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Abstract: Hard Thresholding Pursuit (HTP) is one of the important and efficient algorithms for
reconstructing sparse signals. Unfortunately, the hard thresholding operator is independent of the
objective function and hence leads to numerical oscillation in the course of iterations. To alleviate
this drawback, the hard thresholding operator should be applied to a compressible vector. Motivated
by this idea, we propose a new algorithm called Compressive Hard Thresholding Pursuit (CHTP)
by introducing a compressive step first to the standard HTP. Convergence analysis and stability of
CHTP are established in terms of the restricted isometry property of a sensing matrix. Numerical
experiments show that CHTP is competitive with other mainstream algorithms such as the HTP,
Orthogonal Matching Pursuit (OMP) and Subspace Pursuit (SP) algorithms both in the sparse signal
reconstruction ability and average recovery runtime.
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1. Introduction

One of the important problems in signal processing is to recover an unknown sparse signal from a
few measurements, which can be expressed as follows:

min
1
2
‖y − Ax‖22

s.t. ‖x‖0 ≤ s, (1.1)
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where ‖x‖0 represents the total number of nonzero entries of x ∈ RN , A ∈ Rm×N is the measurement
matrix with m � N, and y is the measurement vector. This model has been widely applied
in many important areas, including machine learning, compressed sensing, signal processing,
pattern recognition, wireless communication, etc. Note that the l0-norm is not continuous and has
combinatorial structure. Hence, the problem (1.1) is known to be NP-hard.

Over the past decades, many efficient algorithms have been proposed for solving the model (1.1),
including convex relaxation methods, greedy methods, and thresholding-based methods, to name a
few. For example, basis pursuit [1, 2], lp algorithms [3, 4], alternating projections [5] and conjugate
gradient adaptive filtering [6] have been proposed by using convex optimization techniques. Greedy
methods include orthogonal matching pursuit (OMP) [7, 8, 9], compressive sampling matching pursuit
(CoSaMP) [10] and subspace pursuit (SP) [11, 12]. Thresholding-based methods provide a simple
way to ensure the feasibility of iteration, which includes iterative hard thresholding [13, 14, 15],
hard thresholding pursuit [16, 17, 18], soft thresholding [19] and Newton-step hard thresholding
[20]. Recently, Zhao [21, 22] proposed a new thresholding operator called s-optimal thresholding
by connecting the s-thresholding directly to the reduction of the objective function. For more
information on theoretical analysis and applications of algorithms for solving sparse signal recovery,
see [23, 24, 25, 26].

In this paper, we mainly focus on the hard thresholding algorithms due to their simple structure and
low computational cost. One of the key steps in a hard thresholding algorithm is

xn+1 = Hs(xn + AT (y − Axn)),

whereHs(·) stands for the hard thresholding operator, keeping the s-largest absolute components of the
vector and zeroing out the rest of the components. The main aim in this step is to ensure the feasibility
of iteration. However, three possible questions exist for this step. First, the objective function can
increase in some iterations, i.e., {‖y − Axn‖2} is not a decreasing sequence. Second, if xn + AT (y − Axn)
is a dense vector, only keeping the s-part would lose too much important information. Third, even for a
non-dense vector, it is possible that some useful indexes may be missed, as the difference between the
s-largest components and (s + j)-largest (with j > 0) components of xn + AT (y− Axn) is very small. To
the best of our knowledge, the first question can be solved by using the s-optimal thresholding operator
introduced by Zhao in [21], and the second question has been discussed recently in [27] by using partial
gradient technology, i.e., full gradients AT (y − Axn) are replaced by partial onesHq(AT (y − Axn)) with
q ≥ s.

Inspired by these works, we continue to study the aforementioned third question in this paper.
Precisely, a little greater signal basis, say β, which is greater than s, is selected in each iteration first.
This undoubtedly increases the chance of correctly identifying the support set of a signal, particularly
for the case of the s-largest components close to the β-largest components. A β-sparse vector un+1

is attained by solving a least-square problem over the subspace determined by the index set Un+1 :=
Lβ(xn + AT (y − Axn)), where Lβ(x) stands for the index set of the β largest absolute entries of x.
Subsequently, the hard thresholding operator Hs(·) will be applied to un+1 for reconstructing the s-
sparse vector. Finally, to further improve numerical performance, we choose an iteration to seek a
vector that best fits the measurements over the prescribed support set by using a pursuit step, also
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referred to as debiasing or orthogonal projection. This leads to the Compressive Hard Thresholding
Pursuit (CHTP) algorithm. Numerical experiments demonstrate that CHTP has better performances
when β is slightly greater than s.

The notation used in this paper is standard. For a given set S ⊆ {1, 2, . . . ,N}, let us denote by |S | the
cardinality of S and by S̄ := {1, 2 . . . ,N}\S the complement of S . For a fixed vector x, xS is obtained
by retaining the elements of x indexed in S and zeroing out the rest of the elements. The support of x
is defined as supp(x) := {i|xi , 0}. Given two sets S 1 and S 2, the symmetrical difference of S 1 and S 2

is denoted by S 1∆S 2 := (S 1\S 2) ∪ (S 2\S 1). Clearly,

‖xS 1\S 2‖2 + ‖xS 2\S 1‖2 ≤
√

2‖xS 1∆S 2‖2, ∀x ∈ RN .

The paper is organized as follows. The CHTP algorithm is proposed in Section 2. Error estimation
and convergence analysis of CHTP are given in Section 3. Numerical results are reported in Section 4.

2. Compressive Hard Thresholding Pursuit

In order to solve problem (1.1), Blumensath and Davies [13] proposed the following Iterative Hard
Thresholding (IHT) algorithm:

xn+1 := Hs(xn + AT (y − Axn)).

The negative gradient is used as the search direction, and the hard thresholding operator is employed
to ensure sparse feasibility. Furthermore, by combining the IHT and CoSaMP algorithms, Foucart
[17] proposed an algorithm called Hard Thresholding Pursuit (HTP), which has stronger numerical
performance than IHT.

Algorithm: Hard Thresholding Pursuit (HTP).
Input: a measurement matrix A, a measurement vector y and a sparsity level s. Perform the following
steps:

S1. Start with an s-sparse x0 ∈ RN , typically x0 = 0;
S2. Repeat

Un+1 := Ls(xn + AT (y − Axn)); (2.1)

xn+1 := arg min
{
‖y − Az‖2 : supp(z) ⊆ Un+1

}
until a stopping criterion is met.

Output: the s-sparse vector x∗.
In Step (2.1) of HTP, we get |Un+1| = s, which results in only up to s positions being taken as the

basis at each iteration in the process of restoring vectors. However, it should be noted that the selected
basis of s positions could not accurately represent the full gradient information. From the view of
theoretical analysis, the less gradient information of the selected basis there is, the more difficult it is
for HTP to achieve good numerical performance. In order to further improve the efficiency of HTP, we
propose the following CHTP algorithm. It allows us to choose more elements of gradient information
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at each iteration. In particular, if β = s, then xn+1 = un+1 in CHTP. Hence, CHTP reduces to HTP in
this special case.

Algorithm: Compressive Hard Thresholding Pursuit (CHTP).
Input: a measurement matrix A, a measurement vector y and a sparsity level s. Perform the following
steps:

S1. Start with an s-sparse x0 ∈ RN , typically x0 = 0;
S2. Repeat

Un+1 := Lβ
(
xn + AT (y − Axn)

)
,

un+1 := arg min
{
‖y − Az‖2 : supp(z) ⊆ Un+1

}
,

T n+1 := Ls(un+1),

xn+1 := arg min
{
‖y − Az‖2 : supp(z) ⊆ T n+1

}
,

where β ≥ s, until a stopping criterion is met.

Output: the s-sparse vector x∗.

The detailed discussion on numerical experiments including special stopping criteria is given in
Section 4.

3. Convergence analysis

Theoretical analysis for CHTP is carried out in terms of the concept of the restricted isometry
property (RIP) of a measurement matrix. First, recall that for a given matrix A and two positive integers
p, q, the norm ‖A‖p→q is defined as

‖A‖p→q := max
‖x‖p≤1

‖Ax‖q.

Definition 3.1. [1] Let A ∈ Rm×N be a matrix with m < N. The s-th restricted isometry constant (RIC)
of A, denoted by δs, is defined as

δs := max
S⊆{1,2,...,N},|S |≤s

‖AT
S AS − I‖2→2,

where AS is the submatrix of A created by deleting the columns not in the index set S .

The s-th restricted isometry constant can be defined equivalently as the smallest number δ > 0 such
that

(1 − δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀x satisfying ‖x‖0 ≤ s. (3.1)

In particular, if δs < 1, we say that the matrix A has the restricted isometry property (RIP) of order s.
The following inequalities follow from the definition of RIC and play an important role in the

theoretical analysis of CHTP.

Lemma 3.1. [23] Given a vector v ∈ RN and a set S ⊆ {1, 2, . . . ,N}, one has the following statements.
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(i). ‖((I − AT A)v)S ‖2 ≤ δt‖v‖2 if |S ∪ supp(v)| ≤ t.
(ii). ‖(AT v)S ‖2 ≤

√
1 + δt‖v‖2 if |S | ≤ t.

The following lemma comes from [28], providing an estimate on the Lipschitz constant of the hard
thresholding operator. Moreover, [28, Example 2.3] indicates that the constant (

√
5 + 1)/2 is tight.

Lemma 3.2. For any vector z ∈ RN and for any s-sparse vector x ∈ RN , one has

‖x −Hs(z)‖2 ≤

√
5 + 1
2
‖(x − z)S∪Z‖2,

where S := supp(x) and Z := supp(Hs(z)).

The following result is inspired by [28, Lemma 3.3].

Lemma 3.3. Let y = Ax + e. Given an s-sparse vector z and β ≥ s, define

V := Lβ(z + AT (y − Az)).

Then,
‖xS \V‖2 ≤

√
2
(
δ2s+β‖xS − z‖2 +

√
1 + δs+β‖e′‖2

)
,

where S := Ls(x) and e′ := AxS + e.

Proof. The case of S ⊆ V holds trivially due to xS \V = 0. Now, let us consider the remaining case of
S  V . Define

ΦS \V :=
∥∥∥[z + AT (y − Az)]S \V

∥∥∥
2

and ΦV\S :=
∥∥∥[z + AT (y − Az)]V\S

∥∥∥
2
. (3.2)

Since |V | = β ≥ s = |S |,
|S \V | = |S − S ∩ V | ≤ |V − S ∩ V | = |V\S |. (3.3)

Meanwhile, from the definition of V , we know that the entries of the vector z + AT (y − Az) supported
on S \V are not greater than the β largest absolute entries, that is,(

z + AT (y − Az)
)

i ≤
(
z + AT (y − Az)

)
j, for any i ∈ S \V, j ∈ V\S .

Together with (3.3), this leads to

ΦS \V =
∥∥∥(z + AT (y − Az)

)
S \V

∥∥∥
2
≤

∥∥∥(z + AT (y − Az)
)

V\S

∥∥∥
2

= ΦV\S . (3.4)

Define
ΦS ∆V :=

∥∥∥[(xS − z) − AT (y − Az)]S ∆V

∥∥∥
2
.

Since y = AxS + e′ with e′ = AxS̄ + e,

ΦS ∆V =
∥∥∥((xS − z) − AT (AxS + e′ − Az)

)
S ∆V

∥∥∥
2

=
∥∥∥((I − AT A)(xS − z) − AT e′

)
S ∆V

∥∥∥
2

≤
∥∥∥((I − AT A)(xS − z)

)
S ∆V

∥∥∥
2

+
∥∥∥(AT e′)S ∆V

∥∥∥
2
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≤ δ2s+β‖xS − z‖2 +
√

1 + δs+β‖e′‖2, (3.5)

where the last inequality follows from Lemma 3.1 and the fact that

|supp(xS − z) ∪ (S ∆V)| ≤ |supp(z) ∪ S ∪ V | ≤ 2s + β.

Due to (S \V) ∩ (V\S ) = ∅, we have

Φ2
S ∆V =

∥∥∥((xS − z) − AT (y − Az)
)

S ∆V

∥∥∥2

2

=
∥∥∥((xS − z) − AT (y − Az)

)
S \V

∥∥∥2

2
+

∥∥∥((xS − z) − AT (y − Az)
)

V\S

∥∥∥2

2

=
∥∥∥xS \V −

(
z + AT (y − Az)

)
S \V

∥∥∥2

2
+

∥∥∥(z + AT (y − Az)
)

V\S

∥∥∥2

2

= ‖xS \V −
(
z + AT (y − Az)

)
S \V‖

2
2 + Φ2

V\S . (3.6)

Let us discuss the following two cases separately.
Case 1. ΦV\S = 0. Then, ΦS \V = 0 by (3.4). It follows from (3.2) that

(
z + AT (y − Az)

)
S4V = 0. So,

‖xS \V‖2 = ‖xS \V −
(
z + AT (y − Az)

)
S4V‖2

= ΦS ∆V

≤ δ2s+β‖xS − z‖2 +
√

1 + δs+β‖e′‖2,

where the last inequality results from (3.5).
Case 2. ΦV\S > 0. Let

α :=
‖xS \V −

(
z + AT (y − Az)

)
S \V‖2

ΦV\S
. (3.7)

It follows from (3.6) that

ΦS ∆V =

√∥∥∥xS \V −
(
z + AT (y − Az)

)
S \V

∥∥∥2

2
+ Φ2

V\S =
√

1 + α2 ΦV\S . (3.8)

Combining (3.7) and (3.8) yields∥∥∥xS \V −
(
z + AT (y − Az)

)
S \V

∥∥∥
2

= αΦV\S =
α

√
1 + α2

ΦS ∆V .

Furthermore,

Φ2
S \V = ‖

(
z + AT (y − Az)

)
S \V‖

2
2

= ‖xS \V −
(
xS − z − AT (y − Az)

)
S \V‖

2
2

= ‖xS \V‖
2
2 − 2〈xS \V , xS \V −

(
z + AT (y − Az)

)
S \V〉

+
∥∥∥xS \V −

(
z + AT (y − Az)

)
S \V

∥∥∥2

2

≥ ‖xS \V‖
2
2 − 2‖xS \V‖2

∥∥∥xS \V −
(
z + AT (y − Az)

)
S \V

∥∥∥
2

+
∥∥∥xS \V −

(
z + AT (y − Az)

)
S \V

∥∥∥2

2
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= ‖xS \V‖
2
2 − 2

α
√

1 + α2
ΦS ∆V‖xS \V‖2 +

α2

1 + α2 Φ2
S ∆V . (3.9)

On the other hand, it follows from (3.4) and (3.8) that

Φ2
S \V ≤ Φ2

V\S =
1

1 + α2 Φ2
S ∆V . (3.10)

Putting (3.9) and (3.10) together yields

‖xS \V‖
2
2 −

2αΦS ∆V
√

1 + α2
‖xS \V‖2 +

(α2 − 1)Φ2
S ∆V

1 + α2 ≤ 0.

Thus,

‖xS \V‖2 ≤
1
2

 2αΦS ∆V
√

1 + α2
+

√
4α2Φ2

S ∆V

1 + α2 −
4(α2 − 1)Φ2

S ∆V

1 + α2


=

1 + α
√

1 + α2
ΦS ∆V

≤
√

2 ΦS ∆V , (3.11)

where the last inequality results from(
1 + α
√

1 + α2

)2

= 1 +
2α

1 + α2 ≤ 2.

Taking into account (3.5) and (3.11) yields

‖xS \V‖2 ≤
√

2ΦS ∆V ≤
√

2
(
δ2s+β‖xS − z‖2 +

√
1 + δs+β‖e′‖2

)
.

2

Lemma 3.4. Let v be a vector satisfying supp(v) ⊆ T and |T | ≤ s. For any vector x ∈ RN , let
y = AxS + e′ with e′ = AxS + e and S = Ls(x). If z∗ satisfies

z∗ = arg min
z
{‖y − Az‖2 : supp(z) ⊆ T },

then

‖xS − z∗‖2 ≤
‖(xS − v)T ‖2√

1 − δ2
2s

+

√
1 + δs‖e′‖2
1 − δ2s

.

Proof. According to the definition of z∗, we have

[AT (y − Az∗)]T = 0.

Hence,
[AT (AxS + e′ − Az∗)]T = [AT A(xS − z∗)]T + (AT e′)T = 0.
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By the triangle inequality and Lemma 3.1, we get

‖(xS − z∗)T ‖2 = ‖(xS − z∗)T − [AT A(xS − z∗)]T − (AT e′)T ‖2

≤ ‖[(I − AT A)(xS − z∗)]T ‖2 + ‖(AT e′)T ‖2

≤ δ2s‖(xS − z∗)‖2 + ‖(AT e′)T ‖2,

where the last inequality is due to |supp(xS − z∗) ∪ T | ≤ 2s. This means that

‖xS − z∗‖22 = ‖(xS − z∗)T ‖
2
2 + ‖(xS − z∗)T ‖

2
2

≤ ‖(xS − z∗)T ‖
2
2 +

(
δ2s‖(xS − z∗)‖2 + ‖(AT e′)T ‖2

)2

= ‖(xS − z∗)T ‖
2
2 + δ2

2s‖(xS − z∗)‖22
+2δ2s‖(AT e′)T ‖2‖xS − z∗‖2 + ‖(AT e′)T ‖

2
2,

i.e.,
(1 − δ2

2s)‖xS − z∗‖22 − 2δ2s‖(AT e′)T ‖2‖xS − z∗‖2 − ‖(xS − z∗)T ‖
2
2 − ‖(A

T e′)T ‖
2
2 ≤ 0.

This is a quadratic inequality on ‖xS − z∗‖2. Hence,

‖xS − z∗‖2 ≤
2δ2s‖(AT e′)T ‖2 +

√
4δ2

2s‖(A
T e′)T ‖

2
2 + 4(1 − δ2

2s)
(
‖(xS − z∗)T ‖

2
2 + ‖(AT e′)T ‖

2
2

)
2(1 − δ2

2s)

=
δ2s‖(AT e′)T ‖2 +

√
(1 − δ2

2s)‖(xS − z∗)T ‖
2
2 + ‖(AT e′)T ‖

2
2

1 − δ2
2s

≤

δ2s‖(AT e′)T ‖2 +

√
1 − δ2

2s‖(xS − z∗)T ‖2 + ‖(AT e′)T ‖2

1 − δ2
2s

=
‖(xS − z∗)T ‖2√

1 − δ2
2s

+
‖(AT e′)T ‖2

1 − δ2s
, (3.12)

where the second inequality comes from the fact that
√

a2 + b2 ≤ a + b for all a, b ≥ 0. By Lemma 3.1
and |T | ≤ s, one has

‖(AT e′)T ‖2 ≤
√

1 + δs‖e′‖2. (3.13)

Note that z∗T̄ = vT̄ = 0. It follows from (3.12) and (3.13) that

‖xS − z∗‖2 ≤
‖(xS − z∗)T ‖2√

1 − δ2
2s

+

√
1 + δs‖e′‖2
1 − δ2s

=
‖(xS − v)T ‖2√

1 − δ2
2s

+

√
1 + δs‖e′‖2
1 − δ2s

.

This completes the proof. 2

Error bounds and convergence analysis of CHTP are summarized as follows.
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Theorem 3.1. Let y = Ax + e be the measurement of the signal x and e be the measurement error. If

δ2s+β <

√√√ 1√
4 +
√

5 + 2
, (3.14)

then the iterate {xn} generated by CHTP approximates x with

‖xn − xS ‖2 ≤ ρ
n‖x0 − xS ‖2 + τ

1 − ρn

1 − ρ
‖AxS + e‖2,

where

ρ :=

√√√
δ2

2s+β

(
2 + (

√
5 + 1)δ2

s+β

)
(1 − δ2

s+β)(1 − δ
2
2s)

< 1, (3.15)

τ :=

√√
2 + (

√
5 + 1)δ2

s+β

(1 − δs+β)(1 − δ2
2s)

+
(
√

5 + 1)
√

1 + δβ

2(1 − δs+β)
√

1 − δ2
2s

+

√
1 + δs

1 − δ2s
. (3.16)

Proof. For the convenience of discussion, we define tn+1 := Hs(un+1). Then,

supp(tn+1) ⊆ T n+1 = Ls(un+1) ⊆ Un+1.

It is clear that (tn+1)Un+1 = tn+1. Hence,

‖(xS − tn+1)Un+1‖2 = ‖xS∩Un+1 − tn+1‖2

= ‖xS∩Un+1 −Hs(un+1)‖2

≤

√
5 + 1
2
‖(xS∩Un+1 − un+1)(S∩Un+1)∪T n+1‖2

≤

√
5 + 1
2
‖(xS − un+1)Un+1‖2, (3.17)

where the first inequality comes from Lemma 3.2, and the second inequality follows from the fact that
[(S ∩ Un+1) ∪ T n+1] ⊆ Un+1.

Since supp(tn+1) ⊆ Un+1 and supp(un+1) ⊆ Un+1, (tn+1)Un+1 = (un+1)Un+1 = 0. Thus,

‖xS − tn+1‖22 = ‖(xS − tn+1)Un+1‖
2
2 + ‖(xS − tn+1)Un+1‖

2
2

= ‖(xS − un+1)Un+1‖
2
2 + ‖(xS − tn+1)Un+1‖22,

≤
∥∥∥(xS − un+1)Un+1

∥∥∥2

2
+

(
ξ
∥∥∥(xS − un+1)Un+1

∥∥∥
2

)2
, (3.18)

where ξ := (
√

5 + 1)/2, and the last step is due to (3.17).
From Step 2 in CHTP, we know that the following orthogonality condition holds:

〈Aun+1 − y, Az〉 = 0, for any supp(z) ⊆ Un+1,
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where y = AxS + e′ and e′ = AxS + e. Hence, for any z satisfying supp(z) ⊆ Un+1, we get

〈un+1 − xS , AT Az〉 = 〈Aun+1 − AxS , Az〉

= 〈Aun+1 − (y − e′), Az〉 = 〈Aun+1 − y, Az〉 + 〈e′, Az〉

= 〈e′, Az〉 = 〈AT e′, z〉. (3.19)

Furthermore,

‖(xS − un+1)Un+1‖22 =
〈
(un+1 − xS )Un+1 , (un+1 − xS )Un+1

〉
=

〈
(un+1 − xS )Un+1 ,

[
(I − AT A)(un+1 − xS )

]
Un+1

〉
+

〈
(un+1 − xS )Un+1 ,

[
AT A(un+1 − xS )

]
Un+1

〉
. (3.20)

Lemma 3.1 and
∣∣∣supp(un+1 − xS ) ∪ Un+1

∣∣∣ ≤ s + β lead to〈
(un+1 − xS )Un+1 ,

[
(I − AT A)(un+1 − xS )

]
Un+1

〉
≤ δs+β‖xS − un+1‖2‖(xS − un+1)Un+1‖2. (3.21)

Note that 〈
(un+1 − xS )Un+1 ,

[
AT A(un+1 − xS )

]
Un+1

〉
=

〈
(un+1 − xS )Un+1 , AT A(un+1 − xS )

〉
=

〈
un+1 − xS , AT A(un+1 − xS )Un+1

〉
=

〈
AT e′, (un+1 − xS )Un+1

〉
=

〈
(AT e′)Un+1 , (un+1 − xS )Un+1

〉
≤ ‖(AT e′)Un+1‖2‖(un+1 − xS )Un+1‖2, (3.22)

where the third equality comes from (3.19) since supp((un+1 − xS )Un+1) ⊂ Un+1. Putting (3.20), (3.21)
and (3.22) together yields

‖(xS − un+1)Un+1‖2 ≤ δs+β‖xS − un+1‖2 + ‖(AT e′)Un+1‖2. (3.23)

Therefore,

‖xS − un+1‖22

= ‖(xS − un+1)Un+1‖
2
2 + ‖(xS − un+1)Un+1‖22

≤ ‖(xS − un+1)Un+1‖
2
2 + δ2

s+β‖xS − un+1‖22 + 2δs+β‖(AT e′)Un+1‖2‖xS − un+1‖2 + ‖(AT e′)Un+1‖22,

i.e.,

(1 − δ2
s+β)‖xS − un+1‖22 − 2δs+β‖(AT e′)Un+1‖2‖xS − un+1‖2 −

(
‖(xS − un+1)Un+1‖

2
2 + ‖(AT e′)Un+1‖22

)
≤ 0.

This is a quadratic inequality on ‖xS − un+1‖2. So,

‖xS − un+1‖2
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16821

≤

2δs+β‖(AT e′)Un+1‖2 +
√

4(1 − δ2
s+β)‖(xS − un+1)Un+1‖

2
2 + 4‖(AT e′)Un+1‖22

2(1 − δ2
s+β)

≤

√
1 − δ2

s+β‖(xS − un+1)Un+1‖2 + (1 + δs+β)‖(AT e′)Un+1‖2

1 − δ2
s+β

=
‖(xS − un+1)Un+1‖2√

1 − δ2
s+β

+
‖(AT e′)Un+1‖2

1 − δs+β
, (3.24)

where the second inequality comes from the fact that
√

a2 + b2 ≤ a + b for all a, b ≥ 0.
Due to supp(un+1) ⊆ Un+1, we obtain (un+1)Un+1 = 0. According to Lemma 3.3, we have

‖(xS − un+1)Un+1‖2 = ‖xS \Un+1‖2 ≤
√

2δ2s+β‖xS − xn‖2 +
√

2(1 + δs+β)‖e′‖2. (3.25)

Combining (3.23) and (3.24) yields

‖(xS − un+1)Un+1‖2

≤
δs+β√

1 − δ2
s+β

‖(xS − un+1)Un+1‖2 +
δs+β

1 − δs+β
‖(AT e′)Un+1‖2 + ‖(AT e′)Un+1‖2

=
δs+β√

1 − δ2
s+β

‖(xS − un+1)Un+1‖2 +
1

1 − δs+β
‖(AT e′)Un+1‖2. (3.26)

Hence, it follows from (3.18) and (3.26) that

‖xS − tn+1‖22

≤ ‖(xS − un+1)Un+1‖
2
2 +

 ξδs+β√
1 − δ2

s+β

‖(xS − un+1)Un+1‖2 +
ξ

1 − δs+β
‖(AT e′)Un+1‖2


2

≤


√√

1 + ξδ2
s+β

1 − δ2
s+β

‖(xS − un+1)Un+1‖2 +
ξ

1 − δs+β
‖(AT e′)Un+1‖2


2

,

where the last step is due to the fact that a2 + (b+c)2 ≤ (
√

a2 + b2 +c)2 for all a, b, c ≥ 0, and ξ2−1 = ξ

since ξ = (
√

5 + 1)/2. Taking the square root of both sides of this inequality and using (3.25) yields

‖xS − tn+1‖2 ≤

√√
1 + ξδ2

s+β

1 − δ2
s+β

‖(xS − un+1)Un+1‖2 +
ξ

1 − δs+β
‖(AT e′)Un+1‖2

≤

√√
1 + ξδ2

s+β

1 − δ2
s+β

(√
2δ2s+β‖xS − xn‖2 +

√
2(1 + δs+β)‖e′‖2

)
+

ξ

1 − δs+β
‖(AT e′)Un+1‖2
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≤

√√√
2δ2

2s+β

(
1 + ξδ2

s+β

)
1 − δ2

s+β

‖xS − xn‖2 +


√

2(1 + ξδ2
s+β)

1 − δs+β
+
ξ
√

1 + δβ

1 − δs+β

 ‖e′‖2, (3.27)

where the third inequality follows from the fact that ‖(AT e′)Un+1‖2 ≤
√

1 + δβ‖e′‖2 by Lemma 3.1.
Note that supp(tn+1) ⊆ T n+1, |T n+1| ≤ s, and

xn+1 = arg min
z

{
‖y − Az‖2 : supp(z) ⊆ T n+1

}
.

According to Lemma 3.4, we have

‖xn+1 − xS ‖2 ≤
1√

1 − δ2
2s

‖(xS − tn+1)T n+1‖2 +

√
1 + δs

1 − δ2s
‖e′‖2

≤
1√

1 − δ2
2s

‖xS − tn+1‖2 +

√
1 + δs

1 − δ2s
‖e′‖2.

Combining this with (3.27), we obtain

‖xS − xn+1‖2 ≤

√√√
2δ2

2s+β

(
1 + ξδ2

s+β

)
(1 − δ2

s+β)(1 − δ
2
2s)
‖xS − xn‖2

+


√

2(1 + ξδ2
s+β)

(1 − δs+β)(1 − δ2
2s)

+
ξ
√

1 + δβ

(1 − δs+β)(
√

1 − δ2
2s)

+

√
1 + δs

1 − δ2s

 ‖e′‖2
= ρ‖xS − xn‖2 + τ‖e′‖2,

where ρ, τ are given in (3.15) and (3.16), respectively. Hence,

‖xS − xn+1‖2 ≤ ρ‖xS − xn‖2 + τ‖e′‖2
≤ ρ(ρ‖xS − xn−1‖2 + τ‖e′‖2) + τ‖e′‖2
≤ · · · · · · · · ·

≤ ρn+1‖xS − x0‖2 + τ
1 − ρn+1

1 − ρ
‖e′‖2.

Since δs+β ≤ δ2s+β and δ2s ≤ δ2s+β, it is easy to get

ρ =

√√√
δ2

2s+β

(
2 + (

√
5 + 1)δ2

s+β

)
(1 − δ2

s+β)(1 − δ
2
2s)

≤

√√√
δ2

2s+β

(
2 + (

√
5 + 1)δ2

2s+β

)
(1 − δ2

2s+β)(1 − δ
2
2s+β)

.

To ensure ρ < 1, it suffices to require the right side of the above equation less than 1, which is
guaranteed by the following RIP bound:

δ2s+β <

√√√ 1√
4 +
√

5 + 2
.
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This completes the proof. 2

The corresponding result for the noiseless case can be obtained immediately.

Corollary 3.1. Let y = Ax be the measurement of an s-sparse signal x. If

δ2s+β <

√√√ 1√
4 +
√

5 + 2
,

then the iterative sequence {xn} generated by CHTP approximates x with

‖xn − x‖2 ≤ ρn‖x0 − x‖2,

where ρ is given in (3.15).

In the noiseless setting, the foregoing result shows that a sparse signal can be identified by CHTP
in a finite number of iterations.

Theorem 3.2. If

δ2s+β <

√√√ 1√
4 +
√

5 + 2
,

then any s-sparse vector x ∈ RN can be recovered by CHTP with y = Ax in at most

n =


ln

( √
2δ2s+β‖x0−x‖2

θ

)
ln

(
1
ρ

)
 + 1

iterations, where ρ is given by (3.15), θ := min
i∈S
|xi| and S := supp(x).

Proof. It is sufficient to show that

|
(
xn + AT A(x − xn)

)
k| > |

(
xn + AT A(x − xn)

)
t|, ∀k ∈ S , t ∈ S̄ . (3.28)

If (3.28) holds, we can obtain S ⊆ Un+1 from the definition of Un+1, which leads to un+1 = x.
Furthermore, we can derive T n+1 = S and xn+1 = x from the CHTP algorithm directly.

Next, we aim to prove (3.28). According to Lemma 3.1 and Corollary 3.1, we yield

|
(
(I − AT A)(xn − x)

)
k| + |

(
(I − AT A)(xn − x)

)
t| ≤

√
2‖

(
(I − AT A)(xn − x)

)
{k,t}‖2

≤
√

2δ2s+1‖xn − x‖2
≤
√

2δ2s+β‖xn − x‖2
≤
√

2δ2s+βρ
n‖x0 − x‖2.

It follows that

|
(
xn + AT A(x − xn)

)
k| = |xk +

(
(I − AT A)(xn − x)

)
k|
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≥ θ − |
(
(I − AT A)(xn − x)

)
k|

≥ θ −
√

2δ2s+βρ
n‖x0 − x‖2 + |

(
(I − AT A)(xn − x)

)
t|

= θ −
√

2δ2s+βρ
n‖x0 − x‖2 + |

(
xn + AT A(x − xn)

)
t|, (3.29)

where θ = min
i∈S
|xi|, and the last step is due to the fact xt = 0 for t ∈ S̄ . Taking

n =


ln

( √
2δ2s+β‖x0−x‖2

θ

)
ln

(
1
ρ

)
 + 1,

we get
√

2δ2s+βρ
n‖x0 − x‖2 < θ. Combining this with (3.29), we conclude that (3.28) holds. This

completes the proof. 2

Now, let us discuss the stability of CHTP. Recall first that the error of the best s-term approximation
of a vector x is defined as

σs(x)p := inf
v
{‖x − v‖p : ‖v‖0 ≤ s}.

In particular, according to [23, Theorem 2.5], we have

σs(z)2 ≤
1

2
√

s
‖z‖1 ∀z. (3.30)

Theorem 3.3. Let

δ2s+β <

√√√ 1√
4 +
√

5 + 2
.

Then, for all x ∈ RN and e ∈ Rm, the iterate {xn} generated by CHTP with y = Ax + e satisfies

‖x − xn‖2 ≤

 1

2
√

t
+ τ

1 − ρn

1 − ρ

√
1 + δt

t

σk(x)1 + τ
1 − ρn

1 − ρ
‖e‖2 + ρn‖xS − x0‖2,

where ρ is given by (3.15), and

k :=

 s
2 if s is even[

s
2

]
+ 1 if s is odd

and t := s − k.

Moreover, every cluster point x∗ of the sequence {xn} satisfies

‖x − x∗‖2 ≤

 1

2
√

t
+

τ

1 − ρ

√
1 + δt

t

σk(x)1 +
τ

1 − ρ
‖e‖2.

Proof. Let T1 := Lk(x), T2 := Lt(xT1
), and

T3 := Lt(xT1∪T2
), · · · ,Tl−1 := Lt(xT1∪T2∪...Tl−2

), Tl := Lr(xT1∪T2∪...Tl−1
),
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where l, r satisfy (l − 2)t + k + r = N and r ≤ t. According to the structure of T j, it follows from [23,
Lemma 6.10] that

‖xT j‖2 ≤
1
√

t
‖xT j−1‖1, j = 3, . . . , l. (3.31)

Taking into account Theorem 3.1, one has

‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ
1 − ρn

1 − ρ
‖AxS + e‖2

≤ ρn‖xS − x0‖2 + τ
1 − ρn

1 − ρ

(
‖AxT3‖2 + ‖AxT4‖2 + ... + ‖AxTl‖2 + ‖e‖2

)
.

It follows from (3.1) and (3.31) that

l∑
i=3

‖AxTi‖2 ≤
√

1 + δt

l∑
i=3

‖xTi‖2 ≤
√

1 + δt
1
√

t

l−1∑
i=2

‖xTi‖1 ≤
√

1 + δt
1
√

t
‖xT1
‖1.

Hence,

‖xS − xn‖2 ≤ ρn‖xS − x0‖2 + τ
1 − ρn

1 − ρ

√1 + δt

t
‖xT1
‖1 + ‖e‖2


= ρn‖xS − x0‖2 + τ

1 − ρn

1 − ρ

√1 + δt

t
σk(x)1 + ‖e‖2

 . (3.32)

Using (3.30), we get

‖xS ‖2 = σt(xT1
)2 ≤

1

2
√

t
‖xT1
‖1 =

1

2
√

t
σk(x)1. (3.33)

Putting (3.32) and (3.33) together implies

‖x − xn‖2 = ‖xS + xS − xn‖2

≤ ‖xS ‖2 + ‖xS − xn‖2

≤
1

2
√

t
σk(x)1 + ρn‖xS − x0‖2 + τ

1 − ρn

1 − ρ
(√1 + δt

t
σk(x)1 + ‖e‖2

)
=

 1

2
√

t
+ τ

1 − ρn

1 − ρ

√
1 + δt

t

σk(x)1 + τ
1 − ρn

1 − ρ
‖e‖2 + ρn‖xS − x0‖2.

Since ρ < 1, taking n→ ∞ in the above inequality yields

‖x − x∗‖2 ≤

 1

2
√

t
+

τ

1 − ρ

√
1 + δt

t

σk(x)1 +
τ

1 − ρ
‖e‖2.

This completes the proof. 2
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4. Numerical experiments

In this section, numerical experiments are carried out to check the effectiveness of CHTP. All
experiments were conducted on a personal computer with the processor Intel(R) Core(TM) i5-7200U,
CPU @ 2.50 GHz and 4 GB memory. The s-sparse standard Gaussian vector x∗ ∈ RN and standard
Gaussian matrix A ∈ Rm×N with (m,N) = (400, 800) are randomly generated, and the positions of
non-zero elements of x∗ are uniformly distributed. According to [23, Theorem 9.27], if 0 < η, ε < 1,
and

m ≥ 2η−2[s(1 + ln(N/s)) + ln(2ε−1)
]
,

then the restricted isometry constant δs of 1
√

m A satisfies

δs ≤
[
2 + ηg(N, s)

]
· ηg(N, s),

with probability greater than or equal to 1 − ε, where

g(N, s) := 1 + [2(1 + ln(N/s))]−1/2.

Hence, to satisfy the restricted isometry bound (3.14) with high probability, we replace (1.1) by the
following model throughout the numerical experiments:

min
x

{1
2
‖̃y − Ãx‖22 : ‖x‖0 ≤ s

}
,

where Ã := A/
√

m, and ỹ := y/
√

m. Moreover, the measurement vector y is given by y = Ax∗ in the
noiseless setting and y = Ax∗+0.005e in the noisy setting, where e ∈ Rm is a standard Gaussian random
vector. Unless otherwise stated, all algorithms adopt x0 = 0 as the initial point and the condition

‖xn − x∗‖2/‖x∗‖2 ≤ 10−3

as the successful reconstruction criterion. OMP is performed with s iterations, while other algorithms
are performed with at most 50 iterations. For each sparsity level s, 100 random problem instances are
tested to investigate the recovery abilities of all algorithms, as shown in Figures 1–3.

The first experiment is performed to illustrate the effect of the parameter β involved in CHTP
on the reconstruction ability. Pick the following different values of β in {s, [1.1s], [1.2s], [1.3s], 2s}
and s ∈ {120, 123, . . . , 240}, where [·] denotes the round function. Numerical results with accurate
measurements and inaccurate measurements are shown in Figure 1(a) and 1(b), respectively. Since
the results shown in Figure 1(b) are similar to those of Figure 1(a), this indicates that CHTP is stable
for weak noise. It is also observed that the recovery ability of CHTP is sensitive to the parameter β,
and it becomes worse with the increase of β as β ≤ [1.3s]. In particular, CHTP reduces to HTP as
β = s. Thus, CHTP with β = [1.1s], [1.2s] and [1.3s] performs better than HTP in both noiseless
and noisy settings. In addition, it should be noted that CHTP with β = 2s performs better than HTP
as s ≤ 190, and the success rate of the former suddenly drops to zero as sparsity level s approaches
m/2. This phenomenon is similar to the performance of SP in Figure 2. Simulations indicate that the
performance of the hard thresholding operator can be improved by introducing a compressive step first.
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To investigate the effectiveness of CHTP, we compare it with other four mainstream algorithms:
HTP, OMP, CoSaMP and SP. The corresponding results are displayed in Figures 2 and 3. Based on
the above discussion on the performances of CHTP, the parameter β in this experiment is set as [1.1s].
Sparsity level s ranged from 120 to 258 with stepsize 3 in Figure 2(a), and it ranged from 1 to 298 with
stepsize 3 in Figure 2(b). The comparison of recovery abilities for different algorithms is displayed in
Figure 2(a) with accurate measurements and in Figure 2(b) with inaccurate measurements. Moreover,
Figure 2(c) is an enlarged image of Figure 2(b). Figure 2 indicates that CHTP is competitive with HTP,
OMP and SP in both noiseless and noisy scenarios. Furthermore, the recovery ability of CHTP can
remarkably exceed that of CoSaMP. Figure 2(b) indicates that the sparse signal reconstruction abilities
are significantly weakened in the presence of noise for all algorithms as the sparsity level s ≤ 10.

The next problem we examine is the average number of iterations and average recovery runtime for
different algorithms with accurate measurements. Due to the number of iterations of OMP being set as
s, we just compare all algorithms except OMP in Figure 3, in which s ≤ 120 is considered to ensure
the success rates of all algorithms are 100%. Figure 3 shows that the larger s is taken, the more average
number of iterations and computational time are required for all algorithms. From Figure 3(b), we see
that the average recovery runtime for all algorithms are close to each other as s < 50. Although CHTP
needs more iterations than other algorithms in Figure 3(a), it consumes less time than CoSaMP and
SP as s ≥ 50 in Figure 3(b). From this point of view, CHTP is competitive with the other algorithms
mentioned above.

(a) Accurate measurements (b) Inaccurate measurements

Figure 1. Successful recovery of CHTP with different β value.
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(a) Accurate measurements (b) Inaccurate measurements

(c) Local enlarged image of (b)

Figure 2. Comparison of successful recovery performances for different algorithms.

(a) Average number of iterations (b) Average runtime

Figure 3. Comparison of the average number of iterations and recovery runtime for different
algorithms.
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5. Conclusions

In [27, 21], the authors point out that the hard thresholding operator is independent of the objective
function, and this inherent drawback may cause the increase of the objective function in the iterative
process. Furthermore, they suggest that the hard thresholding operator should be applied to a
compressible vector to overcome this drawback. Motivated by this idea, we proposed the CHTP
algorithm in this paper, which reduces to the standard HTP as β = s. To minimize the negative
effect of the hard thresholding operator on the objective function, the orthogonal projection was used
twice in CHTP. The convergence analysis of CHTP was established by utilizing the restricted isometry
property of the sensing matrix. Numerical experiments indicated that the performance of CHTP with
β = [1.1s] is better than in other cases. Simulations showed that CHTP is competitive with other
popular algorithms such as HTP, OMP and SP, both in the sparse signal reconstruction ability and the
average recovery runtime.
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