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Abstract: The goal of this research is to develop a novel analytic technique for obtaining the
approximate and exact solutions of the Caputo time-fractional partial differential equations (PDEs)
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effective. Mathematica software is used to calculate the numerical and symbolic quantities in the paper.
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1. Introduction

Fractional calculus (FC) in the field of mathematical analysis studies the derivative and integral of
arbitrary real or even complex orders. FC is also known as Non-Newtonian calculus and generalized
calculus. In a famous letter, L’Hospital asked Leibniz what would happen if the order of the derivative
were to be 1

2 , and the reply of Leibniz on September 30, 1695, is considered the birth of Non-Newtonian
calculus [1–4]. FC has become a valuable tool in various disciplines of engineering, physics,
image processing, biology, chemistry, control theory, viscoelasticity, solid-state, stochastic designed
finance, economics, signal, and fiber optics [5–10]. There are several techniques to define fractional
derivatives, but not all of them are generally used. The most commonly used fractional derivatives are
Riemann-Liouville (R-L), Caputo fractional derivative (CFD), Caputo-Fabrizio, Atangana-Baleanu,
and conformable operators [11–23]. In some circumstances, fractional derivatives are superior to
integer-order derivatives for modeling, and they can simulate and analyze complicated systems with
higher-order dynamics and sophisticated non-linear processes. This is due to two main factors: first,
we can choose arbitrary orders for the derivative operator rather than being restricted to an integer
order. Second, non-integer order derivatives rely on the past as well as local conditions, which is
advantageous when the system has a long-term memory.

In the disciplines of science and engineering, we find natural and physical events that, when
characterized by mathematical models, happen to be differential equations (DEs). For instance,
equation of motion, simple harmonic motion, deflection of the beam, and so on are characterized
by DEs. Consequently, the solutions of DEs are important and applicable. Many DEs that
arise in applications are sufficiently complex that close-form solutions are sometimes impracticable.
Under the specified preliminary conditions, numerical methods provide a powerful alternative tool
for solving DEs. In recent years, various approaches for solving fractional-order DEs have been
described, including the Laplace decomposition method [24], the differential transform method [25–
27], the variational iteration method [28], the operational matrix method [29], the homotopy
analysis method [30], the Chebyshev polynomials method [31], the Aboodh transform decomposition
method [32], the Elzaki transform-variational iteration method [33], the Shehu transform iterative
method [34] and the residual power series method [35–38].

The Jordanian mathematician Omar Abu Arqub created the RPSM in 2013 [39]. The RPSM is
a semi-analytical method; it is a combination of Taylor’s series and the residual error function. It
provides series solutions of linear and nonlinear DEs in the form of convergence series. In 2013,
RPSM was implemented for the first time to find solutions to fuzzy DEs. Arqub et al. constructed a
new set of algorithms for RPSM to derive rapid power series solutions for ordinary DEs [40]. Also,
Arqub et al. [41] established a new interesting RPSM algorithm for the solution of fractional order
non-linear boundary value problems. El-Ajou et al. formed a new iterative algorithm of RPSM to
find approximate solutions of KdV-burgers equations of fractional order [42]. Xu et al. provided a new
algorithm for the fractional power series solutions of the second and fourth-order Boussinesq DEs [43].
Zhang et al. presented an effective numerical method which is a combination of RPSM and least square
methods [44]. For more details about RPSM, see [45–47].

Researchers combined two powerful methods to develop a new method for solving fractional-order
differential equations (FODEs). Some of these groups are described as a combination of the homotopy
perturbation approach and the Sumudu transform [48], as well as the homotopy analysis method and
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the natural transform [49], the Shehu transformation and the Adomian decomposition method [50],
and the Laplace transform with RPSM [51–53]. For more details about combining the two methods,
see [54–56]. In this study, we applied the novel combined technique known as the ATRPSM to provide
approximate and exact solutions for time-fractional PDEs with variable coefficients. The Aboodh
transform method and the RPSM are combined in this novel technique. To assess the efficiency and
consistency of the proposed method, the relative and absolute errors of the five problems are examined.
In addition, numerical results are also compared with other methods such as the NTDM and RPSM.
The results obtained by the proposed method show excellent agreement with these methods, which
indicates the effectiveness and reliability of the proposed method. Graphical significance is also found
for various values of fractional-order derivatives. As a result, the technique is precise, simple to use, not
affected by computational rounds of errors, and does not require large computer memory and extensive
time.

The set of rules for this new technique depends on transforming the given equation into the Aboodh
transform space, establishing a series of solutions to the new form of the equation, and then acquiring
the solution to the actual equation by applying the inverse Aboodh transform. Without linearization,
perturbation, or discretization, the new technique can be utilized to create power series expansion
solutions for linear and nonlinear PDEs. Unlike the traditional power series method, this method does
not require matching the coefficients of the corresponding terms, nor does it necessitate the use of
a recursion relation. The proposed technique, which is based on the limit concept, finds the series
coefficients but not the fractional derivatives like the RPSM does. In contrast to RPSM, which requires
many times to calculate various fractional derivatives in the solution phases, only a few calculations
are necessary to determine the coefficients. The recommended technique can yield both closed-form
and accurate approximate solutions by including a rapid convergence series.

Finding the solutions of time-fractional PDEs with variable coefficients is an interesting and
important field for researchers [57–62]. This paper introduces a new semi-analytical technique for
solving time-fractional PDEs with variable coefficients that is both simple and efficient. The obtained
results by using the recommended technique are the same as those previously published in the
literature. But these methods require many computational work and long running times. The ARPSM,
which is a combination of the Aboodh transform and RPSM, is our suggested technique.

We chose the most common types of time-fractional PDEs with variable coefficients to highlight the
key principles of our recommended technique, such as its reliability, capability, and applicability. In
1822, Joseph Fourier proposed the heat equation, which states how a certain quantity of heat diffuses
over a region. Consider the time-space fractional PDE with variable coefficients in the following
general form [57]:

Dqα
τ Φ(x, τ) + ϑ(x)ℵ(Φ) = ξ(x,Φ), (1.1)

subject to the initial condition:

Dwα
τ Φ(x, 0) = Ωw,

where

w = 0, 1, 2, 3 . . . , q − 1, x = (x1, x2, · · · , xp) ∈ Rp, α ∈ (
q − 1

q
], q ∈ N,

AIMS Mathematics Volume 7, Issue 9, 16917–16948.



16920

and

ℵ(Φ) =ℵ(Φ,Dα
τΦ,D

2α
τ Φ, · · · ,D(q−1)α

τ Φ,Dβ11
x1

Φ,Dβ12
x2

Φ, · · · ,Dβ1p
xp Φ, · · · ,Dβc1

x1
Φ,Dβc2

x2
Φ,

· · · ,Dβcp
xp Φ), with g − 1 < βg f ≤ g, g = 1, 2, · · · , c; f = 1, 2, · · · , p.

Here Dwα
τ and Dβg f

x f mean the CFD w.r.t. τ of order wα and x f of order βg f , respectively. This type
of PDEs provide precise descriptions of a variety of physical phenomena in electrodynamics, elastic
mechanics, and fluid dynamics [58, 59].

The framework of this study is as follows. Firstly, we employ significant definitions and conclusions
from FC theory in Section 2. Furthermore, some new results are established, which is the basis of the
new technique in the same Section 2. Next, in Section 3, we obtain the solutions with the ARPSM for
time-fractional PDEs with variable coefficients. In Section 4, some problems are solved with the help
of ARPSM. Section 5 explains our findings, which are given in the form of figures and tables. Finally,
in the conclusion, we summarize our findings.

2. Non-Newtonian calculus

This section includes several definitions and characteristics as well as some useful results that serve
as the basis for the new technique. The classical Fourier integral is used to derive Aboodh transform.
Khalid Aboodh founded the Aboodh transform in 2013 to facilitate the approach to solve ordinary DEs
and PDEs in the time intervals [63]. This integral transform has the inmost interrelation with the Elzaki
and Laplace transforms. Some important notations, a basic definition, and a few characteristics of the
Aboodh transform are discussed below.

Definition 2.1. [63] Assume that the function Φ(x, τ) is of exponential order and piecewise continuous.
Then the Aboodh transform of Φ(x, τ) for τ ≥ 0 is formulated as:

A[Φ(x, τ)] = Ψ(x, υ) =
1
υ

∫ ∞

0
Φ(x, τ)e−τυdτ, γ1 ≤ υ ≤ γ2,

and the inverse Aboodh transform is defined by:

A−1[Ψ(x, υ)] = Φ(x, τ) =
1

2πι

∫ u+ι∞

u−ι∞
υeυτΨ(x, υ)dυ,

where x = (x1, x2, · · · , xp) ∈ Rp and p ∈ N.

Lemma 2.2. [64,65] Let Φ1(x, τ) and Φ2(x, τ) be piecewise continuous on [0,∞[ and be of exponential
order. Assume that A[Φ1(x, τ)] = Ψ1(x, υ), A[Φ2(x, τ)] = Ψ2(x, υ) and λ1, λ2 are constants. Then the
properties mentioned below are valid:

(i) A[λ1Φ1(x, τ) + λ2Φ2(x, τ)] = λ1Ψ1(x, υ) + λ2Ψ2(x, υ),
(ii) A−1[λ1Ψ1(x, υ) + λ2Ψ2(x, υ)] = λ1Φ1(x, τ) + λ2Φ2(x, τ),

(iii) A[JατΦ(x, τ)] =
Ψ(x, υ)
υα

,

(iv) A[Dα
τΦ(x, τ)] = υαΨ(x, υ) −

r−1∑
κ=0

Φ(κ)(x, 0)
υκ−α+2 , r − 1 < α ≤ r, r ∈ N.
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Definition 2.3. [66] The fractional derivative of Φ(x, τ) of order α in the Caputo sense is defined as
follows:

Dα
τΦ(x, τ) = Jm−α

τ Φ(m)(x, τ), τ ≥ 0, m − 1 < α ≤ m,

where x = (x1, x2, . . . , xp) ∈ Rp and m, p ∈ R, Jm−α
τ is the R-L integral of Φ(x, τ).

Definition 2.4. [67] The power series representation is in the following form

∞∑
r=0

~r(x)(τ − τ0)rα = ~0(τ − τ0)0 + ~1(τ − τ0)α + ~2(τ − τ0)2α + · · · ,

where x = (x1, x2, . . . , xp) ∈ Rp and p ∈ N. It is known as multiple fractional power series (MFPS)
about τ0, where τ denotes a variable and ~r(x)’s are the series coefficients.

Lemma 2.5. Assume that Φ(x, τ) is an exponential order function. Then the Aboodh transform is as
A[Φ(x, τ)] = Ψ(x, υ). Hence,

A[Drα
τ Φ(x, τ)] = υrαΨ(x, υ) −

r−1∑
j=0

υα(r− j)−2D jα
τ Φ(x, 0), 0 < α ≤ 1, (2.1)

where, x = (x1, x2, . . . xp) ∈ Rp, p ∈ N and Drα
τ = Dα

τ .D
α
τ . · · ·D

α
τ (r − times).

Proof. Let us prove Eq (2.1) by induction. We obtain as follows when we choose r=1 in Eq (2.1):

A[Dα
τΦ(x, τ)] = υαΨ(x, υ) − υα−2Φ(x, 0).

For r=1, Eq (2.1) is valid based on part (iv) of Lemma 2.2. Using r = 2 in Eq (2.1), we have

A[D2α
τ Φ(x, τ)] = υ2αΨ(x, υ) − υ2α−2Φ(x, 0) − υα−2Dα

τΦ(x, 0). (2.2)

In view of the L.H.S. of Eq (2.2), we obtain

L.H.S = A[D2α
τ Φ(x, τ)]. (2.3)

The Eq (2.3) can be written as
L.H.S = A[Dα

τ (Dα
τΦ(x, τ))]. (2.4)

Let
z(x, τ) = Dα

τΦ(x, τ). (2.5)

As a result Eq (2.4) becomes
L.H.S = A[Dα

τ z(x, τ)]. (2.6)

By using the fractional derivative of the Caputo type, Eq (2.6) becomes

L.H.S = A[J1−αz′(x, τ)]. (2.7)

By using the R-L fractional integral formula of the Aboodh transform in Eq (2.7), we get

L.H.S =
A[z′(x, τ)]
υ1−α . (2.8)

AIMS Mathematics Volume 7, Issue 9, 16917–16948.



16922

By using the differential property of the Aboodh transform, Eq (2.8) becomes as

L.H.S = υαZ(x, υ) −
z(x, 0)
υ2−α . (2.9)

From Eq (2.5), we get

Z(x, υ) = υαΨ(x, υ) −
Φ(x, 0)
υ2−α ,

where, A[z(x, τ)] = Z(x, υ). Therefore, Eq (2.9) is converted to

L.H.S = υ2αΨ(x, υ) −
Φ(x, 0)
υ2−2α −

Dα
τΦ(x, 0)
υ2−α . (2.10)

when r = κ. Eq (2.10) is compatible with Eq (2.1).
Now, assume that Eq (2.1) is true for r = κ. Thus, put r = κ in Eq (2.1):

A[Dκα
τ Φ(x, τ)] = υκαΨ(x, υ) −

κ−1∑
j=0

υα(κ− j)−2D jα
τ Φ(x, 0), 0 < α ≤ 1. (2.11)

We will now prove Eq (2.1) for r = κ + 1. From Eq (2.1), we write

A[D(κ+1)α
τ Φ(x, τ)] = υ(κ+1)αΨ(x, υ) −

κ∑
j=0

υα((κ+1)− j)−2D jα
τ Φ(x, 0). (2.12)

By considering the L.H.S. of Eq (2.12), we get

L.H.S = A[Dα
τ (Dκα

τ Φ(x, τ))]. (2.13)

Let
Dκα
τ Φ(x, τ) = g(x, τ).

By Eq (2.13), we get
L.H.S = A[Dα

τg(x, τ)]. (2.14)

By utilizing the Caputo fractional derivative and R-L integral formulas, Eq (2.14) becomes

L.H.S = υαA[Dκα
τ Φ(x, τ)] −

g(x, 0)
υ2−α . (2.15)

By utilizing Eq (2.11), Eq (2.15) is transformed into

L.H.S = υrαΨ(x, υ) −
r−1∑
j=0

υα(r− j)−2D jα
τ Φ(x, 0), (2.16)

and from Eq (2.16), we have the following result

L.H.S = A[Drα
τ Φ(x, 0)].

Therefore, the formula Eq (2.1) is to be held for r = κ + 1. Consequently, by using the mathematical
induction method, we proved that the formula Eq (2.1) is true for all positive integers. �
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In the next lemma, we provide a new form of multiple fractional Taylor’s formula, which will be
helpful for the ARPSM.

Lemma 2.6. Suppose that Φ(x, τ) is a function of exponential order. Then the Aboodh transform
of Φ(x, τ), given by A[Φ(x, τ)] = Ψ(x, υ) , has multiple fractional Taylor’s series representation as
follows:

Ψ(x, υ) =

∞∑
r=0

~r(x)
υrα+2 , υ > 0, (2.17)

where, x = (x1, x2, . . . xp) ∈ Rp, p ∈ N.

Proof. Consider the Taylor’s series in the fractional order as

Φ(x, τ) = ~0(x) + ~1(x)
τα

Γ[α + 1]
+ ~2(x)

τ2α

Γ[2α + 1]
+ · · · . (2.18)

We obtain the following equality by applying the Aboodh transform on Eq (2.18):

A
[
Φ(x, τ)

]
= A

[
~0(x)

]
+ A

[
~1(x)

τα

Γ[α + 1]

]
+ A

[
~2(x)

τ2α

Γ[2α + 1]

]
+ . . . .

Therefore by using the properties of the Aboodh transform, we get

A
[
Φ(x, τ)

]
= ~0(x)

1
υ2 + ~1(x)

Γ(α + 1)
Γ(α + 1)

1
υα+2 + ~2(x)

Γ(2α + 1)
Γ(2α + 1)

1
υ2α+2 + . . . .

So (2.17) is obtained (In the Aboodh transform, this is a new form of Taylor’s series). �

Lemma 2.7. Assume that the function A[Φ(x, τ)] = Ψ(x, υ) has MFPS representation in the new form
of Taylor’series (2.17). Then we have

~0(x) = lim
υ→∞

υ2Ψ(x, υ) = Φ(x, 0). (2.19)

Proof. The preceding is derived from the new form of Taylor’s series:

~0(x) = υ2Ψ(x, υ) −
~1(x)
υα
−
~2(x)
υ2α − . . . . (2.20)

Applying limυ→∞ to the Eq (2.20), and by making a simple calculation, we get the required result
represented by (2.19). �

Theorem 2.8. Assume that the MFPS representation for the function A[Φ(x, τ)] = Ψ(x, υ) is given by

Ψ(x, υ) =

∞∑
0

~r(x)
υrα+2 , υ > 0,

where x = (x1, x2, . . . xp) ∈ Rp and p ∈ N. Then we have

~r(x) = Drα
τ Φ(x, 0),

where, Drα
τ = Dα

τ .D
α
τ . . .D

α
τ (r − times).
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Proof. From the new form of Taylor’s series we have

~1(x) = υα+2Ψ(x, υ) − υα~0(x) −
~2(x)
υα
−
~3(x)
υ2α − . . . . (2.21)

Applying limυ→∞ to the Eq (2.21), we get

~1(x) = limυ→∞

(
υα+2Ψ(x, υ) − υα~0(x)

)
− limυ→∞

~2(x)
υα
− limυ→∞

~3(x)
υα
− . . . .

We obtain the following equality after taking the limit as

~1(x) = limυ→∞

(
υα+2Ψ(x, υ) − υα~0(x)

)
. (2.22)

By employing Lemma 2.5, to Eq (2.22), it becomes

~1(x) = limυ→∞

(
υ2A[Dα

τΦ(x, τ)](υ)
)
. (2.23)

Further, by employing Lemma 2.7 to Eq (2.23), it becomes

~1(x) = Dα
τΦ(x, 0).

Again, by considering the new form of Taylor’s series and as υ→ ∞, we have

~2(x) = υ2α+2Ψ(x, υ) − υ2α~0(x) − υα~1(x) −
~3(x)
υα
− . . . .

From Lemma 2.7, we get

~2(x) = limυ→∞υ
2(υ2αΨ(x, υ) − υ2α−2~0(x) − υα−2~1(x)

)
. (2.24)

Again, by using Lemmas 2.5 and 2.7, Eq (2.24) becomes

~2(x) = D2α
τ Φ(x, 0).

By repeating the same process on the new Taylor’s series, we have

~3(x) = limυ→∞υ
2(A[D3α

τ Φ(x, α)](υ)
)
.

The last equation is obtained when Lemma 2.7 is used,

~3(x) = D3α
τ Φ(x, 0).

In the general case, we get
~r(x) = Drα

τ Φ(x, 0).

This ends the proof. �

The conditions for the convergence of the new form of Taylor’s formula are explained and
determined in the following theorem.
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Theorem 2.9. Let A [Φ(x, τ)] = Ψ(x, υ) can be denoted as the new form of multiple fractional Taylor’s
formula given in Lemma 2.6. If |υ2A[D(κ+1)α

τ Φ(x, τ)]| ≤ T, on 0 < υ ≤ s with 0 < α ≤ 1, then
the remainder Rκ(x, υ) of the new form of multiple fractional Taylor’s formula satisfies the following
inequality:

|Rκ(x, υ)| ≤
T

υ(κ+1)α+2 , 0 < υ ≤ s.

Proof. To begin the proof, we assume that A[Drα
τ Φ(x, τ)](υ) is defined on 0 < υ ≤ s for r =

0, 1, 2, . . . , κ + 1. As given, assume that
∣∣∣υ2A[D(κ+1)α

τ Φ(x, τ)]
∣∣∣ ≤ T , on 0 < υ ≤ s. Consider the

following relation from the new form of Taylor’s series:

Rκ(x, υ) = Ψ(x, υ) −
κ∑

r=0

~r(x)
υrα+2 . (2.25)

By applying Theorem 2.8, Eq (2.25) becomes

Rκ(x, υ) = Ψ(x, υ) −
κ∑

r=0

Drα
τ Φ(x, 0)
υrα+2 . (2.26)

Multiply by υ(κ+1)α+2 on both sides of the Eq (2.26). We have

υ(κ+1)α+2Rκ(x, υ) = υ2(υ(κ+1)αΨ(x, υ) −
κ∑

r=0

υ(κ+1−r)α−2Drα
τ Φ(x, 0)

)
. (2.27)

Lemma 2.5 is utilized to Eq (2.27), and we get

υ(κ+1)α+2Rκ(x, υ) = υ2A[D(κ+1)α
τ Φ(x, τ)]. (2.28)

Using the absolute sign on Eq (2.28), we get∣∣∣υ(κ+1)α+2Rκ(x, υ)
∣∣∣ =

∣∣∣υ2A[D(κ+1)α
τ Φ(x, τ)]

∣∣∣. (2.29)

We get the following conclusion by employing the given condition in Eq (2.29), and so

−T
υ(κ+1)α+2 ≤ Rκ(x, υ) ≤

T
υ(κ+1)α+2 . (2.30)

From Eq (2.30), we have the required result

|Rκ(x, υ)| ≤
T

υ(κ+1)α+2 .

As a result, the new series convergence condition is established. �

3. ARPSM technique for solving time-fractional PDEs with variable coefficients

We use our new ARPSM to derive the solutions of the linear and nonlinear PDEs with variable
coefficients. The following steps can be used to create a set of rules for this technique to solve time-
fractional PDEs. The solution equation is then introduced into the new space using the new form of
Taylor’s series. In the most recent step, the coefficients of this series are determined using a novel
approach. Finally, we use the inverse Aboodh transform to find the solution of the problem in real
space.
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3.1. The ARPSM algorithm for linear and nonlinear PDEs

We explain the set of rules of the ARPSM for solving Eq (1.1).
Step 1: Rewrite Eq (1.1). We have

Dqα
τ Φ(x, τ) + ϑ(x)ℵ(Φ) − ξ(x,Φ) = 0. (3.1)

Step 2: By applying the Aboodh transform on both sides of Eq (3.1), we get

A
[
Dqα
τ Φ(x, τ) + ϑ(x)ℵ(Φ) − ξ(x,Φ)

]
= 0. (3.2)

By utilizing Lemma 2.5, Eq (3.2) becomes

Ψ(x, υ) =

q−1∑
j=0

D j
τΦ(x, 0)
υqα+2 −

ϑ(x)Y(υ)
υqα +

F(x, υ)
υqα , (3.3)

where, A[ξ(x,Φ)] = F(x, υ), A[ℵ(Φ)] = Y(υ).
Step 3: Consider the solution of Eq (3.3), which has the following form:

Ψ(x, υ) =

∞∑
r=0

~r(x)
υrα+2 , υ > 0.

Step 4: Follow the following procedure:

~0(x) = limυ→∞υ
2Ψ(x, υ) = Φ(x, 0),

and by using Theorem 2.9, we have the following

~1(x) = Dα
τΦ(x, 0),

~2(x) = D2α
τ Φ(x, 0),

~w(x) = Dwα
τ Φ(x, 0).

Step 5: Obtain the κ−th-truncated series of Ψ(x, υ) as:

Ψκ(x, υ) =

κ∑
r=0

~r(x)
υrα+2 , υ > 0,

Ψκ(x, υ) =
~0(x)
υ2 +

~1(x)
~α+2 + · · · +

~w(x)
υwα+2 +

κ∑
r=w+1

~r(x)
υrα+2 .

Step 6: Consider separately the Aboodh residual function (ARF) of Eq (3.3) and the κth-truncated
Aboodh residual function, so that

ARes(x, υ) = Ψ(x, υ) −
q−1∑
j=0

D j
τΦ(x, 0)
υ jα+2 +

ϑ(x)Y(υ)
υ jα −

F(x, υ)
υ jα ,
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and

AResκ(x, υ) = Ψκ(x, υ) −
q−1∑
j=0

D j
τΦ(x, 0)
υ jα+2 +

ϑ(x)Y(υ)
υ jα −

F(x, υ)
υ jα . (3.4)

Step 7: Replace the expansion form of Ψκ(x, υ) into Eq (3.4).

AResκ(x, υ) =

(
~0(x)
υ2 +

~1(x)
~α+2 + · · · +

~w(x)
υwα+2 +

κ∑
r=w+1

~r(x)
υrα+2

)
−

q−1∑
j=0

D j
τΦ(x, 0)
υ jα+2 +

ϑ(x)Y(υ)
υ jα −

F(x, υ)
υ jα .

(3.5)

Step 8: Multiply by υκα+2 on both sides of Eq (3.5):

υκα+2AResκ(x, υ) =υκα+2
(
~0(x)
υ2 +

~1(x)
~α+2 + · · · +

~w(x)
υwα+2 +

κ∑
r=w+1

~r(x)
υrα+2−

q−1∑
j=0

D j
τΦ(x, 0)
υ jα+2 +

ϑ(x)Y(υ)
υ jα −

F(x, υ)
υ jα

)
.

(3.6)

Step 9: Taking limυ→∞ on both sides of Eq (3.6):

limυ→∞υ
κα+2AResκ(x, υ) =limυ→∞υ

κα+2
(
~0(x)
υ2 +

~1(x)
~α+2 + · · · +

~w(x)
υwα+2

+

κ∑
r=w+1

~r(x)
υrα+2 −

q−1∑
j=0

D j
τΦ(x, 0)
υ jα+2 +

ϑ(x)Y(υ)
υ jα −

F(x, υ)
υ jα

)
.

Step 10: Solve the following equation for ~κ(x),

limυ→∞

(
υκα+2AResκ(x, υ)

)
= 0,

where, κ = w + 1,w + 2, · · · .
Step 11: Replace the obtained values of ~κ(x) into κ-truncated series of Ψ(x, υ) to derive the κ-
approximate solution of Eq (3.3).
Step 12: Use the inverse Aboodh transform on Ψκ(x, υ) to obtain the κ-approximate solution Φκ(x, τ).

4. Applications to non-linear and linear PDEs with variable coefficients

To demonstrate the performance and applicability of ARPSM, we consider three well-known and
important problems for PDEs with variable coefficients.
Problem 1. Consider the following nonlinear (1+1) wave-like equation with variable coefficients [58]:

D2α
τ Φ(x, τ) = x2 ∂

∂x
Φ(x, τ)

∂2

∂x2 Φ(x, τ) − x2
(
∂2

∂x2 Φ(x, τ)
)2

− Φ(x, τ), (4.1)

where, 0 < α ≤ 1, x ∈ R and τ ≥ 0, with the initial conditions:

Φ(x, 0) = 0, Dα
τΦ(x, 0) = x2.
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Applying the Aboodh transform on Eq (4.1), we get

A
[
D2α
τ Φ(x, τ)

]
= A

[
x2 ∂

∂x
Φ(x, τ)

∂2

∂x2 Φ(x, τ) − x2
(
∂2

∂x2 Φ(x, τ)
)2

− Φ(x, τ)
]
. (4.2)

Using the approach mentioned in Section 3, we obtain the following results from Eq (4.2) as

Ψ(x, υ) =
x2

υα+2 +
x2

υ2α

∂

∂x
A
[
∂

∂x
A−1[Ψ(x, υ)

] ∂2

∂x2 A−1[Ψ(x, υ)
]]
−

1
υ2α x2

(
∂2

∂x2 A−1[Ψ(x, υ)
])2

−
1

2α
Ψ(x, υ).

(4.3)

Assume that Eq (4.3) has a series solution in the following form:

Ψ(x, υ) =

∞∑
r=0

~r(x)
υrα+2 , υ > 0.

The κ-truncated expansion is as

Ψκ(x, υ) =

κ∑
r=0

~r(x)
υrα+2 , υ > 0.

By using Lemma 2.7 and Theorem 2.9, we get

limυ→∞

(
υ2Ψ(x, υ)

)
= Φ(x, 0) = ~0(x) = 0, ~1(x) = Dα

τΦ(x, 0) = x2.

Therefore, κ-truncated expansion becomes as

Ψκ(x, υ) =
x2

υα+2 +

κ∑
r=2

~r(x)
υrα+2 , υ > 0. (4.4)

The ARF is formulated as

ARes(x, υ) =Ψ(x, υ) −
x2

υα+2 −
x2

υ2α

∂

∂x
A
[
∂

∂x
A−1[Ψ(x, υ)

] ∂2

∂x2 A−1[Ψ(x, υ)
]]

+

1
υ2α x2

(
∂2

∂x2 A−1[Ψ(x, υ)
])2

+
1
υ2αΨ(x, υ).

The κth-truncated ARF takes the following form

AResκ(x, υ) =Ψκ(x, υ) −
x2

υα+2 −
x2

υ2α

∂

∂x
A
[
∂

∂x
A−1[Ψκ(x, υ)

] ∂2

∂x2 A−1[Ψκ(x, υ)
]]

+

1
υ2α x2

(
∂2

∂x2 A−1[Ψκ(x, υ)
])2

+
1
υ2αΨκ(x, υ).

(4.5)

To determine the unknown coefficients, substitute κ = 2, 3, 4, 5, 6, 7 into Eq (4.5) and Eq (4.4), and
solve the expression

limυ→∞

(
υκα+2AResκ(x, υ)

)
= 0.
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Thus we have

~2(x) = 0,
~3(x) = −x2,

~4(x) = 0,
~5(x) = x2,

~6(x) = 0,
~7(x) = −x2.

In other words, for each n ∈ N, we have

~2n(x) = 0, ~2n+1(x) = (−1)nx2.

The 7-th approximate solution of Eq (4.3) is formulated as

Ψ7(x, υ) =
x2

υα+2 −
x2

υ3α+2 +
x2

υ5α+2 −
x2

υ7α+2 .

By utilizing the inverse Aboodh transform on above equation, we get 7-th-order approximate solution
in the original space which takes the form

Φ7(x, τ) = x2
(

τα

Γ[α + 1]
−

τ3α

Γ[3α + 1]
+

τ5α

Γ[5α + 1]
−

τ7α

Γ[7α + 1]

)
.

For α = 1, the 7-th-approximate solution becomes as follows:

Φ7(x, τ) = x2
(
τ

Γ[2]
−

τ3

Γ[4]
+

τ5

Γ[6]
−

τ7

Γ[8]

)
.

This characterizes the first four terms of expansion of the exact solution of x2 sin τ. The similar result
has been obtained by Khalouta and Kadem [58].
Problems 2. Consider the following nonlinear time-fractional wave-like equation, which has variable
coefficients [58]:

D2α
τ Φ(x, τ) = Φ2(x, τ)

∂2

∂x2

(
Φx(x, τ)Φxx(x, τ)Φxxx(x, τ)

)
+ x2 ∂

2

∂x2

(
Φxx(x, τ)

)3
− 18Φ5(x, τ) + Φ(x, τ),

(4.6)

where, 0 < α ≤ 1, τ ≥ 0, x ∈ R, with the initial conditions:

Φ(x, 0) = ex,Dα
τΦ(x, 0) = ex.

Applying the Aboodh transform on Eq (4.6), we get

A
[
D2α
τ Φ(x, τ)

]
= A

[
Φ2(x, τ)

∂2

∂x2

(
Φx(x, τ)Φxx(x, τ)Φxxx(x, τ)

)
+ x2 ∂

2

∂x2

(
Φxx(x, τ)

)3

− 18Φ5(x, τ) + Φ(x, τ)
]
.

(4.7)
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Using the approach outlined in Section 3, we obtain the following results from Eq (4.7):

Ψ(x, υ) =
ex

υ2 +
ex

υα+2 +
1
υ2α A

[(
A−1[Ψ(x, υ)]

)2 ∂2

∂x2

(
∂

∂x
A−1[Ψ(x, υ)]

∂2

∂x2

A−1[Ψ(x, υ)]
∂3

∂x3 A−1[Ψ(x, υ)]
)]

+
1
υ2α A

[
x2 ∂

2

∂x2

(
∂2

∂x2

A−1[Ψ(x, υ)]
)3

− 18
(
A−1[Ψ(x, υ)]

)5]
+

1
υ2αΨ(x, υ).

(4.8)

Assume that Eq (4.8) has a series solution in the following form:

Ψ(x, υ) =

∞∑
r=0

~r(x)
υrα+2 , υ > 0.

The κth-truncated expansion is as

Ψκ(x, υ) =

κ∑
r=0

~r(x)
υrα+2 , υ > 0.

By utilizing Lemma 2.7 and Theorem 2.9, we get

limυ→∞

(
υ2Ψ(x, υ)

)
= Φ(x, 0) = ~0(x) = ex, ~1(x) = Dα

τΦ(x, 0) = ex.

So, Eq (4.8) becomes as follows:

Ψκ(x, υ) =
ex

υ2 +
ex

υα+2 +

κ∑
r=2

~r(x)
υrα+2 . (4.9)

The ARF of Eq (4.8) is formulated as

ARes(x, υ) =Ψ(x, υ) −
ex

υ2 −
ex

υα+2 −
1
υ2α A

[(
A−1[Ψ(x, υ)]

)2 ∂2

∂x2

(
∂

∂x
A−1[Ψ(x, υ)]

∂2

∂x2

A−1[Ψ(x, υ)]
∂3

∂x3 A−1[Ψ(x, υ)]
)]
−

1
υ2α A

[
x2 ∂

2

∂x2

(
∂2

∂x2

A−1[Ψ(x, υ)]
)3

− 18
(
A−1[Ψ(x, υ)]

)5]
−

1
υ2αΨ(x, υ).

The κth-truncated ARF of Eq (4.8) is given by

AResκ(x, υ) =Ψκ(x, υ) −
ex

υ2 −
ex

υα+2 −
1
υ2α A

[(
A−1[Ψκ(x, υ)]

)2 ∂2

∂x2

(
∂

∂x
A−1[Ψκ(x, υ)]

∂2

∂x2

A−1[Ψκ(x, υ)]
∂3

∂x3 A−1[Ψκ(x, υ)]
)]
−

1
υ2α A

[
x2 ∂

2

∂x2

(
∂2

∂x2

A−1[Ψκ(x, υ)]
)3

− 18
(
A−1[Ψκ(x, υ)]

)5]
−

1
υ2αΨκ(x, υ).

(4.10)

To find unknown coefficients, put κ = 2, 3, 4, 5, 6, 7 in Eq (4.10) and Eq (4.9), and make some simple
calculations on the following equation

limυ→∞

(
υ2AResκ(x, υ)

)
= 0.
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We get the following results:

~2(x) = ex,

~3(x) = ex,

~4(x) = ex,

~5(x) = ex,

~6(x) = ex,

~7(x) = ex.

In other words, for each n ∈ N, we have ~n(x) = ex. The 7th approximate solution of Eq (4.8) is as
follows:

Ψ7(x, υ) = ex
( 1
υ2 +

1
υα+2 +

1
υ2α+2 +

1
υ3α+2 +

1
υ4α+2 +

1
υ5α+2 +

1
υ6α+2 +

1
υ7α+2

)
. (4.11)

The 7th approximate solution in the original space is achieved by utilizing the inverse Aboodh
transform on the Eq (4.11), and we have

Φ7(x, τ) = ex
(
1 +

τα

Γ[α + 1]
+

τ2α

Γ[2α + 1]
+

τ3α

Γ[3α + 1]
+

τ4α

Γ[4α + 1]
+

τ5α

Γ[5α + 1]

+
τ6α

Γ[6α + 1]
+

τ7α

Γ[7α + 1]

)
.

For α = 1, we get

Φ7(x, τ) = ex
(
1 +

τ

Γ[2]
+

τ2

Γ[3]
+

τ3

Γ[4]
+

τ4

Γ[5]
+

τ5

Γ[6]
+

τ6

Γ[7]
+

τ7

Γ[8]

)
. (4.12)

Equation (4.12) characterizes the first eight terms of expansion of the exact solution, Φ(x, τ) = ex+τ.
The similar result has been obtained by Khalouta and Kadem [58].
Problem 3. Consider the (2+1)-heat equation with variable coefficients [57]:

Dα
τΦ(x, y, τ) =

1
2

y2Φxx(x, y, τ) +
1
2

x2Φyy(x, y, τ), (4.13)

where, 0 < α ≤ 1, τ ≥ 0, (x, y, τ) ∈
(
R+

)3
, with the initial condition:

Φ(x, y, 0) = y2.

Applying the Aboodh transform on Eq (4.13), we get

A
[
Dα
τΦ(x, y, τ)

]
= A

[1
2

y2Φxx(x, y, τ) +
1
2

x2Φyy(x, y, τ)
]
.

Using the approach outlined in Section 3, we obtain the following results from the above equation:

Ψ(x, y, υ) =
y2

υ2 +
y2

2υα
DxxΨ(x, y, υ) +

x2

2υα
DxxΨ(x, y, υ). (4.14)
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Now introduce the series solution of Eq (4.14) as

Ψ(x, y.υ) =

∞∑
r=0

~r(x, y)
υrα+2 , υ > 0.

Furthermore, the κth-truncated series is given by

Ψκ(x, y.υ) =

κ∑
r=0

~r(x, y)
υrα+2 , υ > 0. (4.15)

By utilizing the Lemma 2.7 and Theorem 2.9, we get

~0(x) = limυ→∞

(
υ2Ψ(x, y, υ)

)
= Φ(x, y, 0) = y2.

So, Eq (4.15) becomes

Ψκ(x, y.υ) =
y2

υ2 +

κ∑
r=1

~r(x, y)
υrα+2 , υ > 0. (4.16)

The ARF of (4.14) is defined as

ARes(x, y, υ) = Ψ(x, y, υ) −
y2

υ2 −
y2

2υα
DxxΨ(x, y, υ) −

x2

2υα
DxxΨ(x, y, υ).

The κth-truncated ARF of (4.14) is given as

AResκ(x, y, υ) = Ψκ(x, y, υ) −
y2

υ2 −
y2

2υα
DxxΨκ(x, y, υ) −

x2

2υα
DxxΨκ(x, y, υ). (4.17)

To determine the unknown coefficients ~κ(x, y), substitute κ = 1, 2, 3, 4, 5, 6, 7 into Eq (4.16) and Eq
(4.17), and solve the expression

limυ→∞

(
υκα+2AResκ(x, y, υ)

)
= 0.

Thus we have

~1(x, y) =x2,

~2(x, y) =y2,

~3(x, y) =x2,

~4(x, y) =y2,

~5(x, y) =x2,

~6(x, y) =y2,

~7(x, y) =x2.

In other words, for each n ∈ N, we have

~2n(x, y) = y2, ~2n+1(x, y) = x2.
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The 7th-order approximate solution of Eq (4.14) is as

Ψ7(x, y, υ) =
y2

υ2 +
x2

υα+2 +
y2

υ2α+2 +
x2

υ3α+2 +
y2

υ4α+2 +
x2

υ5α+2 +
y2

υ6α+2 +
x2

υ7α+2 . (4.18)

By utilizing the inverse Aboodh transform on Eq (4.18), we get 7th-order approximate solution in
the original space in the following form:

Φ7(x, y, τ) = y2
(
1 +

τ2α

Γ[2α + 1]
+

τ4α

Γ[4α + 1]
+

τ6α

Γ[6α + 1]

)
+ x2

(
τα

Γ[α + 1]
+

τ3α

Γ[3α + 1]
+

τ5α

Γ[5α + 1]
+

τ7α

Γ[α + 1]

)
.

When α = 1, the 7th-approximate solution becomes

Φ7(x, y, τ) = y2
(
1 +

τ2

Γ[3]
+

τ4

Γ[5]
+

τ6

Γ[7]

)
+ x2

(
τ1

Γ[2]
+

τ3

Γ[4]
+

τ5

Γ[6]
+

τ7

Γ[8]

)
. (4.19)

The Eq (4.19) corresponds to the first eight terms of the exact solution y2 cosh τ + x2 sinh τ. A similar
result has been obtained by Khan et al. [57].
Problem 4. Consider the (3+1)-wave equation with variable coefficients [57, 59]:

D2α
τ Φ(x, y, z, τ) =

1
2

x2Φxx(x, y, z, τ) +
1
2

y2Φyy(x, y, z, τ)

+
1
2

z2Φzz(x, y, z, τ) + x2 + y2 + z2,

(4.20)

where, 0 < α ≤ 1, (x, y, z, τ) ∈
(
R+

)4
, with the initial condition:

Φ(x, y, z, 0) =0,
Dα
τΦ(x, y, z, 0) =x2 + y2 − z2.

By utilizing the Aboodh transform on Eq (4.20), we get

A[D2α
τ Φ(x, y, z, τ)] = A

[1
2

x2Φxx(x, y, z, τ) +
1
2

y2Φyy(x, y, z, τ)

+
1
2

z2Φzz(x, y, z, τ) + x2 + y2 + z2],
Using the approach outlined in Section 3, we obtain the following results from the above equation:

Ψ(x, y, z, υ) =
1
υα+2 (x2 + y2 − z2) +

x2

2υ2α DxxΨ(x, y, z, υ) +
y2

2υ2α DyyΨ(x, y, z, υ)

+
z2

2υ2α DzzΨ(x, y, z, υ) +
1

υ2α+2 (x2 + y2 + z2).
(4.21)

Introduce a series solution of algebraic Eq (4.21) as follows:

Ψ(x, y, z, υ) =

∞∑
r=0

~r(x, y, z)
υrα+2 , υ > 0.
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The κth-truncated series is as

Ψκ(x, y, z, υ) =

κ∑
r=0

~r(x, y, z)
υrα+2 , υ > 0. (4.22)

By using Lemma 2.7 and Theorem 2.9, we have

limυ→υ

(
υ2Ψ(x, y, z, υ)

)
=~0(x, y, z) = Φ(x, y, z, 0) = 0,

~1(x, y, z) =Dα
τΦ(x, y, z, 0) = x2 + y2 − z2.

So, Eq (4.22) becomes

Ψκ(x, y, z, υ) =
(x2 + y2 − z2)

υα+2 +

κ∑
r=2

~r(x, y, z)
υrα+2 , υ > 0. (4.23)

The ARF of Eq (4.21) is defined as

ARes(x, y, z, υ) =Ψ(x, y, z, υ) −
1
υα+2 (x2 + y2 − z2) −

x2

2υ2α DxxΨ(x, y, z, υ)

−
y2

2υ2α DyyΨ(x, y, z, υ)
z2

2υ2α DzzΨ(x, y, z, υ) −
1

υ2α+2 (x2 + y2 + z2).

The κth-truncated ARF of Eq (4.21) is defined as

AResκ(x, y, z, υ) =Ψκ(x, y, z, υ) −
1
υα+2 (x2 + y2 − z2) −

x2

2υ2α DxxΨκ(x, y, z, υ)

−
y2

2υ2α DyyΨκ(x, y, z, υ)
z2

2υ2α DzzΨκ(x, y, z, υ) −
1

υ2α+2 (x2 + y2 + z2).
(4.24)

To find the unknown coefficients, use κ = 2, 3, 4, 5, 6, 7 in Eq (4.23) and Eq (4.24), and solve the
following equation

limυ→∞

(
υκα+2AResκ(x, y, z, υ)

)
= 0.

We have

~2(x, y, z) =x2 + y2 + z2,

~3(x, y, z) =x2 + y2 − z2,

~4(x, y, z) =x2 + y2 + z2,

~5(x, y, z) =x2 + y2 − z2,

~6(x, y, z) =x2 + y2 + z2,

~7(x, y, z) =x2 + y2 − z2.

In other words, for each n ∈ N, we have

~2n(x, y, z) = x2 + y2 + z2, ~2n+1(x, y, z) = x2 + y2 − z2.
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The 7th approximate solution of Eq (4.21) is as follows:

Ψ7(x, y, z, υ) =
x2 + y2 − z2

υα+2 +
x2 + y2 + z2

υ2α+2 +
x2 + y2 − z2

υ3α+2 +
x2 + y2 + z2

υ4α+2

+
x2 + y2 − z2

υ5α+2 +
x2 + y2 + z2

υ6α+2 +
x2 + y2 − z2

υ7α+2 .

(4.25)

As a result, the 7th approximate solution of Eq (4.21) in original space is obtained by using the inverse
Aboodh transform on Eq (4.25) given as

Φ7(x, y, z, τ) =(x2 + y2 − z2)
(

τα

Γ[α + 1]
+

τ3α

Γ[3α + 1]
+

τ5α

Γ[5α + 1]
+

τ7α

Γ[7α + 1]

)
+ (x2 + y2 + z2)

(
τ2α

Γ[2α + 1]
+

τ4α

Γ[4α + 1]
+

τ6α

Γ[6α + 1]

)
.

(4.26)

When α = 1, the Eq (4.26) becomes

Φ7(x, y, z, τ) =(x2 + y2 − z2)
(
τ

Γ[2]
+

τ3

Γ[4]
+

τ5

Γ[6]
+

τ7

Γ[8]

)
+ (x2 + y2 + z2)

(
τ2

Γ[3]
+

τ4

Γ[5]
+

τ6

Γ[7]

)
.

(4.27)

The Eq (4.27) corresponds to the first seven terms of the exact solution Φ(x, y, z, τ) = (x2 + y2 −

z2) sinh τ + (x2 + y2 + z2)(cosh τ − 1). A similar result has been obtained by [57, 59].
Problem 5. Consider the following equation, which is a two-dimensional nonlinear time-fractional
wave-like equation involving variable coefficients [58]:

D2α
τ Φ(x, y, τ) =

∂2

∂x∂y
(
Φxx(x, y, τ)Φyy(x, y, τ)

)
−

∂2

∂x∂y
(
xyΦx(x, y, τ)Φy(x, y, τ)

)
− Φ(x, y, τ),

(4.28)

where, 0 < α ≤ 1, (x, y, τ) ∈ (R × R × R+), with the initial conditions:

Φ(x, y, 0) = exy, Dα
τΦ(x, y, 0) = exy.

Applying the Aboodh transform on Eq (4.28), we get

A[D2α
τ Φ(x, y, τ)] =A

[
∂2

∂x∂y

(
Φxx(x, y, τ)Φyy(x, y, τ)

)
−

∂2

∂x∂y

(
xyΦx(x, y, τ)Φy(x, y, τ)

)
− Φ(x, y, τ)

]
.

(4.29)

Using the approach outlined in Section 3, we obtain the following results from Eq (4.29) as

Ψ(x, y, υ) =
exy

υ2 +
exy

υα+2 +
1
υ2α A

[
∂2

∂x∂y

(
DxxA−1[Ψ(x, y, υ)]DyyA−1[Ψ(x, y, υ)]

)] 1
υ2α

− A
[
∂2

∂x∂y

(
xyDxA−1[Ψ(x, y, υ)]DyA−1[Ψ(x, y, υ)]

)]
−

1
υ2αΨ(x, y, υ).

(4.30)
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Assume that Eq (4.30) has a series solution in the following form:

Ψ(x, y, υ) =

∞∑
r=0

~r(x, y)
υrα+2 , υ > 0.

The κth-truncated expansion is as

Ψκ(x, y, υ) =

κ∑
r=0

~r(x, y)
υrα+2 , υ > 0.

By using Lemma 2.7 and Theorem 2.9, we get

limυ→∞

(
υ2Ψ(x, y, υ)

)
=Φ(x, y, 0) = ~0(x) = exy,

~1(x) = Dα
τΦ(x, y, 0) =exy.

So, Eq (4.31) becomes

Ψκ(x, y, υ) =
exy

υ2 +
exy

υα+2 +

κ∑
r=2

~r(x, y)
υrα+2 , υ > 0. (4.31)

The ARF of Eq (4.30) is defined as

ARes(x, y, υ) =Ψ(x, y, υ) −
exy

υ2 −
exy

υα+2 −
1
υ2α A

[
∂2

∂x∂y

(
DxxA−1[Ψ(x, y, υ)]

DyyA−1[Ψ(x, y, υ)]
)] 1
υ2α + A

[
∂2

∂x∂y

(
xyDxA−1[Ψ(x, y, υ)]

DyA−1[Ψ(x, y, υ)]
)]

+
1
υ2αΨ(x, y, υ).

The κth-truncated ARF of Eq (4.30) is defined as

AResκ(x, y, υ) =Ψκ(x, y, υ) −
exy

υ2 −
exy

υα+2 −
1
υ2α A

[
∂2

∂x∂y

(
DxxA−1[Ψκ(x, y, υ)]

DyyA−1[Ψκ(x, y, υ)]
)] 1
υ2α + A

[
∂2

∂x∂y

(
xyDxA−1[Ψκ(x, y, υ)]

DyA−1[Ψκ(x, y, υ)]
)]

+
1
υ2αΨκ(x, y, υ).

(4.32)

To determine the unknown coefficients ~κ(x, y), substitute κ = 1, 2, 3, 4, 5, 6, 7 into Eq (4.31) and
Eq (4.32), and solve the following expression

limυ→∞

(
υκα+2AResκ(x, y, υ)

)
= 0.

We get

~2(x, y) = − exy,

~3(x, y) = − exy,
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~4(x, y) =exy,

~5(x, y) =exy,

~6(x, y) = − exy,

~7(x, y) = − exy.

In other words, for each n ∈ N, we have

~n(x, y) = (−1)nexy.

The 7th approximate solution of Eq (4.30) is as follows:

Ψ7(x, y, υ) = exy
( 1
υ2 +

1
υα+2 −

1
υ2α+2 −

1
υ3α+2 +

1
υ4α+2 +

1
υ5α+2 −

1
υ6α+2 −

1
υ7α+2

)
. (4.33)

The 7th approximate solution in the original space is achieved by utilizing the inverse Aboodh
transform on the Eq (4.33) as

Φ7(x, y, τ) =exy
(
1 +

τα

Γ[α + 1]
−

τ2α

Γ[2α + 1]
−

τ3α

Γ[3α + 1]
+

τ4α

Γ[4α + 1]

+
τ5α

Γ[5α + 1]
−

τ6α

6Γ[α + 1]
−

τ7α

Γ[7α + 1]

)
.

For α = 1, we get

Φ7(x, y, τ) = exy
(
1 +

τ

Γ[2]
−

τ2

Γ[3]
−

τ3

Γ[4]
+

τ4

Γ[5]
+

τ5

Γ[6]
−

τ6

Γ[7]
−

τ7

Γ[8]

)
. (4.34)

Equation (4.34) characterizes the first eight terms of expansion of the exact solution exy(cos τ + sin τ).
The same exact solution has been obtained by Khalouta and Kadem [58].

5. Numerical simulation and discussion

In this section, we evaluate the graphic and numerical results of the approximate and exact solutions
to the models discussed in Problems 1–5. Error functions can be used to determine the accuracy and
capabilities of the numerical method. ARPSM provides an approximate analytical solution in terms of
an infinite fractional power series, and it is necessary to give the errors of the approximate solution. We
chose residual and absolute error functions to demonstrate the accuracy and capabilities of ARPSM.

Figures 1–5 demonstrate the 2D graph of the comparative study of the approximate solutions
obtained by the proposed method and the exact solutions to Problems 1–5, respectively. It is observed
from Figures 1–5 that the 5th-order approximate solutions at α = 0.6, 0.7, 0.8, 0.9 and 1.0 converge
to the exact solutions at α = 1.0. Furthermore, the 5th-order approximate solutions at α = 1.0 overlap
with the exact solutions at α = 1.0 and this confirms the validity and applicability of the proposed
method. Tables 1–5 show absolute and relative errors at reasonable nominated grid points in the interval
τ ∈ [0, 1] amongst the 5th-order approximate and exact solutions attained by means of ARPSM of
Problems 1–5 at α = 1.0. From Table 1, we can obtain that the range of magnitude of absolute and
relative errors is from 1.408×10−9 to 1.615×10−3 and from 1.274×10−9 to 5.941×10−4, respectively.
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From Table 2, we can obtain that the range of magnitude of absolute and relative errors is from
3.830×10−9 to 4.390×10−3 and from 1.274×10−9 to 5.941×10−4, respectively. From Table 3, we can
obtain that the range of magnitude of absolute and relative errors is from 2.747× 10−15 to 7.123× 10−6

and from 2.752 × 10−14 to 6.123 × 10−6, respectively. From Table 4, we can obtain that the range of
magnitude of absolute and relative errors is from 2.058× 10−11 to 2.764× 10−4 and from 1.787× 10−10

to 9.856 × 10−5, respectively. From Table 5, we can obtain that the range of magnitude of absolute and
relative errors is from 3.828×10−9 to 4.240×10−3 and from 1.286×10−9 to 1.129×10−3, respectively.
From the tables, it can be seen that the approximate solutions are in imminent agreement with the exact
solutions, which validates the efficacy of the proposed method. The absolute and relative errors of the
5th-order approximate solutions obtained by ARPSM of Problems 1–5 at α = 1.0 are also compared
in Tables 1–5 to the absolute error of the 5th-order approximate solutions obtained by NTDM [57]
and RPSM [58, 59]. The comparison has confirmed that the suggested technique and [57–59] provide
identical solutions, which indicates the effectiveness and reliability of the ARPSM.

Finally, from the numerical and graphical results, the following are the key advantages of the
ARPSM: The proposed method is a systematic, powerful, and suitable tool for analytical approximate
and exact solutions of FODEs. The proposed method is highly efficient and accurate with fewer
calculations than existing numerical methods, so the small size of the computation of this technique is
the strength of the scheme. The proposed method has an advantage over the homotopy perturbation
method and the Adomian decomposition method in that it can solve nonlinear problems without the
need for He’s polynomials and Adomian polynomials. The suggested technique is based on a new
version of Taylor’s series that generates a convergent series as a solution. Establishing the coefficients
for a series, like the RPSM, necessitates computing the fractional derivatives each time. As ARPSM
just requires the concept of an infinite limit, we simply need a few computations to get the coefficients.
The error analysis has confirmed the higher degree of accuracy. Therefore, we concluded that the
proposed method is a useful and efficient algorithm for solving certain classes of FODEs with fewer
calculations and iteration steps.

Figure 1 compares the 5th-order approximate solutions for various values of α to the exact solution
for Problem 1 at α = 1.0 in the interval τ ∈ [0, 1] when x = 1.0.

0.2 0.4 0.6 0.8 1.0
τ

0.2

0.4

0.6

0.8

Φ

α=0.6 α=0.7 α=0.8

α=0.9 α=1.0 Exact

Figure 1. Comparison of approximate and exact solutions for different values of α.
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Table 1 displays the absolute and relative errors at reasonable chosen grid points in the interval
τ ∈ [0, 1] between the 5th-order approximate and exact solutions of Problem 1 at α = 1.0 when
x = 1.0 obtained by ARPSM and RPSM [58].

Table 1. The absolute and relative errors for Problem 1 at α = 1.0 with x = 1.0.

τ Abs. Errors [ARPS M] Abs. Errors [58] Rel. Errors [ARPS M] Rel. Errors [58]

0.1 0.0000000014089809319273 0.0000000014089809319273 0.00000000127489866850701 0.00000000127489866850701

0.2 0.000000094935032181318 0.000000094935032181318 0.00000007490854479152386 0.00000007490854479152386

0.3 0.0000010575760032160980 0.0000010575760032160980 0.00000078347157293823292 0.00000078347157293823292

0.4 0.0000060309746037212621 0.0000060309746037212621 0.00000404268317400620812 0.00000404268317400620812

0.5 0.0000233540334615423011 0.0000233540334615423011 0.00001416493732238016721 0.00001416493732238016721

0.6 0.0000708003905087739601 0.0000708003905087739601 0.00003885607815121622230 0.00003885607815121622230

0.7 0.0001812908038099081401 0.0001812908038099081401 0.00009002634888453207001 0.00009002634888453207001

0.8 0.0004102618258010615001 0.0004102618258010615001 0.0001843425212040309600 0.0001843425212040309600

0.9 0.0008448611569500386002 0.0008448611569500386002 0.00034349491310922605021 0.00034349491310922605021

1.0 0.0016151623333331422012 0.0016151623333331422012 0.00059418501646951271322 0.00059418501646951271322

Figure 2 compares the 5th-order approximate solutions for various values of α to the exact solution
for Problem 2 at α = 1.0 in the interval τ ∈ [0, 1] when x = 1.0.

0.2 0.4 0.6 0.8 1.0
τ

4

6

8

10

12
Φ

α=0.6 α=0.7 α=0.8

α=0.9 α=1.0 Exact

Figure 2. Comparison of approximate and exact solutions for different values of α.

Table 2 displays the absolute and relative errors at reasonable chosen grid points in the interval
τ ∈ [0, 1] between the 5th-order approximate and exact solutions of Problem 2 at α = 1.0 when
x = 1.0 obtained by ARPSM and RPSM [58].
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Table 2. The absolute and relative errors for Problem 2 at α = 1.0 with x = 1.0.

τ Abs. Errors [ARPS M] Abs. Errors [58] Rel. Errors [ARPS M] Rel. Errors [58]

0.1 0.0000000038300078664121 0.0000000038300078664121 0.0000000012748988690647 0.0000000012748988690647

0.2 0.0000002487051271593543 0.0000002487051271593543 0.0000000749085447732857 0.0000000749085447732857

0.3 0.0000028747896321235092 0.0000028747896321235092 0.0000007834715730382094 0.0000007834715730382094

0.4 0.0000163938886732495353 0.0000163938886732495353 0.0000040426831740200271 0.0000040426831740200271

0.5 0.0000634828447791946410 0.0000634828447791946410 0.0000141649373222596122 0.0000141649373222596122

0.6 0.0001924554149681512213 0.0001924554149681512213 0.0000388560781512862201 0.0000388560781512862201

0.7 0.0004927994976648975211 0.0004927994976648975211 0.0000900263488848408502 0.0000900263488848408502

0.8 0.0011152072659852408015 0.0011152072659852408015 0.0001843425212039954304 0.0001843425212039954304

0.9 0.0022965707305075966735 0.0022965707305075966735 0.0003434949131091396002 0.0003434949131091396002

1.0 0.0043904637016884962317 0.0043904637016884962317 0.0005941846488086434001 0.0005941846488086434001

Figure 3 compares the 5th-order approximate solutions for various values of α to the exact solution
for Problem 3 at α = 1.0 in the interval τ ∈ [0, 1] when x = 1.0 and y = 1.0.

0.2 0.4 0.6 0.8 1.0
τ

1.5

2.0

2.5

3.0

3.5

4.0

Φ

α=0.6 α=0.7 α=0.8

α=0.9 α=1.0 Exact

Figure 3. Comparison of approximate and exact solutions for different values of α.

Table 3 displays the absolute and relative errors at reasonable chosen grid points in the interval
τ ∈ [0, 1] between the 5th-order approximate and exact solutions of Problem 3 at α = 1.0 when
x = 1.0 and y = 1.0 obtained by ARPSM and NTDM [57].
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Table 3. The absolute and relative errors for Problem 3 at α = 1.0 with x = 1.0 and y = 1.0.

τ Abs. Errors [ARPS M] Abs. Errors [57] Rel. Errors [ARPS M] Rel. Errors [57]

0.1 0.000000000000002747801985 0.000000000000002747801985 0.000000000000027523870045116 0.000000000000027523870045116

0.2 0.000000000001410399574908 0.000000000001410399574908 0.000000000007099231518341858 0.000000000007099231518341858

0.3 0.000000000054196702681252 0.000000000054196702681252 0.000000000183394236534766800 0.000000000183394236534766800

0.4 0.0000000007.2134892503683 0.0000000007.2134892503683 0.000000001852375316376594001 0.000000001852375316376594001

0.5 0.000000005370075994992618 0.000000005370075994992618 0.000000011201063695161140101 0.000000011201063695161140101

0.6 0.000000027680749692393640 0.000000027680749692393640 0.000000049023498933683123232 0.000000049023498933683123232

0.7 0.000000110709913347939400 0.000000110709913347939400 0.000000171851713389998612001 0.000000171851713389998612001

0.8 0.0000003.6772491962544500 0.0000003.6772491962544500 0.000000512611413341928102312 0.000000512611413341928102312

0.9 0.000001059806054914958100 0.000001059806054914958100 0.000001352954994765794212213 0.000001352954994765794212213

1.0 0.000007123348750127867110 0.000007123348750127867110 0.000006123348750125623001221 0.000006123348750125623001221

Figure 4 compares the 5th-order approximate solutions for various values of α to the exact solution
for Problem 4 at α = 1.0 in the interval τ ∈ [0, 1] when x = 1.0, y = 1.0, and z = 1.0.

0.2 0.4 0.6 0.8 1.0
τ

1

2

3

4

5

6

Φ

α=0.6 α=0.7 α=0.8

α=0.9 α=1.0 Exact

Figure 4. Comparison of approximate and exact solutions for different values of α.

Table 3 displays the absolute and relative errors at reasonable chosen grid points in the interval
τ ∈ [0, 1] between the 5th-order approximate and exact solutions of Problem 4 at α = 1.0 when
x = 1.0, y = 1.0 and z = 1.0 obtained by ARPSM and RPSM [57].
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Table 4. The absolute and relative errors for Problem 4 at α = 1.0 with x = 1.0, y = 1.0, and
z = 1.0.

τ Abs. Errors [ARPS M] Abs. Errors [57] Rel. Errors [ARPS M] Rel. Errors [57]

0.1 0.0000000000205878786241 0.0000000000205878786241 0.000000000178746413747940 0.000000000178746413747940

0.2 0.0000000027316551798328 0.0000000027316551798328 0.000000010444651466954041 0.000000010444651466954041

0.3 0.0000000483337240231307 0.0000000483337240231307 0.000000109715759971395122 0.000000109715759971395122

0.4 0.0000003746515125913063 0.0000003746515125913063 0.000005728884087246288100 0.000005728884087246288100

0.5 0.0000018469462227388430 0.0000018469462227388430 0.000002043142673328204001 0.000002043142673328204001

0.6 0.0000068368750438807520 0.0000068368750438807520 0.000005730589176510931011 0.000005730589176510931011

0.7 0.0000207645656957744512 0.0000207645656957744512 0.000013624232101514956012 0.000013624232101514956012

0.8 0.0000545544354908500401 0.0000545544354908500401 0.000028706653785106726041 0.000028706653785106726041

0.9 0.0001282945544978098220 0.0001282945544978098220 0.000055162045271739370212 0.000055162045271739370212

1.0 0.0002764323333335206021 0.0002764323333335206021 0.000098569421298684942322 0.000098569421298684942322

Figure 5 compares the 5th-order approximate solutions for various values of α to the exact solution
for Problem 5 at α = 1.0 in the interval τ ∈ [0, 1] when x = 1.0 and y = 1.0.

0.2 0.4 0.6 0.8 1.0
τ

2.8

3.0

3.2

3.4

3.6

3.8

Φ

α=0.6 α=0.7 α=0.8

α=0.9 α=1.0 Exact

Figure 5. Comparison of approximate and exact solutions for different values of α.

Table 5 shows the absolute and relative errors at reasonable chosen grid points in the interval τ ∈
[0, 1] between the 5th-order approximate and exact solutions of Problem 5 at α = 1.0 when x = 1.0
and y = 1.0 obtained by ARPSM and RPSM [58].
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Table 5. The absolute and relative errors for Problem 5 at α = 1.0 with x = 1.0 and y = 1.0.
τ Abs. Errors [ARPS M] Abs. Errors [58] Rel. Errors [ARPS M] Rel. Errors [58]

0.1 0.00000000382864451253791 0.00000000382864451253791 0.00000000128647356189609 0.00000000128647356189609

0.2 0.0000002.4835227829811025 0.0000002.4835227829811025 0.00000007750989571503319 0.00000007750989571503319

0.3 0.00000286564818985368042 0.00000286564818985368042 0.00000084279283008841991 0.00000084279283008841991

0.4 0.00001630159537713282722 0.00001630159537713282722 0.00000457620477589655102 0.00000457620477589655102

0.5 0.00006292687993214585012 0.00006292687993214585012 0.00001705922419745555301 0.00001705922419745555301

0.6 0.00019003969089403938034 0.00019003969089403938034 0.00005029697653130678003 0.00005029697653130678003

0.7 0.00048442177303043010043 0.00048442177303043010043 0.00012647355472679650002 0.00012647355472679650002

0.8 0.00109057399900969190051 0.00109057399900969190051 0.00028372131226548063006 0.00028372131226548063006

0.9 0.00223272085886838670072 0.00223272085886838670072 0.00058463274384336510012 0.00058463274384336510012

1.0 0.00424063624124793120131 0.00424063624124793120131 0.00112901508621710951200 0.00112901508621710951200

6. Conclusions

For the first time in research, we developed a new algorithm for solving time-fractional PDEs with
variable coefficients in the sense of Caputo derivative using the Aboodh transform and RPSM. We
proved some theorems on this method and solved some linear and nonlinear time-fractional PDEs
with the help of the mentioned method. The efficiency of the ARPSM has been demonstrated by
graphical and numerical results. We can observe from these graphs and tables that the approximate
results obtained by ARPSM are in perfect agreement with their respective exact solutions. In addition,
numerical results are also compared with other methods such as the NTDM and the RPSM. The
comparison has confirmed that the suggested technique and NTDM and RPSM provide identical
solutions.

In four important aspects, the ARPSM differs from other conventional numerical methods. This
method has the advantage of not requiring any minor or major physical parametric assumptions in
the problem. As a result, it applies to both weakly and strongly nonlinear problems, overcoming
some of the inherent limits of traditional perturbation approaches. Second, while addressing nonlinear
problems, the ARPSM does not require the He’s polynomials or Adomian polynomials. To solve
nonlinear PDEs, only a very small number of calculations are needed. As a consequence, it performs
homotopy analysis and Adomian decomposition methods significantly better. Third, the ARPSM
provides a simple and rapid way to find the coefficients of the recommended series as a solution
to the problem. Unlike the traditional RPSM, establishing the coefficients for a series requires the
computation of the fractional derivative every time. While the ARPSM only requires the concept
of the limit at infinity in establishing the coefficients for the series. Finally, unlike conventional
analytic approximation techniques, the ARPSM can create expansion solutions for linear and nonlinear
fractional-order PDEs without the need for perturbation, linearization, or discretization.

Therefore, we concluded that our novel technique is simple to apply, accurate, adaptive, and efficient
according to the results. Our goal in the future is to apply the ARPSM to other systems of FODEs that
arise in other areas of science.
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