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Clean energy is expected to enter a new stage of large-scale development

along with the growing demand for building regional clean energy stations.

However, as many regional clean energy stations comprise multiple stations

with different output characteristics and complementary coupling, the

development potential of these stations cannot be simply based on the

superposition of outputs, as this method lacks reasonable assessment

results. This study proposes a method of combining Grey relational analysis

(GRA), artificial neural network (ANN), and XGBoost algorithm for the potential

assessment of clean energy stations. First, GRA and ANN are used for the

relational analysis between the output of clean energy stations and

meteorological factors. Second, the meteorological factors with high

correlation and the existing historical data are used to predict the future

outputs of new clean energy stations via XGBoost. Finally, according to the

predicted output, an assessment method that includes available capacity

coefficient (AOC) and other evaluation indicators is proposed. The case

studies in this research prove the effectiveness and applicability of the

proposed method.
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1 Introduction

More than 130 countries have taken relevant actions to achieve “carbon neutrality”

(near-zero greenhouse gas emission) as the mid-21st century goal of actively developing

low-carbon economies (Momete, 2018). Clean energy is expected to enter a new stage of

large-scale development. The trend of vigorously developing clean energy and reducing

pollution has been recognized by most countries. In fact, by the end of 2021, the installed

capacity of global renewable energy was 3064 GW, an increase of more than 9% over the

previous year (Li et al., 2022a). The current pursuit of clean energy emphasizes the

determination of highly accurate output predictions and the establishment of future

development potentials of regional clean energy stations as a means of realizing the overall

optimal allocation of clean energy.
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The prediction methods of clean energy output, especially

wind power, is currently being studied. Short-term wind power

prediction (WPF) is highly dependent on wind speed prediction

(WSF), which is the main cause of prediction errors. Li et al.

(2022b) proposed a wind speed correction method to improve

the WSF results obtained using the weather research and forecast

model to ensure more accurate WPF results. They found that

wind speed must be accurately predicted to solve the uncertainty

caused by wind power integration into power grids. However, the

historical wind speed data of new wind farms may be insufficient

in training the prediction model, suggesting unreliable

performance. Wang et al. (2020) studied short-term WSF by

using a convolutional neural network (CNN) and utilized the

information of adjacent wind farms. CNN was used to transfer

the inherent characteristics of wind speed changes to the new

wind farm. Ozkan and Karagoz (2019) proposed a method to

generate output forecasts for both offline wind power and

regional power. Their technology involved the power

prediction of offline power plants followed by the upgrading

to the regional level by using both predictions of online and

offline wind power plants, thus improving the prediction

accuracy. A short-term WPF method (An et al., 2021) based

on multisource wind speed fusion was investigated (Li et al.,

2022b), and a wind speed correction method based on the Monte

Carlo method was proposed to improve the accuracy of short-

term WPF.

However, the existing research has seldom combined output

prediction with meteorological factors. Furthermore, the

accuracy of wind power forecasts remains unsatisfactory

because of its reliance on historical data whose future

information is generally lacking. Consequently, An et al.

(2021) Proposed a combined forecasting method based on the

positioning technology of day-ahead numerical weather

forecasting (NWP). Sanjari et al. (2020) recommended a joint

prediction method for photovoltaic and wind power generation

to model the relationship between wind and photovoltaic

outputs. The thermal index was considered to be a useful

meteorological variable, and the prediction accuracy under

different weather conditions was improved. Vladislavleva et al.

(2013), (Wu et al., 2021), and (Taylor et al., 2009) used output

predictions based on weather data to analyze relevant parameters

and their correlation with energy output. He et al. (2022)

proposed a short-term WPF model based on NWP analysis

(He et al., 2022). Several factors were selected from the NWP

multivariate data by using the criteria of the minimum

redundancy maximum correlation (MRMR) algorithm, and

the weather patterns were divided into different types

according to these characteristics. Liu et al. (2022) proposed a

new NWP-enhanced WPF method based on rank integration

and probability fluctuation perception. Jiahao et al. (2022)

proposed a novel method of short-term wind power

prediction based on GRA and beetle. swarm optimization

extreme learning machine. Shi et al. (2014) proposed a hybrid

model by means of GRA and wind speed distribution features.

For the studies mentioned above, the relational of multiple

meteorological factors is generally ignored.

The research on the development potential of regional clean

energy stations with respect to the planning of clean energy

stations is also dearth. Momete, (2018) studied the development

potential of the clean energy and energy utilization efficiency of

the European Union (EU) member states (Momete, 2018), and

the economic transformation index of clean energy was used to

evaluate EU’s investment and achievements in accordance to its

clean energy roadmap, which may support new and better

designed and more appropriate measures and policies

required by national policymakers and regulators in the clean

energy field. However, they only focused on macro-development

while ignoring clean energy station development. Li et al. (2022a)

studied the potential path of Beijing’s transformation to a high-

level, low-carbon, and clean and efficient energy system by

2035 using the extended energy model. The new hybrid

forecasting method could predict the future energy demand,

and then an optimization model based on the superstructure was

used to study the system configuration and operation strategy of

Beijing’s future energy system. Kanwal et al. (2020). Analyzed a

renewable energy system (RES) development potential

framework based on the actual situation of Pakistan and

found that bringing RES into the national investment

portfolio can bring far-reaching social and economic benefits

to the rural population of the country. However, none of the

above studies specifically focused on the future development

potential of clean energy stations by using historical data. This

gap may lead to inconsistencies between the transmission

capacity of the clean energy stations’ planning scheme and the

planning based on the power grid framework, resulting in clean

energy wastage or poor power grid investment.

On the basis of the aforementioned gaps, this study proposes

a development potential assessment model for regional clean

energy stations. The analysis results of output and multi

meteorological factors based on GRA and ANN are applied to

the output prediction of new clean energy stations based on

XGBoost, which can improve the prediction accuracy. Moreover,

the proposal of AOC, GOC and other evaluation indicators can

reasonably describe the future output of clean energy stations.

The main contributions of this research can be described as

follows.

1) By using GRA and ANN, the historical data of existing clean

energy stations are used to mine the relationship between

output and meteorological factors.

2) Meteorological factors with high correlation are selected to

analyze the existing historical data and subsequently predict

the future output of new clean energy stations.

3) A development potential assessment method that includes

AOC and other evaluation indices is established according to

the predicted output characteristics.
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The rest of the paper is organized as follows. The relationship

between clean energy output and meteorological factors is

presented in Section 2. Section 3 presents the clean energy

forecast method based on relational analysis. A case study is

demonstrated in Section 4. Finally, conclusions are drawn in

Section 5.

2 Correlation analysis of output and
meteorological factors

The association between the meteorological factors and

output of clean energy is mined, and the past and present

states of clean energy output are studied and clustered in the

model. First, the relational analysis of a single factor is analyzed

based on the following steps: 1) Perform GRA to obtain the

nonlinear correlation between the meteorological factors and

clean energy output across different water periods. 2) For

meteorological elements with strong correlation, calculate the

probability distribution between the change in core elements and

the variation of clean energy output. Then, analyze the joint

change of multiple meteorological elements and the cross-impact

on clean energy output. As historical data are often random and

volatile, perform ANN to realize the full-state space fitting of

these data and subsequently eliminate the impact of data

fluctuation. Then, extract the change in clean energy output

caused by the fluctuation of core meteorological conditions

across different periods, and quantitatively analyze the

output–meteorological factor correlation under the influence

of multiple variables.

2.1 Single-factor GRA based on seasonal
wet and dry season data

The action mechanism and degree of influence of

meteorological factors on clean energy output differ from each

other. The basic premise for selecting the model input variables is

to quantitatively analyze the action degree of multiple

meteorological factors and then accurately identify and

optimize the selection of the core influencing meteorological

factors. GRA can be used to quantitatively compare the dynamic

change process of the system and analyze the degree of

correlation across the factors by calculating the curve

similarities between the “reference sequence” and “comparison

sequence” (Shi et al., 2014). Furthermore, as the characteristics of

clean energy output and meteorological factors both change with

time, GRA can also be used to analyze the correlation

between them.

The basic idea of GRA is to judge the correlation degree of

each influencing factor according to the similarity of the time

series curves of different system variables after normalization

(Wang and Yue, 2022). In other words, a reference sequence and

multiple comparison sequences are utilized. The degree of each

comparison sequence is determined by solving the correlation

coefficient between the reference sequence and each comparison

sequence, and the influence degree of each comparison sequence

is sorted according to the grey relational degree. The greater the

grey relational degree of the comparison sequence, the closer are

its development direction and speed to the reference sequence,

and the closer its correlation with the reference sequence.

The relational between clean energy output and multiple

meteorological influencing factors is regarded as a grey

system. The data are divided into the periods of wet

season, dry season, and normal season according to time.

GRA is used to calculate the grey relational degree between the

multiple meteorological factors and clean energy power

generation, and the ranks of the role of meteorological

factors on clean energy output for the three

aforementioned periods are sorted from the strongest to

weakest degree to determine the core meteorological factors

affecting clean energy output.

The reference sequence represents the clean energy output,

whereas the comparison sequence represents the multi-

meteorological factors. The difference between these two

sequences is given by Eq. 1.

Δi(k) �
∣∣∣∣x′

o(k) − x′
i(k)

∣∣∣∣ (i � 0, 1,/, m; k � 1, 2,/n), (1)

Where Δi(k) � (Δi(1),Δi(2),/,Δi(k)), corresponding to the

sequence of differences.

The minimum value in each difference sequence is defined as

the minimum range denoted by miniminkΔi(k), and the

maximum value in each difference sequence is defined as the

maximum range denoted by maximaxkΔi(k). Thus, the

correlation coefficient γoi(k) between the comparison

sequence and the reference sequence (Wei et al., 2022) can be

calculated as

γoi(k) �
miniminkΔi(k) + ξmaximaxkΔi(k)

Δi(k) + ξmaximaxkΔi(k)
(i � 0, 1,/, m; k � 1, 2,/n),

(2)

Where ξ is the resolution coefficient whose value range is from

0 to 1 (usually 0.5).

After the correlation coefficient γoi(k) is obtained, the grey
relational degree γoi is calculated as

γol �
1
n
∑n
k−1

γoi(k), (3)

where γoi is affected by clean energy output, multiple

meteorological factors, sequence length, and resolution

coefficient, and its value range is usually from 0 to 1; it also

reflects the correlation degree between the meteorological factors

and clean energy output. The closer the value of γoi to 1, the more

similar is the variation trend between them, and the greater the

impact of the meteorological factors on clean energy output. γoi is
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normalized to obtain the factor weight coefficient of the

comparison sequence as follows:

γi � γol/∑m
i�1
γol. (4)

The factor weight coefficient describes the relative effect of

each meteorological factor on clean energy output. Here, the

meteorological factors are sorted according to the factor weight

coefficient, and those factors with a large weight coefficient have a

high effect on clean energy output. Then, the core meteorological

factors are determined. The median and average values of the

original meteorological data change by day and are unequal

(i.e., the associated meteorological data are asymmetric in form),

and they will not always load a specific probability distribution.

This situation indicates the disadvantage of using the traditional

probability distribution model, which usually results in a final

fitted probability distribution that does not reflect the relational

characteristics between the actual output variation and

meteorological factors.

Similarly, the traditional parameter estimation method

needs to assume that the sample set conforms to a certain

probability distribution (e.g., likelihood estimation, Gaussian

mixture, etc.), after which the parameters are fitted into the

distribution according to the sample set requirement.

Furthermore, parameter estimation needs to add subjective

prior knowledge, but no prior knowledge exists between the

actual output and meteorological factors when determining

the suitable probability distribution. Thus, fitting the model to

a real distribution setting is often difficult. In this context, the

nonparametric estimation method is adopted, which differs

from parameter estimation. The nonparametric estimation

does not add any prior knowledge but instead fits the

distribution according to the characteristics and properties

of the dataset itself, which is also consistent with the expected

goal of our output prediction. With this method, a model with

a better fitting effect than the parameter estimation method

can be obtained.

Kernel density estimation is a kind of nonparametric

estimation. This approach is a revised kernel density

estimation method based on the dataset density function

clustering algorithm. The basic principle of the kernel density

estimation algorithm is its handling of the probability

distribution of a certain setting when a number appears

during observation, and the corresponding probability density

of the number is relatively large. In such instances, the probability

density of the number adjacent to the number is also expected to

be relatively large, whereas the probability density of the number

far away from the number is relatively small.

If the density function of the random variable X is

f(x) � F(x), then a simple estimation f̂(x) of f(x) can be

obtained according to the basic idea of kernel density estimation

(Xiang et al., 2021) as follows:

f̂(x) � F(x + h) − F(x − h)
2h

, (5)

where h is a nonnegative constant, and F(x) is the empirical

distribution function of X.

The total Gaussian kernel density estimation function

formula (Wan et al., 2022) is expressed as

f̂(x, h) � 1
N

∑N
i�1

1����
2πh2

√ exp( − (x − xi)2
2h2

). (6)

This study uses the fixed algorithm for interpolation. When

using the fixed algorithm, given a minimum square difference,

the optimal window width can be obtained according to the

minimum mean integrated square error (MISE), which is

defined as

MISE(f̂) � ∫ {f̂(x) − E[f̂(x)]}2dx + ∫ varf̂(x)dx. (7)

When different confidence intervals (e.g., 50% and 90%

confidence intervals) are selected, the specific fluctuation

range of the wind speed or PV output median can be more

intuitively observed using the nonparametric estimation model,

such as Gaussian kernel density estimation, to analyze the

relational characteristics between the wind speed or PV

output and other meteorological factors. If the parameter

estimation model requires prior knowledge (i.e., probability

distribution must be used), then the upper and lower limits of

the wind speed or PV output fluctuation range are forcibly

changed as a means of ensuring that the data will conform to

the pre-assumed probability distribution. Therefore,

nonparametric estimation models, such as Gaussian kernel

density estimation, can be used to achieve a more effective

fitting of meteorological data that vary on a daily basis. In

this manner, the data loss caused by the fitting probability

distribution models can be avoided.

2.2 Multiple factors in GRA based on ANN

In the neural network model, combined with the core

meteorological factors obtained from the GRA, the historical

data can be used to fit the clean energy output under all possible

meteorological conditions. Here, sensitivity analysis is performed

to obtain the correlation analytical results of multi-

meteorological factor coupling. Owing to the powerful

learning function of the artificial neural network (ANN), it

can approach any complex nonlinear function. Therefore, the

historical data of clean energy output and meteorological factors

can be used to establish a nonlinear mapping relationship in the

neural network to fit the clean energy output under all possible

meteorological conditions.

The model structure of ANN is shown in Figure 1. The ANN

model is composed of an input layer, a hidden layer, and an
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output layer (Ogliari et al., 2021). The input layer selects a variety

of meteorological factors with the highest relational degree in the

results of GRA. The output layer is the clean energy output

corresponding to each group of meteorological data. The

selection of the number of neurons in the hidden layer is

directly related to the scale and accuracy of the neural

network. According to Kolmogorov’s theorem, if the number

of input variables is n, then the number of neurons in the hidden

layer can be generally taken as 2n + 1, or the number of neurons

in the hidden layer can be determined by repeated experiments.

When ANN is used to fit the clean energy output and

meteorological data, different variables in the original

meteorological data usually have different units, and the order

of magnitude also differs. According to the characteristics of

neuron activation function, the output of neurons is usually

limited to a certain range. Most nonlinear activation functions

used in ANN are functions, and their output is limited to (0,1) or

(−1,1). Directly fitting the input network with the original data

will cause the neurons to saturate. Therefore, before using a

neural network for fitting, the sample data with different

dimensions must be normalized to eliminate the impact of the

varying forms of original data. When the required input and

target data fall into the (0,1) range, the normalization formula is

given by

pp
t �

pt − pmin

pmax − pmin
, (8)

where pt represents the time data, and pmax and pmin represent

the maximum and minimum values in the sequence to which the

data belongs, which are the normalized data.

The neural network learning algorithm adopted by the ANN

model is the Levenberg–Marquardt optimization method. The

Levenberg–Marquardt optimization method can shorten the

learning time and has a good effect in practical application

(Zhang et al., 2021a). Its weight or threshold update formula is

Xk+1 � Xk − (JTJ + uI)−1JTe, (9)

where j is the Jacobian matrix of the differential between the error

and weight, e is the error vector, and u is a scalar.

After completing the training of ANN, the meteorological

factors with the third highest relational degree are determined

according to the GRA results. The historical data corresponding

to the two meteorological factors with the highest relational degree

are selected when the meteorological factors have a 90% maximum,

10% minimum, and median. After normalization, these values are

used as the horizontal and vertical axes to represent the

meteorological data on a grid. The meteorological data can cover

all meteorological conditions despite the changing core

meteorological factors of the analyzed power station. The gridded

meteorological data are also used as the input of ANN, and the

output of ANN is the gridded fitting results of clean energy output

under different meteorological conditions. Then, a sensitivity

analysis of the two core meteorological factors is conducted

based on the fitting results. Finally, the quantitative relational

between the multiple meteorological factors and clean energy

output is obtained based on the variation trend and amplitude of

clean energy output under varying core meteorological factors along

with the influences of other meteorological factors.

3 Assessment method of
development potential based on
output prediction

The accurate prediction of the clean energy output is an

important technique for handling the randomness, volatility, and

intermittency of clean energy output. However, a day-ahead

forecast entails high requirements for the continuity and

integrity of historical data, and the input variable dimension

of the forecast is high. This situation causes the model structure

to be extremely complex and the prediction accuracy under

varying weather conditions to be low. Therefore, the above

association rules are used as the basis for identifying and

FIGURE 1
ANN model structure.

FIGURE 2
Output characteristic index of the wind power station.
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optimizing the input variables. With this approach, the key

influencing factors can be extracted, and the input set of the

clean energy output prediction model can be built. However, the

sample size of the data is insufficient. Therefore, the XGBoost

algorithm is selected to predict the 24-hour day output of clean

energy. The prediction results before and after the optimized

selection of input variables are compared to verify the

effectiveness of the screening input variables in relation to the

relational analytical results. In addition, by constructing a fitting

model without historical output data for determining the output

of the new power station, the clean energy power fitting without

historical output data can be more easily realized.

3.1 Clean energy output prediction based
on XGBoost

XGBoost is an optimization boosting algorithm for

integrating weak classifiers into a strong classifier (Zhang

et al., 2021b). XGBoost generates a new tree via continuous

iteration to fit the residual of the previous tree. As the iteration

time increases, the accuracy continues to improve. Therefore,

XGBoost can better fit the output data, and it can reduce the

prediction error and achieve relatively high prediction accuracy

The prediction model based on XGBoost is expressed as

ŷi � ∑n
t�1
ft(xi), ft ∈ F, (10)

where n is the number of trees, ft is a function in function space F,

ŷi is the predicted value of clean energy output, xi is the ith data

input, and F represents all possible cart sets. The tree model used

in this research is the cart regression tree model.

Each iteration does not affect the model (i.e., the original

model remains unchanged), and a new function is added to the

model. One function corresponds to one tree. The newly

generated tree fits the residual of the last prediction. The

iterative process is given by

⎧⎪⎨⎪⎩
ŷ(0)
i � 0

ŷ(1)
i � f1(xi) � ŷ(0)

i + f1(xi)
ŷ(t)
i � ŷ(t−1)

i + ft(xi)
. (11)

The objective function of XGBoost is expressed as follows:

Xobj � ∑n
i�1
l(y, ŷ) +∑K

k�1
Ω(fk), (12)

Ω(fk) � γT + λ
1
2
∑T
j�1
ω2
j , (13)

where ∑n
i�1l(y, ŷ) is used to measure the difference between the

predicted output and the real output, ∑K
k�1Ω(fk) is a

regularization term, T is the number of leaf nodes, and ω is

the score of the leaf node. The purpose of γ is to control the

number of leaf nodes, and λ is used to ensure that the score of leaf

nodes is not extremely large. The goal of regularization is to select

a simple prediction function to prevent the model from

overfitting. When the regularization parameter is zero,

XGBoost degenerates to the traditional boosting model. The

iteration of the model adopts the method of additional

training to further minimize the objective function (Xie et al.,

2021). Then, the objective function is updated to

τ(t) � ∑n
i�1
l(yi, ŷ

(t−1)
i + ft(Xi)) +Ω(ft). (14)

The Taylor series of the loss function is extended to the

second order to find an approximation for minimizing the

objective function using its Taylor second-order expansion at

ft � 0. As such, the objective function is approximately

τ(t) ≃ ∑n
i�1

[l(yi, ŷ
(t−1)
i + ft(Xi)) + 1

2
hif

2
i (Xi)] + Ω(ft), (15)

Xobj ≃ ∑n
i�1

[gift(xi)) + 1
2
hif

2
t(xi)] +Ω(ft)

� ∑n
i�1

[giwq(xi)) + 1
2
hiw

2
q(xi)] +Ω(ft) + λT + λ

1
2
∑T
j�1
ω2
j

� ∑T
j�1

⎡⎢⎢⎢⎣⎛⎝∑
i∈Ij

gi
⎞⎠wj + 1

2
⎛⎝∑

i∈Ij

hi + λ⎞⎠w2
j
⎤⎥⎥⎥⎦ + λT,

(16)
where Xobj is the objective function, gi � zŷt−1l(yi, ŷ

t−1) is the
first derivative, and hi � z2ŷt−1l(yi, ŷ

t−1) is the second derivative.
In the training process, the model continuously calculates the

node loss to select the leaf node with the largest gain loss. Eq. 19

rewrites the objective function into a univariate quadratic

function for the leaf node fraction ω. The optimal ω and

objective function values obtained from the solution are given by

ωp
j � −∑

i∈Ij

gi/⎛⎝∑
i∈Ij

hi + λ⎞⎠, (17)

Xobj � −1
2
∑T
j�1

Gj

Hj + λ
+ λTn. (18)

The average absolute percentage error is selected as the main

evaluation index of model prediction performance.

XMAPE � 1
n
∑n
t�1

∣∣∣∣yt − yΩ
t

∣∣∣∣
yt

p100% (19)

3.2 Development potential assessment
index of regional clean energy stations

The regional potential index that considers the

spatial–temporal characteristics of clean energy output
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(i.e., guaranteed output coefficient (GOC), maximum output

coefficient (MOC), and effective capacity coefficient) is

proposed in this study. The assessment of clean energy

stations can greatly help to alleviate the contradiction between

the continuous increase in the installed capacity of clean energy

and the shortage of delivery channels and transmission capacity.

Clean energy power generation is developing rapidly, but a large

number of clean energy systems are located in areas with weak

power grids or even have no electricity. The distribution of clean

energy resources is situated far away from load centers. Thus,

clean energy, including decentralized wind power access and

distributed photovoltaic power generation, is difficult to absorb

and utilize, consequently facing the problem of limited

transmission. Moreover, the output of each regional clean

energy station is affected by its inherent randomness,

volatility, and intermittency, and the output of each station is

complementary. Therefore, simply adding maximum capacity

should be abandoned as an idea when evaluating clean energy

access and its transmission scheme; otherwise, serious economic

losses may arise at the beginning of the station system design. A

suitable approach is to classify clean energy stations by region,

aggregate and analyze the output of each station, and build a

reasonable evaluation framework for the access and transmission

planning scheme of these clean energy stations.

Take wind power as an example, and rank the annual hourly

output of wind farms from large to small (except for zero). As

shown in Figure 2, its monotonic decline curve can depict the

probability in which the wind power output is higher (or lower)

than a certain value.

1) 95%MOC represents the percentage of maximum instantaneous

output corresponding to the 95% guarantee rate of the installed

capacity of the statistical power generation output value that is

greater than the 95% guarantee rate. This parameter can

characterize the high-value characteristics of clean energy output.

2) The GOC of wind power guaranteed output represents the

probability in which the wind power output is greater than the

wind power output at all times (i.e., 95%).

3) Available capacity coefficient (AVC) refers to the percentage

of maximum output of the clean energy power stations

corresponding to part of the accumulated electricity in the

installed capacity under a 95% wind rejection rate. This

parameter can help to guide the planning of access and

transmission capacity of regional clean energy power stations.

XAVC,all � ∑n
t�t95,avc

pt,n/Pnp100%, (20)

where t95,avc is the cumulative time when the air rejection rate is

95%, and Pn is the installed capacity of wind power station n.

The specific framework of the assessment method for the

development potential of regional clean energy bases is shown in

Figure 3. First, the historical data are integrated to obtain the

FIGURE 3
Framework of the development potential assessment
method of regional clean energy stations.

FIGURE 4
Output characteristics of wind station #A in 2019 and 2020.

TABLE 1 Relational analysis of core meteorological factors of the wind power station.

Wet season Dry season Normal season

Wind speed 0.83578 Wind speed 0.66992 Wind speed 0.78380

Wind direction 0.72008 Wind direction 0.66131 Wind direction 0.68840

Temperature 0.68776 Temperature 0.64433 Temperature 0.64457

Humidity 0.57654 Humidity 0.62736 Humidity 0.61654

Air pressure 0.53497 Air pressure 0.60085 Air pressure 0.52426
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output meteorological factor dataset of a single station. The

meteorological factors with a core influence are obtained

according to GRA, and the single-factor relational analytical

results are derived. Then, ANN is used to fit the historical

data and core meteorological factors, and sensitivity analysis is

performed to obtain the results of multi-factor coupling

relational analysis. Take the above relational results as the

basis for identifying and optimizing input variables to extract

the key influencing factors and build the input set of clean energy

output prediction models. XGBoost is selected to predict the

clean energy output 24 h before the day. The prediction results

before and after the optimized selection of input variables are

compared to verify the effectiveness of the screening input

variables in relation to the relational analytical results. By

constructing a fitting model without historical output data for

determining the output of the new power station, the clean

energy power fitting without historical output data can be

realized. Finally, the development potential indicators (GOC,

MOC, and AOC) of the regional clean energy station are

calculated.

4 Case study

A wind power station in regional #A is initially selected to

analyze the correlation between the output and meteorological

factors, and the output is predicted based on this approach. Then,

several stations in the region are predicted, and the development

potential of the regional clean energy base is evaluated. The

output characteristics of the #A wind power stations in 2019 and

2020 are shown in Figure 4.

FIGURE 5
Wind speed–temperature–output distribution diagram of thewind power station across periods under different wind directions. (A)Wet season
and east wind. (B) Wet season and west wind. (C) Normal Season and the east wind.

FIGURE 6
Comparison of output prediction results of the different
algorithms. (A) Wet season. (B) Dry season.
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4.1 Relational analysis of the output and
meteorological factors

Meteorological factors, such as wind speed, wind direction,

temperature, humidity, and air pressure, are selected to analyze

the relational among wet season, dry season, and normal season.

The results are shown in Table 1.

Given the relatively open environment, the wind direction of

the wind power station is variable. At this time, wind direction is

the dominant factor as opposed to wind speed, and humidity and

relative temperature are the dominant factors. A review of the

historical data in 2019–2020 indicates a gradual weakening of

monsoon intensity, but the impact of the southeast monsoon is

increasing. The wind direction is affected by the southwest

monsoon, northwest monsoon, and southeast monsoon, and it

changes greatly. On the one hand, the cross-influence of various

monsoons brings changes to wind speed and wind direction; on

the other hand, it greatly affects air humidity. Therefore, the

influence of humidity on wind power is significantly increased in

the dry season. The increase in the correlation among wind

direction, humidity, and wind power during the dry season for

the wind power plant is fundamentally caused by the cross-

influence of the southwest monsoon and southeast monsoon in

winter. Wind direction and humidity are the concrete

representations of the interaction of the monsoon.

4.2 Relational analysis of multiple factors

After completing the ANN training, the meteorological

factors with the third highest relational degree are determined

in relation to the results of GRA. The historical data

corresponding to the two meteorological factors with the

highest relational degree are selected when the meteorological

factors have a 90%maximum, 10% minimum, and median. After

normalization, the data are used as the horizontal and vertical

axes to represent the meteorological data on a grid. The

meteorological data can cover all meteorological conditions

despite the varying core meteorological factors of the analyzed

power station. The gridded meteorological data are also used as

TABLE 2 Prediction error of wind power.

Wet/Dry Prediction error

Filted XGB Original XGB Filted LSTM Filted DBN

Wet season 0.0422 0.0358 0.0768 0.0891

Dry season 0.0433 0.0450 0.1057 0.0889

TABLE 3 Prediction accuracy of wind power.

Wet/Dry Prediction accuracy

Filted XGB Original XGB Filted LSTM Filted DBN

Wet season season 91.52(%) 89.59(%) 86.51(%) 85.50(%)

Dry season season 91.47(%) 91.30(%) 86.69(%) 88.05(%)

FIGURE 7
Fitted prediction of wind power output. (A) Wet season.
(B) Dry season
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the input of the neural network, and the output of the neural

network is the gridded fitting results of clean energy output under

different meteorological conditions. Then, a sensitivity analysis

of the two core meteorological factors is performed based on the

fitting results. Finally, the quantitative relational between the

multiple meteorological factors and clean energy output is

obtained based on the variation trend and amplitude of clean

energy output under varying core meteorological factors that

change along with the influences of other meteorological factors.

The #A wind speed temperature wind power distribution

diagram of the wind power station under different wind

directions across periods (wet season and normal season) is

shown in Figure 5.

The output change of the wind power station is less

sensitive to temperature during the wet and normal

periods, and the temperature change hardly affects the

wind speed wind power conversion curve. Under the same

TABLE 4 Fitted prediction error of wind power.

Wet/Dry Prediction error

Historical energy data
available No real-time
meteorological data

No historical energy
data real-time meteorological
data available

Wet season 91.52(%) 95.41(%)

Dry season 91.47(%) 92.41(%)

FIGURE 8
Descending order of hourly output in 2019.

FIGURE 9
Descending order of hourly output in 2020.

FIGURE 10
Descending order of hourly output (600 MW).

TABLE 5 AOC of wind power corresponding to key AOC in 2019.

Available capacity
percentage (%)

90 92.5 95 97.5 100

AOC 0.4559 0.4866 0.5230 0.5714 0.7934
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wind speed but different temperature conditions, the output

of the wind power plant does not change significantly. In the

dry season, the output of the wind power plant is affected by

multiple monsoons. At this time, the wind turbine may be

frequently cut off, and other control phenomena (i.e., the

change in wind speed is not proportional to wind power) may

arise. The correlation uncertainty between wind speed and

wind power is extremely strong.

4.3 Wind power output forecast based on
XGBoost

The effect of input variable selection, which is based on

association rule optimization, on prediction performance and the

effectiveness of the output prediction of clean energy are

compared using the XGBoost prediction model of the original

input variables. After filtering the input variables, the long-term

short-term memory (LSTM) ANN and deep belief network

(DBN) are constructed for the 24-hour short-term WPF. In

the short-term WPF model, the initial learning rate of the

constructed XGBoost model is set to 0.01, the maximum

number of iterations is set to 300, the maximum depth of the

tree is set to 6, and the loss function is set to linear regression. The

results are shown in Figure 6.

Figure 6 shows the general trend of the overall prediction

accuracy of LSTM and DBN. The prediction deviation is large

at different times. The XGBoost model has a better fitting

accuracy on the actual output, and the variation law of the

prediction result is consistent with the actual data. Especially

in the time period of rapid wind power fluctuation, the

prediction effect of XGBoost is significantly better than the

other two algorithms. Compared with the XGBoost with the

post-screened input variables, the XGBoost model with the

original data used as the input variables has the characteristics

of overfitting, and the prediction results are obviously

deviated from the actual data.

Then, the wind power’s normalized mean absolute error

(MAE) prediction error and the prediction accuracy (based on

the root mean square error) of the XGBoost model before and

after optimally selecting the input variables in relation to the

association rules are calculated. The LSTM and DBN are also

computed using the test set after optimally selecting the input

variables. The results are shown in Tables 2, 3.

The results, combined with the trends in Figure 6, indicate

that the dimension reduction measures based on the correlation

characteristics can reduce the complexity of the prediction

model, effectively improve the prediction effect of XGBoost,

and screen the input variables to reduce the impact of

randomness and intermittency of wind power on the final

results of the prediction model. The measures are applicable

for solving the problem of unstable accuracy of the prediction

model in cases of rapid and large-scale fluctuations of wind

power.

4.4 Output fitting without historical
energy data

XGBoost is also used to build the wind power fitting model

without historical energy data. The validity of the fitting model is

verified by comparing the results of the wind power fitting model

with historical energy data. The comparison between the actual

wind power and fitting results is shown in Figure 7.

TABLE 6 AOC of wind power corresponding to key AOC in 2020.

Available capacity
percentage (%)

90 92.5 95 97.5 100

AOC 0.4298 0.4591 0.4942 0.5430 0.7694

TABLE 7 AOC of wind power corresponding to key AOC (600 MW).

Available capacity
percentage (%)

90 92.5 95 97.5 100

AOC 0.3850 0.4116 0.4437 0.4876 0.6678

TABLE 8 AOC of wind power corresponding to key AOC (2200 MW).

Available capacity
percentage (%)

90 92.5 95 97.5 100

AOC 0.3492 0.3727 0.4016 0.4422 0.6365

FIGURE 11
Descending order of hourly output (2200 MW).
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According to Figure 7, under the condition of small wind

power and stable change, the overall accuracy of the wind

power fitting model without historical energy data is high. In

particular, as shown in Figure 7A, the fitting results coincide

with the actual data within the time of 1–100, which can well

depict the output of wind power. When the meteorological

factors change violently with the weather conditions, the

wind power also fluctuates greatly, and the frequency is high.

Furthermore, the deviation between the fitting results and

the actual data under this condition increases to a certain

extent compared with those under conventional weather, but

the deviation can still approximate the variation of wind

power. Similarly, as shown in Figure 7B, within the time of

155–162, the fitting results accurately depict a steep drop and

increase in actual wind power, and the maximum and

minimum points of both scenarios are the same.

The accuracy of WPF/fitting based on RMSE is shown in

Table 4.

Although the use of historical output data is less effective than the

day-ahead prediction model, the results of the fitting model without

the historical output data are consistent with the actual data for most

time periods owing to the integration of real-time meteorological

information. Moreover, the prediction error value is within a good

range, and the fitting effect on the variation trend of wind power is

better under complex and changeable meteorological conditions.

However, when the meteorological data changes abruptly and the

overall fitting error is extremely large, the fitting result with the

historical energy data is better.

4.5 Assessment of the wind power station

The total installed capacities of the wind power base in 2019 and

2020 were 1669 and 2166MW, respectively. The hourly output data

of wind power for 2019 and 2020 are sorted from large to small, and

the results are shown in Figures 8, 9, respectively. The AOC of wind

power corresponding to the key effective capacity for 2019 and

2020 are shown in Tables 5, 6.

The comparative trends in the 2019 and 2020 output

descending charts with the effective capacity coefficient show

a significantly lower value for 95% MOC in 2020 compared with

that in 2019. On the one hand, the overall output of the wind

power plants that have been newly added to the assessment in

2020 is low, thereby increasing the low output of the wind power

hourly output in 2020. On the other hand, the overall distribution

of the effective capacity coefficient of this wind power base in

2020 has also decreased with respect to the previous 2 years, but

the surge trend of the effective capacity coefficient within the

range of effective capacity percentage greater than 97.5% is still

significant.

4.6 Development potential assessment for
the wind power stations

This study proposes the construction of 12 new wind

power stations in the wind power base based on the

assumption that the installed capacity is 200 MW. At this

phase of this study, the power stations are stacked for further

analysis. The total installed capacity of the wind power

base in 2020 was 2166.2 MW. Subsequently, 600 and

2200 MW are added to this total installed capacity for the

assessment are shown in Figures 10, 11 respectively.

The AOC of the wind power stations corresponding to the

key effective capacity of the wind power base (increased by

600 and 2200 MW) is shown in Tables 7, 8. In addition,

Figure 12 shows the AOC of the wind power base and the

total installed capacity of regional wind power stations.

FIGURE 12
AOC of regional wind power stations with different total regional installed capacity.
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The AOC of the regional wind power stations with different

total regional installed capacities is also shown in Figure 12.

Figure 12 shows that as the number of power stations

continues to increase, the total installed capacity of the wind

power base continues to rise, and the effective capacity factor

continues to decrease. However, when the total installed capacity

is higher than 3500 MW, the effective capacity factor remains

around 0.4. Thus, given the existing meteorological data, when

the number of wind power stations is increased to a certain

extent, the total wind power output characteristics in the region

will not change significantly. This finding is consistent with the

inherent randomness of wind power.

5 Conclusion

This study presents a development potential assessment

method for clean energy stations. First, the relational between

the clean energy output and meteorological factors is

investigated via GRA and ANN fitting. Second, XGBoost-

based relational analysis is used to predict 24 h of clean

energy output by referring to historical data, and then the

output of the power stations is fitted without using historical

data. Finally, the AVC, GOC, and MOC of wind power for

future clean energy stations are calculated to guide the

planning of regional stations. The findings indicate that

new clean energy stations will significantly affect the MOC,

GOC, and AVC of wind power. When the number of new

stations and the overall installed capacity of the region are

both increased, the AOC and MOC of the regional wind power

stations will gradually decrease, whereas the GOC will

gradually increase. Cases of regional wind power stations

are also analyzed in this work. The analytical results prove

that the proposed method is effective and has strong

applicability.
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