estimated via a mean field, as in
Warren and Groot [33]. In our work, we follow the second
approach, according to which the DPD solvent kinematic
viscosity ], defined as η

ρ, can be computed as

] � η

ρ
� Dsol

2
+ 2πγρr5c

1575
(10)

where the diffusion coefficient Dsol is

Dsol � 45kBT
2πγρr3c

. (11)

For more details, see Warren and Groot [33]. Note that in
MPCD the viscosity can be computed as η � 16.05

������
m0kBT

√
/a20,

where m0 and a0 are the mass and the size of the cell used in
MPCD algorithm. See [60, 66–68] for more details.

Once we know the viscosity, we compute the Reynolds
number and the Péclet number. The Reynolds number
quantifies the amount of inertial versus viscous forces acting
on an object that moves in a fluid,

Re � vprc
]

(12)

where rc = 1 is the solvent characteristic length and vp is the
microwimmer’s propulsion velocity. For both the active colloids
and the active polymer, the velocity is the one of the center
of mass.

The Péclet number is an adimensional number used to
quantify the measure of the activity. It is directly proportional
to the self-propulsion speed and to the reorientation time [69].
The Péclet number has been used in bulk suspensions of Active
Brownian Particles [70, 71] to quantify particles’ activity.
Differently from ABP, when dealing with swimmers (as in our
case) the rotational dynamics of the colloid arises from
interaction with the fluid and it is not prescribed (such as in
ABP). Therefore we introduce a Péclet number based on the
propulsion velocity, vp. In this way one should expect that, for a
given set of parameters, the reorientation time increases with the
propulsion velocity and thus with the Péclet. In other words, the
Péclet number is defined to describe the degree of activity in the
system as the ratio between the self-propulsion of the
microwimmer and a diffusion scale Pe = vp τr/σ. However,
different works have shown different definitions for this
number. We define the Péclet number for the colloid
following ref. [60] as,

Pecol � vpRcol

Dcol
(13)

here Dcol = kBT/6πηRcol is the estimated diffusion coefficient
of the colloid and Rcol is the colloid radius that is fixed to 2 for
all our simulations (with the exception of the flow fields shown
in Figure 3 in which Rcol = 3 was chosen for better visibility).
We have studied the following ranges Fp ∈ [0, 50], vp ∈ [0, 1.25],
Pe ∈ [0, 156] and Re ∈ [0, 12]. As mentioned earlier, for some
parameters we cannot assume that we are in Stokes flow
conditions, so we should not use the relation vp = Fp/6πηRc
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for computing the colloids propulsion velocity, this is why we
“measure” it as vp � 〈vcol · ê〉t. The values obtained are shown
in Figure 1 of the Supplementary Material. Note that it was
found that the propulsion velocity of the colloid, and thus the
Pe and Re, are not always linear with the propulsion force Fp.
Moreover, they change whether we are dealing with pusher,
neutral or puller squirmers. In Figure 1 of the Supplementary
Material we show the different propulsion velocities found
(and their corresponding Pe and Re) for each type of squirmer.
However, in all simulations presented, we remain in the range
Fp ∈ [0, 50] where the separation between the vp values for
different squirmer types is not so dramatic and the behaviour
does not depart too much from linearity.

For the polymer we follow the ref. [11] and define the Péclet
number as

Pepol � Fp rc
kBT

(14)

where rc = 1 represents the characteristic length of the monomers.
The polymer’s lengths, Nb, studied lay in a range between 40 and
100. For this particular cases we have explored values Pe = {0.01,
0.1, 1.0} that correspond with Reynolds numbers in the laminar
regimen, around Re≈ 0.3.

2.5 Analysis Tools
In order to characterise our systems, we compute both structural
and dynamical features. Concerning the active colloid, we first
establish the velocity field of the solvent surrounding the
swimmer to characterise the nature of each spherical squirmer
(whether pusher, puller or neutral). Next, we study its dynamics
by computing the mean square displacement, and estimate the
effective diffusion coefficient from its long time behaviour. When
dealing with the colloid in confinement we also analyze the
orientation autocorrelation function (OACF) that supplies
information about the reorientation time of the colloid.
Concerning the active polymer, we first characterise how
activity affects its structural features by computing the radius
of gyration. Next, we study its dynamics by computing the mean
square displacement of the center of mass and again estimate the
effective diffusion coefficient from its long time behaviour.

2.5.1 Velocity Fields
For computing the solvent velocity fields around the colloid we
run simulations of a fixed colloid in the center of the box pointing
to the positive x-axis. Then, we perform a binning of the
simulation box and average the velocities of the solvent
particles inside each bin, finally we also take ensemble and

FIGURE 3 | Sections of the velocity fields in the lab frame (bottom row) and moving with the colloid (top row), for the pusher (A,D), neutral (B,E) and puller (C,F)
squirmer. surrounded by ~ 104 fluid particles and swimming to the right. The colour of the background is the averaged density of fluid particles, the colour of the arrows
shows the fields magnitude. Here the colloid radius is Rc = 3 and Fp = 100 in order to obtain a clearer flow field. These values produce Pe ≈ {818, 655, 573} and Re ≈ {25,
20, 17} for the pusher, neutral and puller squirmers respectively.
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time averages in the stationary state. The velocity fields shown in
Figure 3 correspond to a slab that has the same height as the
colloid (Dcol). The arrows represent the xy-projection of the full
3D velocities.

2.5.2 MSD
Concerning dynamical features, we compute the mean square
displacement

MSD t( ) � 〈 rcm t( ) − rcm 0( )[ ]2 〉 (15)
Where rcm indicates the position of the center of mass of the
colloid/polymer. The average is taken over several colloids/
polymers. The long time behaviour of the MSD, corresponds
to the diffusion coefficient D, MSD(t) = 6Dt. It is worth noting
that when confinement takes place in a cylinder with a small
radius, it might be better to consider the system as one
dimensional, thus MSD(t) = 2Dt. However, this is not our
case since we consider that the agents have sufficient space to
diffuse in the transverse directions. This leads to a more
straightforward comparison between the different systems.

2.5.3 OACF
The orientation autocorrelation function is computed for the
colloid in confinement to asses the impact of the confinement in
the rotational diffusion (or equivalently, the reorientation time)
of the colloid.

OACF Δt( ) � 1
NΔt

∑NΔt

i�0
ê ti( ) · ê ti + Δt( ) (16)

Here Δt = n dt where dt is our base time step. The scalar
product of the orientation at a given time ê(ti) with itself at a
delayed time ê(ti + Δt) is averaged over the intervals of length Δt,
starting at all the possible ti’s, that fit into the total simulation time
Tsim = Ntotdt. So there would be NΔt = Ntot − n + 1 intervals of the
same length in the full simulation interval for a given n.

2.5.4 RoG
The radius of gyration Rg for the active polymer is computed
according to the relation,

R2
g � 1

N
∑N
k�1

rk − rcm( )2, (17)

where rcm is the position of the center of mass of the polymer, rk is
position of the k thruster particle and N is the number of bead of
the polymer.

3 RESULTS

In what follows we present the results obtained for both
microwimmers, either in bulk or in cylindrical confinement.
We start with the simplest object: the spherical squirmer
(Section 3.1) characterising its hydrodynamic features
(Section 3.1.1) and its dynamical properties (Section 3.1.2).
When confined in a cylindrical channel, we also compute its

orientation autocorrelation function (Section 3.1.3). Next, we
study the more complex-shape active polymer (Section 3.2),
characterizing its structural (Section 3.2.1) and dynamical
(Section 3.2.2) properties, compare our results with the
passive and Brownian counterpart.

3.1 Active Colloids
3.1.1 Flow Fields
To start with, we present our results for a spherical squirmer and
study the velocity fields for the pusher, the puller, and the neutral
swimmer.

Figure 3 displays the velocity flow fields for this three
squirmers computed as explained in the previous section:
pusher (a, d), neutral (b, e) and puller (c, f) squirmer.
Comparing our results with the typical flow fields expected for
squirmers (e.g. ref. [49]) the flow fields reported in Figure 3 are
not so symmetrical, in the case of the puller and pusher lab frames
(Figures 3D,F). The four characteristic vortices of the flow field
when periodic boundary conditions are present [48] seem to be
shifted to the negative x-direction, compressing the two at the
front and stretching the two at the back. In the same way, in the
relative frame, we can see smaller swirls than usual at the front of
the pusher (Figure 3A) and somewhat elongated ones at the back
of the puller (Figure 3C). In the case of the neutral swimmer, the
characteristic source dipole of the lab frame (Figure 3E) is
completely compressed against the swimmers surface, and
some turbulent flow is appreciated at the edges of the y-
dimension of the section. All these deviations from the usual
flow fields are ascribed to inertial effects of the fluid stemming
from the high Reynolds number present in our simulations [59].
In SupplementaryMaterialwe show the flow fields for a different
set of parameters (lower Reynolds number, at Re ≈ 0.1) for which
we find a more typical squirmer flow field [48, 49]. In ref. [48] the
authors also comment on an analytical solution and state that it is
indistinguishable from the one found in their simulations. An
analytical solution for the flow field without PBCs in terms of a
source dipole, a force dipole and a source quadrupole is also
provided in ref. [46] following a different approach but
compatible with the usual derivation by Blake followed by
[48]. Ref. [59] studies in detail how the Reynolds number
affects the flow fields around squirmers.

Confining the colloid inside a cylindrical channel has a drastic
impact in the solvent flow fields (Figure 4), since the channel
walls change the boundary conditions of the fluid.

For the pusher and the puller in the absolute frame (Figures
4A,D) we observe that the two vortices at the back and front
respectively have disappeared, while the other two (at the front of
the pusher and at the back of the puller) seem to have retracted to
a closer position directly in front of the pusher and behind the
puller. A similar damping of vorticity has already been reported
in ref. [72] and may be attributed to the suppression of the fluid’s
long-wavelength modes due to the confinement [73]. In the
relative frame of reference, the swirls have also contracted
further, and it is now difficult to distinguish them from just
turbulent flow. In the case of the neutral swimmer (Figures 4B,E)
the flow fields do not differ that much with respect to the ones
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encountered in bulk, with the exception that now there are no
turbulent regions at the edges of the flow field.

3.1.2 Diffusion
When dealing with a colloidal squirmer in bulk, we study its
dynamical features by estimating the long time diffusion
coefficient normalised by the diffusion of a passive colloid in
bulk via the center of mass mean square displacement, as
explained in Section 2.5., for the three types of squirmers
(Figures 5A–C).

The top row of panels in Figure 5 represent theMSD for a bulk
dilute suspension of pushers (a), neutrals (b) and pullers (c).
Their long time behaviour corresponds to the diffusion coefficient
reported in Figure 6A From the results presented, it is reasonable
to conclude that the three types of squirmer diffuse almost the
same for the ranges of Péclet numbers studied. As expected, the
diffusion of the three of them increases when increasing their
thrust force and thus their Péclet number.

In Figure 6A it is worth noting that as we increase the thrust
force and thus the Péclet and Reynolds numbers, the diffusion
behavior changes significantly. When we are in the range of Re≪
1 the diffusion increases significantly while we increase the Pe.
When we approach Re ≈ 1 the increase in diffusion is dampened
reaching what seems to be a saturation as Re ≫ 1.

The middle and bottom row of panels in Figure 5 represent
the MSD for a confined dilute suspension of pushers (a), neutrals
(b) and pullers (c). The middle panels study the dynamics of
swimmers in a channel with the smallest radius, while varying the
Peclet number for pushers (d), neutrals (e) and pullers (f). The
bottom panels study the dynamics of swimmers at the highest
Peclet in a channel with varying radius for pushers (g), neutrals
(h) and pullers (i). When we confine the active colloid inside a

cylindrical channel the symmetry between pushers and pullers is
lost. Pushers will tend to reorient parallel to the wall, while pullers
will do so perpendicularly. In this way, mobility of pushers should
be increased while pullers should be more prone of getting
“stuck” at the wall, which is reflected in the MSD curves in
Figures 5D–F. This is a well known behavior for the interaction
of squirmers with walls [45, 49], that has been used to explain the
accumulation of certain microorganisms at surfaces [50]. The
coupling between a microswimmer close to the wall and the
solvent is affected because a portion of its hydrodynamics region
(see Figure 2) lies outside the cylinder, where no solvent particles
are present. Although this effect can contribute an additional
torque, the volume of this excluded region is small compared with
the rest of the hydrodynamic region, and it is not seen to affect the
qualitative features of the hydrodynamic coupling between the
microswimmer and the confining wall. Moreover, when studying
the diffusion for different channel radii (Figure 6C), if this effect
had a relevant contribution, we would expect to see a clear
modulation of the diffusion varying radius for all types of
squirmers, since the greater the radius, the smaller the
excluded portion of the hydrodynamic region.

The same information can be recovered when plotting the
OACF for each system (as will be shown in Figures 7E–G)
curves).

As shown in the MSD curves (Figures 5D–F), for the
pusher we detect a slight increase at large times, while for
the puller the curves collapse showing a significant decrease in
its motility at large times for all studied Péclet numbers. This is
due to the wall-facing effect described previously, which is
consistent not only with the decrease of motility, but also with
the apparent independence of the diffusion with the Péclet
number. The shape of the MSDs curves for the neutral

FIGURE 4 | Solvent flow fields of the colloid confined in an cylindrical channel (Rcyl = 3.5) in the lab frame (bottom row) and moving with the colloid (top row), for the
pusher (A,D), neutral (B,E), and puller (C,F) squirmer. Here the colloid radius is Rc = 2 and Fp = 50. These values produce Pe ≈ {90, 76, 61} and Re ≈ {3.9, 3.3, 2.7} for the
pusher, neutral and puller squirmer respectively.
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swimmer (Figure 5E) also follow from this argument. The
neutral squirmer gains its thrust force symmetricaly between
its front and back. Therefore, it propels on its front more than
the pusher but less than the puller, and propels on its back

more than the puller but less than the pusher. The fact that this
system is between the two is confirmed by the MSDs curves.
The diffusion curves (Figures 6A–C) show more clearly what
we have just addressed.

FIGURE 5 | MSDs for the three squirmer types studied. Left column: pusher [panels (A, D, and G)]. Center column: neutral [panels (B, E, and H)]. Right column:
puller [panels (C, F, and I)]. Top row: bulk [panels (A, B, andC)]. Center row: in cylindrical confinement for different Pe’s for the smallest channel radius Rcyl = 3.5 [panels
(D, E, and F)]. Bottom row: for different channel radii for the highest Péclet numbers available corresponding to the highest thrust force Fp = 50 [panels (G, H, and I)].

FIGURE 6 |Measured diffusion as a function of the Péclet number for the active colloid in bulk (A), in confinement for the narrowest channel Rcyl = 3.5 (B) and as a
function of the cylinder radius for the highest Péclets (C) for the three squirmer types studied. We normalize by the diffusion of a passive colloid in bulk D0

b � 0.032179. In
the two first plots a secondary horizontal axis shows the corresponding Reynols number.
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In Figure 6C we report the normalized diffusion for the
highest Péclet number of the three types of squirmers in
confinement as a function of the channel radius. The major
effect of varying the channel radius occurs for the pusher, while
the puller and neutral squirmer’s diffusion seems to remain
unaffected by it (in the studied range). This is coherent with
the wall-facing argument previously described. The diffusion is a
long time property, while for the studied radii the colloid reaches
the channel wall at much shorter time scales. Therefore once the
colloid has reached the wall, it might get stuck due to the wall-
facing effect regardless of the channels radius.

3.1.3 Orientation Aturocorrelation Function
Finally, we compute the orientation auto-correlation function
(OACF) when active colloids are confined in a cylindrical
channel, as depicted in Figure 7. The OACF measures the
rotational diffusion (or equivalently, the reorientation time) of
a colloid, i.e., for how long the colloid retains its swimming
direction before it is randomized by fluctuations.

The top row of Figure 7 represents the OACF for the system
confined in the smallest cylinder, when varying the Péclet
number. Whereas the bottom row represents the OACF for an
active colloid propelling at the highest Péclet number and
confined in cylinders with different radii. In the case of a
pusher (Figure 7A) we detect a clear increase of the
reorientation time with increasing Pe. This is expected for any
non-chiral active particle which increases its Pe by increasing its
propulsion force [69]. Moreover, due to the wall-rebound
argument discussed previously, this effect could be amplified.
When dealing with the neutral (Figure 7B) and the puller
(Figure 7C) squirmers, the interpretation is less clear. It seems
that in both cases starting from the lowest Pe the reorientation
time increases until it reaches a point where the behaviours for

both squirmers is different. For the neutral squirmer, as we keep
increasing Pe the reorientation time decreases, reaching a
minimum for the highest Pe. Whereas for the puller, at Pe =
14.5 there is a sharp decrease and then, as we keep increasing Pe, a
slight recovery. Anyhow it is hard to draw solid conclusions in
both cases. One reason could also be due to not enough statistics.

Figures 7D–G offers a much clearer interpretation. In these
panels we show how the OACF changes as we vary the channel
radius keeping in all cases the maximum Pe available,
corresponding to the highest thrust force Fp = 50. As expected
for a passive colloid (Figure 7D) the OACF is the same regardless
of the channel radius. Moving now to the pusher (Figure 7E) we
notice an increase of the reorientation time as we decrease the
channel radius, consistent with the wall-rebound argument. For
the puller (Figure 7G) we encounter the opposite behaviour, the
reorientation time increases with increasing radius: this can be
explained with the wall-facing argument plus the fact that when
the puller is swimming against the wall it is in an unstable state,
similar to when a pencil is left standing at its tip, so it will change
its orientation. Some times this reorientation will lead him back to
the center of the channel, but the narrower the channel, the
sooner it will encounter again the wall and reorient again. For the
neutral squirmer (Figure 7F) we are again in between pushers
and pullers but since neutrals propel in their front side, as pullers,
the behaviour observed is more similar to pullers than to pushers.

3.2 Active Polymer
In this section we present our results on structural and dynamical
features of the active polymer in an explicit solvent. In particular,
we focus on the radius of gyration Rg, and on the diffusion
coefficient D, computed via the long-time behaviour of the mean
square displacement of the polymer’s center of mass. We consider
the active polymer first in bulk and then confined in a cylindrical

FIGURE 7 | Auto-correlation function for the colloids orientation vector. Top: for the smallest cylinder radius Rcyl = 3.5 and all the Péclet numbers studied for pusher
(A), neutral (B) and puller (C). Bottom: for all the studied cylinder radii for a passive colloid (D) for which Fp = 0, Pe = 0.1 ≈ 0 and the highest Péclet numbers available (all
corresponding to Fp = 50) for the three types of squirmers: pusher (E), puller (F), and neutral (G).
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channel, underlying the effect of the activity in comparison with
the passive polymer behaviour in the same conditions. When in
bulk, we unravel the effect of hydrodynamics comparing our
results to the results obtained in ref. [11] for Active Brownian
polymers (without hydrodynamics).

3.2.1 Radius of Gyration
Figures 8A,C shows the probability distribution function of the
radius of gyration for the polymer in bulk (panel A, continuous
lines) and confined in a channel (panel C, dashed lines),
comparing the passive (thick lines) to the active (thin lines)
case. We also sketch snapshots representing typical
conformations observed in each case, both for the passive case
(in blue) and for the active one (in magenta). Panel B represents
the average radious of gyration as a function of the Péclet number
for polymer length of N = 50 (blue), N = 100 (green) and N = 200
(red) in bulk (continous line) and in a channel (dashed line).

When studying a passive polymer in bulk (thick lines inFigure 8A),
ourmodel recovers the expected increase of the radius of gyration with
the polymer size. This behaviour is observed also in the presence of
active forces as shown by the thin lines in Figure 8A. In order to
underline the relevance of hydrodynamics it would be interesting to
compare the results obtained for the active polymer with those for the
Active Brownian Polymer reported in ref. [11]. However, a direct
comparison is not possible, due to the different features of the chosen
polymer’s model. In ref. [11] the authors used a bead-spring self-
avoiding polymer, whereas in our studywe have used an ideal polymer.

When studying the average of the radius of gyration as a
function of the Péclet number (Figure 8B) we detect a non-
monotonic behaviour.

For short polymers (N = 50), Rg remains constant at low
activities (until Pe = 5): the same behaviour has been detected in
ref. [11] for Active Brownian polymers, sign that hydrodynamics
is not relevant for low activities.For relatively short polymers (N =
50 and 100) the radius of gyrations is almost constant when
activity is low, and increases at high activity. This behaviour
corresponds to what one would expect if the polymer behaved like

a flexible polymer [17]. The collapse is a consequence of the time
scale separation of the thermal and active contributions. The
subsequent increase of the radius of gyration is due to the reduced
influence of hydrodynamic interactions for larger values of Peclet
number.However, when activity increases, the presence of
hydrodynamics affects the polymer conformation since Rg
increases. On the other side, without hydrodynamics, Rg
decreases. For larger polymers (N > 50) Rg reaches a
minimum value before increasing again. The same behaviour
has been already reported in ref. [17] for active fully flexible
Brownian self-avoiding polymer.

Larger polymers (N > 200) behave like a semi-flexible polymer
[17], characterised by an initial decrease of Rg (more compact
shape) for small values of the Péclet number, leading to an
increase of Rg with the activity (more open shape). This non-
monotonic behaviour resembles the behaviour observed for the
end-to-end distance of active polymers in the presence of
hydrodynamics [13, 14].

Even when an active polymer is confined in a cylindrical
channel (Figure 8C), activity plays the same role on the
probability distribution of the radius of gyration. The radius
of gyration increases with the number of monomers N when
hydrodynamics is taken into account. This is expected, as we
increase the mass of a polymer. Moreover, comparing the
active (thin) to the passive (thick) polymer, the increase is
more stretched in the active than in the passive case.
Interestingly, the confinement does not seem to affect Rg

since same size active polymers (50, ≤ ,N ≤ 200) are
characterised by the same radius of gyration when in bulk
or in a channel. Probably, the reason for this is that we have
chosen to study a channel whose diameter is relatively large,
thus not differing too much from the bulk system.

3.2.2 Diffusion
In order to understand the dynamical features of an active
polymer in bulk and in confinement, we compute the MSD of
the active polymer’s center of mass.

FIGURE 8 | Probability distribution of the radius of gyration for passive (Pe = 0, thick line) and active (Pe = 10, thin line) polymers of N = 50 (blue), N = 100 (green), N =
200 (red) monomers in bulk (A) and in confinement (C). The snapshots illustrate typical conformations for the passive (blue) or active (magenta) polymers. (B) Average
value of Rg as function of Pe for different polymer sizes. Continuous lines are for the polymer in bulk and dashed lines for the polymer under confinement.
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As in ref. [11] for the system without hydrodynamics and like
the squirmers studied in the previous section, the MSDs present
at short time a ballistic regime (MSD ∝ t2), a diffusive
dependence at long time (MSD ∝ t) and for intermediate
times there is a crossover typical of a super-diffusive regime
(MSD∝ t], with 1 < ] < 2). From theMSD long time dependence,
we estimate the diffusion coefficient. Figure 9 represents the
diffusion coefficient Deff of the polymer’s center of mass as a
function of the polymer size, when varying the Péclet number.
While in panel A we have normalised the diffusion coefficient by
the diffusion coefficient of the passive polymer (D0), in panel B we
have normalised the diffusion coefficient by the mean field
diffusion of a DPD solvent particle (Dsol in Eq. 22).

In Figure 9A. we show the results for the effective diffusion
normalized by the diffusion coefficient of the passive case (D0) as
a function of the polymer size. We study values of activity ranging
from the passive case (in red) to Pe = 1 (yellow case) and observe
that activity increases the effective polymer diffusion. Meanwhile,
if we compare the Brownian diffusion [11] (yellow square) for the
same activity Pe = 1.0 with our results (yellow triangles) we detect
the same dependence with N but approximately 10 times smaller.
The effect of hydrodynamics is to slow down the polymers’
motion, as expected. Finally, if we compare the results
obtained for the bulk system with the ones for the channel we
observe how confinement does not seem to affect the small
polymers (N < 50), but turns out to be relevant when the
length of the polymer is increased. For longer polymers (N >
70) the confinement affects the polymer’s motion and the
diffusion decreases when the polymer is too long.

On the other hand, in Figure 9B. the effective diffusion has
been normalized by the mean-field diffusion given by Eq. (11).
The idea to represent the data in this way was to be able to
establish a power law dependence of the diffusion coefficient with
the polymer size and compare it with the prediction expected for
the diffusion by the Rouse and Zimm [74] theory of Gaussian
chains. Within this theory, the chain center of mass diffusion
DRouse ∝ N−1 and DZimm ∝ N−1/2. As shown in Figure 9B, when

the polymer is passive (red line), the power law resembles that
predicted by the Zimm model, which takes into account the
hydrodynamic interactions between the beads of the polymer.
While when the activity is relatively high (yellow line) the
behavior is not similar to that expected in this model, since
other effects appear due to the activity of the system.

In order to understand this behaviour, we compute the
Schmidt number, defined as Sc = ]/Dsol, being ] = 1.25 the
kinematic viscosity of the DPD fluid and Dsol the diffusion of the
solvent particles. Estimating the kinematic viscosity via the mean
field model of Groot and Warren’s [33], and measuring Dsol, we
estimate Sc = 2.35 for the solvent in all simulations. Whenever the
Schmidt number is larger than one, the momentum diffusion
dominates and hydrodynamics is relevant. However, since in our
case the Schmidt number is around one, we conclude that the
hydrodynamic coupling is not too strong. Therefore, we observe
both scaling regimes, Rouse and Zimm.

4 DISCUSSION

In many paradigmatic examples of active matter such as
biological microswimmers or synthetic active colloids, these
are typically immersed in a solvent and the hydrodynamic
interactions produced by the movement of the particles are
relevant. Usually the introduction of these hydrodynamic
interactions in active systems has been carried out through
lattice models such as LB, that consider hydrodynamic effects
but neglect thermal fluctuations, or MPCD that allow for the
study of systems at low Reynolds number [75]. In this work we
develop a new framework for the introduction of
hydrodynamic interactions in mesoscopic molecular
dynamics simulations. To do so, we have used the well
known DPD model that has been showed to be a simple
and well behaved coarse-grain model (for a specific set of
parameters) for the implementation of hydrodynamics
interactions in passive systems.

FIGURE 9 |Diffusion coefficient of the polymer center of massDeff as a function of the polymer length for three different Pe values 0 (red), 0.1 (orange) and 1 (yellow).
(A) Normalised by the diffusion coefficient of the passive polymer (D0); (B) normalised by the mean field diffusion of a DPD solvent particle Eq. 11. Square dots are results
from ref. [11] triangles are results for the system in bulk and circles for system in confinement.
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One of the main advantages of this new implementation is the
possibility of easily taking into account thermal fluctuations for
swimmers of complex shapes. Moreover, our implementation has
been developed as an extension of the LAMMPSs open source
package and will be sent to the LAMMPS developers (constantly
maintaing the code), making our numerical approach readily
available to everyone.

In active systems there are a plethora of different mechanisms
that produce the propulsion of the microwimmers, such as
beating of flagella or chemical reactions. In our approach, we
focus on the fact that in all these cases, the agents exert a force on
the solvent in which they are immersed in order to achieve thrust.
Depending on the type of propulsion mechanism employed, the
exerted force has its own distinct features but it always respects
the conservation laws of the different physical quantities. The
model and its implementation is described in details, mainly
based on momentum conservation: this corresponds to the fact
that the force experienced by the microwimmer in its propulsion
must be compensated by the stresses induced in the solvent.

To verify the validity of our model, we study two particular
cases whose phenomenology has been well characterised by other
numerical methods. The first of these cases are spherical
squirmers, which represent the simplest model of a
microwimmer in which the hydrodynamics of the system is
taken into account. The second example studied is an active
polymer, which is nothing more than a first approximation to a
slightly more complex structure: a chain of swimmers. In this
case, our proposed method is applied in the same way for each of
the monomers (swimmers) that form the polymer. As shown in
the Results section, the proposed method leads to a
phenomenology, such as flow fields, dynamical and structural
features, consistent with the results obtained for the same systems
studied with different numerical models.

Concerning the active colloid, we have been able to reproduce
the solvent flow fields for the different types of swimmers
(Figure 3), observing a characteristic deformation of the
solvent flow fields due to the inertial effects present in the
fluid at moderate Reynolds numbers Re ~ 20. We have been
able to asses the impact of these inertial effects on the dynamics
and hydrodynamics of the swimmer and to conclude that pushers
are the most efficient swimmers (in the sense that they develop a
larger propulsion velocity for the same propulsion force, Figure 1
of the Supplementary Material), followed by neutrals and pullers
when the Reynolds number is increased enough. For the ranges
studied in the majority of our work, we showed that when
swimming in bulk, diffusion is hardly affected by the choice of
squirmer type (Figure 6A), and begins to saturate as we venture
into higher Reynolds numbers. When the swimmer is confined
inside a cylindrical channel, the flow fields changed dramatically
in order for the fluid to adapt to the new boundary conditions
(Figure 4). The confined geometry breaks this symmetry in the
diffusion between the squirmer types (Figure 6B), as the
behaviour of each swimmer near the channel wall is
completely different: while pushers tend to rebound, aligning
parallel to the wall and thus increasing their diffusion, pullers
tend to get stuck, aligning perpendicularly with the wall and thus
drastically decreasing their diffusion. Neutral squirmers lay in

between both behaviours, but closer to pullers, as they slightly rely
on the solvent ahead of them for achieving thrust. When varying
the radius of the confining channel, diffusion of neutrals and
pullers was hardly affected, while pushers enhanced their
diffusion with decreasing channel radius (Figure 6C). Finally,
we discussed the effect of the confinement in the reorientation
time of the swimmers (Figure 7). We showed that pushers have
slower reorientation dynamics the larger the Péclet number, but
could not conclude anything too clear for neutrals and pullers.
Although when the Péclet is the highest and we increase the
channel radius, the reorientation behaviour of pushers and
pullers is clearly opposite: pushers increase their reorientation
time while pullers decrease it. Again, neutrals lay in-between both
behaviours although a little closer to pullers than to pushers.

In the active polymer case, we have compared the radius of
gyration Rg and diffusion to the system without
hydrodynamics (Active Brownian Polymer). Concerning
the radius of gyration Rg, the behavior of the polymer has
been characterised as a function of both the polymer length
and the Péclet number. Even though the radius of gyration
monotonically increases with the polymer length (Figure 8),
the dependence with the activity is not so straightforward. For
short polymers Rg always increases with activity, whereas for
long polymers it reaches a minimum value. This behaviour has
been already detected in active fully flexible Brownian self-
avoiding polymers. On the other hand, confinement always
decreases Rg with respect to the system in bulk. When
studying the dynamics of the polymer, we have compared
our results with the analytical results for the Rouse and Zimm
models, and concluded that our model (for the set of
parameters used) is compatible with the prediction of the
Rouse model at low Peclet (when hydrodynamics does not
seem to play a relevant role), and is compatible to the Zimm
model at higher Peclet number, when the monomers of the
polymer chain can interact with each others due to
hydrodynamics.

As in Ref. 76, having characterised the behaviour of individual
swimmers in a solvent, we plan to use our numerical tool to study
more dense suspensions of active colloids or active polymers. This
will allow us to study their collective behaviour, their aggregation
(if present) and the interplay played by hydrodynamics and
activity, with the idea of comparing our numerical results to
experiments on active synthetic colloids or active living
swimmers (such as algae or bacteria), where hydrodynamics is
relevant.
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