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1. Introduction

With the development of non-Hausdorff topology, sober spaces, well-filtered spaces and d-spaces
form the most important three types of T0 spaces. During the past few years, a large number of
properties of these spaces are investigated (see [1, 3–5, 9, 14, 17, 19, 29, 30, 32, 33]). By the further
researches of sober spaces and well-filtered spaces, many classes of weakly sober spaces and weakly
well-filtered spaces have been posed and extensively investigated from various different perspectives
(see [4, 16, 23, 24, 28, 29, 36–38]). In particular, Xu, Shen, Xi and Zhao introduced and investigated
Rudin sets and WD sets for researching well-filtered spaces and gave the characterization of well-
filtered spaces by the two kinds of T0 spaces in [19,29]. Rudin sets and WD sets play an important role
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in study of well-filtered spaces and sober spaces (see [19,27–30,33]). In [16], using Rudin sets, Miao,
Li and Zhao introduced and studied a new kind of weakly well-filtered spaces—k-bounded well-filtered
spaces, namely, T0 spaces X in which every nonempty closed Rudin subset A of X that has a sup is the
closure of a (unique) point of X.

In this paper, also using Rudin sets, we introduce a new type of weakly well-filtered spaces—
weakly bounded well-filtered spaces, which are strictly stronger than k-bounded well-filtered spaces.
The main purpose of the paper is to investigate some basic properties of k-bounded well-filtered spaces
and weakly bounded well-filtered spaces. It is proved that the category KBWF of all k-bounded
well-filtered spaces with continuous mappings is not reflective in the category Top0 of all T0 spaces
with continuous mappings, and also the category KBWFr of all k-bounded well-filtered spaces with
continuous mappings preserving all existing sups of Rudin sets is not reflective in the category Topr

of all T0 spaces with continuous mappings preserving all existing sups of Rudin sets. Moreover, some
fundamental properties, such as hereditary, products, retracts, .etc, in k-bounded well-filtered spaces
and weakly bounded well-filtered spaces are investigated and the relationships among some weakly
sober spaces are posed. It is proved that if the Smyth power space PS (X) is k-bounded well-filtered
(resp., weakly bounded well-filtered), then so is X. Two examples are given to show that the converses
do not hold in general.

2. Preliminaries

In this section, we introduce the necessary notations, terminologies and some facts that will be used
in the paper. For further details, we refer the reader to [5, 6, 17].

For a poset P and A ⊆ P, let ↓A = {x ∈ P : x ≤ a for some a ∈ A} and ↑A = {x ∈ P : x ≥
a for some a ∈ A}. For arbitrary x ∈ P, let ↓x represent ↓{x} and ↑x represent ↑{x}, respectively.
We call A a lower set (resp., an upper set) if A = ↓A (resp., A = ↑A). For a set X, the cardinality
of X is denoted by |X|. The set of all natural numbers with the usual order is denoted by N and
ω = |N|. 2X denotes the set of all subsets of X. Put X(<ω) = {F ⊆ X : F is a nonempty finite set} and
FinP = {↑ F : ∅ , F ∈ P(<ω)}. A subset D of P is directed provided that it is nonempty and every
finite subset of D has an upper bound in D. The set of all directed sets of P is denoted by D(P). P is
said to be a directed complete poset, a dcpo for short, if every directed subset of P has the least upper
bound in P. As in [5], the upper topology on a poset P, generated by the complements of the principal
ideals of P, is denoted by υ(P). The upper sets of P form the (upper) Alexandroff topology γ(P). The
space ΓP = (P, γ(P)) is called the Alexandroff space of P. A subset U of a poset P is called Scott open
if U = ↑U and D ∩U , ∅ for all directed sets D ⊆ P with ∨D ∈ U whenever ∨D exists. The topology
formed by all Scott open sets of P is called the Scott topology, written as σ(P). ΣP = (P, σ(P)) is
called the Scott space of P. Clearly, ΣP is a T0 space. For the chain 2 = {0, 1} (with the order 0 < 1),
we have σ(2) = {∅, {1}, {0, 1}}. The space Σ2 is well-known under the name of Sierpinski space.

Given a T0 space X, we can define a partially order ≤X, called the specialization order, which is
defined by x ≤X y iff x ∈ {y}. Let ΩX denote the poset (X,≤X). Clearly, each open set is an upper set and
each closed set is a lower set with respect to the partially order ≤X. Unless otherwise stated, throughout
the paper, whenever an order-theoretic concept is mentioned in a T0 space, it is to be interpreted with
respect to the specialization order. Let O(X) (resp., C(X)) be the set of all open subsets (resp., closed
subsets) of X and denote S(X) = {{x} : x ∈ X}, D(X) = {D ⊆ X : D is a directed set of X}. A T0 space
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X is called a d-space (or monotone convergence space) if X (with the specialization order) is a dcpo
and O(X) ⊆ σ(X) (cf. [5]).

Remark 2.1. Let X be a T0 space and C ⊆ X. Then ∨C exists in X iff ∨clX(C) exists in X. Moreover,
If ∨C exists in X, then ∨clX(C) = ∨C.

A nonempty subset A of a T0 space X is said to be irreducible if for any {F1, F2} ⊆ C(X), A ⊆ F1∪F2

always implies A ⊆ F1 or A ⊆ F2. The set of all irreducible (resp., irreducible closed) subsets of X is
denoted by Irr(X) (resp., Irrc(X)). The space X is said to be sober, if for any A ∈ Irrc(X), we can find
a unique point x ∈ X with A = {x}. Put Top0 the category of all T0 spaces with continuous mappings
and Sob the full subcategory of Top0 containing all sober spaces.

Let X be a topological space, G ⊆ 2X and A ⊆ X. Set 3GA = {G ∈ G : G ∩ A , ∅} and
2GA = {G ∈ G : G ⊆ A}. We write 3A and 2A for 3GA and 2GA, respectively if there is no
confusion. The lower Vietoris topology on G is the topology that has {3U : U ∈ O(X)} as a subbase,
and the resulting space is denoted by PH(G). If G ⊆ Irr(X), then {3GU : U ∈ O(X)} is a topology on
G.

Remark 2.2. Let X be a T0 space. The space Xs = PH(Irrc(X)) with the canonical mapping ηX : X −→
Xs, given by ηX(x) = {x}, is the sobrification of X (cf. [5, 6]).

A subset K of a topological space X is called supercompact if for any family {Ui : i ∈ I} ⊆ O(X),
K ⊆

⋃
i∈I Ui, we can find i ∈ I satisfying K ⊆ Ui. It follows from [8, Fact 2.2] that the supercompact

saturated sets of a T0 space X are exactly the sets ↑x with x ∈ X. We call A ⊆ X saturated if A equals
the intersection of all open sets which contain A (equivalently, A is an upper set in the specialization
order). The set of all nonempty compact saturated subsets of X is denoted by K(X) and is endowed with
the Smyth preorder, that is, for K1,K2 ∈ K(X), K1 v K2 iff K2 ⊆ K1. We call a T0 space X well-filtered
(WF for short) if for any filtered family K ⊆ K(X), any open set U and

⋂
K⊆U, there exists K∈K

satisfying K⊆U.
For any topological space X, G ⊆ 2X and A ⊆ X, the upper Vietoris topology on G is the topology

denoted by {2GU : U ∈ O(X)} as a base, and PS (G) denotes the resulting space. The Smyth power
space or upper space PS (K(X)) of X is denoted shortly by PS (X) (cf. [7, 8, 17]). As we all know, the
specialization order on PS (X) is the Smyth order (that is, ≤PS (X)=v).

Rudin’s Lemma is a useful and important tool in non-Hausdorff topology and domain theory (see
[4–6, 10, 19, 27–29, 35]). Heckmann and Keimel [8] presented the following topological variant of
Rudin’s Lemma.

Lemma 2.3. ( [8, Lemma 3.1]) (Topological Rudin Lemma) Let X be a topological space and A an
irreducible subset of the Smyth power space PS (X). Then every closed set C⊆X that meets all members
ofA contains a minimal irreducible closed subset A that still meets all members ofA.

For a T0 space X and K ⊆ K(X), let M(K) = {A ∈ C(X) : K ∩ A , ∅ for all K ∈ K} (that is,
K ⊆ 3A) and m(K) = {A ∈ C(X) : A is a minimal member of M(K)}.

Definition 2.4. ( [29, Definition 4.6]) Let X be a T0 space. A nonempty subset A of X is said to have
Rudin property, if there exists a filtered family K ⊆ K(X) satisfying A ∈ m(K) (that is, A is a minimal
closed set that intersects all members of K). Let RD(X) = {A ∈ C(X) : A has Rudin property}. The
sets in RD(X) will also be called Rudin sets.
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Lemma 2.5. ( [33, Lemma 2.7]) Suppose that X,Y are both T0 spaces and f : X → Y is a continuous
mapping, if A ∈ RD(X), then f (A) ∈ RD(Y).

3. Some kinds of weakly sober spaces and weakly well-filtered spaces

In this section, the concept of weakly bounded well-filtered spaces is posed and we investigate
relationships among some kinds of weakly sober spaces and weakly well-filtered spaces.

Definition 3.1. ( [14, Definition 2.1]) Let X be a T0 space. We call X bounded well-filtered (b-WF for
short) if, whenever a nonempty open set U contains a filtered intersection

⋂
i∈I Ki of compact saturated

subsets, then U contains Ki for some i ∈ I.

Bounded well-filtered spaces were called weak well-filtered in [14]. It was shown
in [14, Proposition 3.3] that a T0 space X is bounded well-filtered if and only if for any nonempty
open set U and every filtered family {Ki}i∈I of nonempty compact saturated subsets with

⋂
i∈I Ki , ∅,⋂

i∈I Ki ⊆ U implies Ki ⊆ U for some i ∈ I. In order to correspond to the concept of bounded sober
spaces, we call it bounded well-filtered here (note that {Ki}i∈I ⊆ K(X) is upper bounded in K(X) iff⋂

i∈I Ki , ∅).

Proposition 3.2. A bounded well-filtered space is saturated-hereditary.

Proof. Assume that X is a bounded well-filtered space and U is a nonempty saturated subspace of X.
Suppose that KU ⊆ K(U) is filtered, V ∈ O(U) \ {∅}, and

⋂
KU ⊆ V . Then we can find W ∈ O(X) \ {∅}

with V = W ∩ U. As U = ↑XU, KU ⊆ K(X) and
⋂
KU ⊆ W. It follows from the bounded well-

filteredness of X that there exists K ∈ KU with K ⊆ W, and hence K ⊆ W ∩ U = V . Therefore, U is
bounded well-filtered. �

Definition 3.3. ( [38, Definition 4.1]) Let X be a T0 space. We call X k-bounded sober (k-b-sober
for short) if for any irreducible closed set A with ∨A existing, we can find a unique point x ∈ X with
A = cl({x}).

Definition 3.4. ( [16, Definition 4.2]) Let X be a T0 space. We call X k-bounded well-filtered (k-b-WF
for short) if for any non-empty closed Rudin subset A with ∨A existing, we can find a unique point
x ∈ X such that A = cl({x}).

Throughout this paper, KBWF denotes the category of all k-bounded well-filtered spaces with
continuous mappings, Topr denotes the category of all T0 spaces with continuous mappings preserving
all existing sups of Rudin sets and KBWFr denotes the full subcategory of Topr containing all k-
bounded well-filtered spaces.

By [33], we know that for a T0 space X, Sc(X) ⊆ Dc(X) ⊆ RD(X) ⊆ WD(X) ⊆ Irrc(X). So if X is a
k-bounded sober space, it is obvious that X is k-bounded well-filtered. Moreover, it was proved in [16]
that if a T0 space X is a k-bounded well-filtered space and X is locally compact, then X is a k-bounded
sober space. Clearly, each well-filtered space is k-bounded well-filtered, but the converse is not valid,
see [16, Example 4.5].

Definition 3.5. ( [37, Definition 2]) A T0 space is called bounded sober (b-sober for short) if every
upper bounded closed irreducible set is the closure of a unique singleton.
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Proposition 3.6. Let X be a T0 space and Y a bounded sober space. Then the function space Top0(X,Y)
of all continuous functions f : X → Y equipped with the topology of pointwise convergence is bounded
sober.

Proof. Let A be an upper bounded irreducible subset of Top0(X,Y) with the topology induced by the
product topology on YX. Then Ax = πx(A) = {a(x) : a ∈ A} is irreducible for each x ∈ X and has an
upper bound in Y . Since Y is bounded sober, we can find a unique ax ∈ Y with clY(Ax) = clY({ax}).
Define f : X → Y by f (x) = ax. We show that the function f is continuous. Let x ∈ X and V ∈ O(Y)
with f (x) = ax ∈ V . It follows from πx(A) = {ax} that V

⋂
πx(A) , ∅, hence there exists a ∈ A

such that a(x) ∈ V . By the continuity of a : X −→ Y , we can find a U ∈ O(X) with x ∈ U such
that a(z) ∈ V for each z ∈ U. From a ∈ A, it follows that a(z) ∈ πz(A) ⊆ πz(A) = {az} = { f (z)},
and hence f (z) ∈ V for all z ∈ U, which means that f is continuous. Finally, we show that A = { f }
in Top0(X,Y) (with the topology induced by the product topology on YX). Let π−1

x (Ux) (x ∈ X and
Ux ∈ O(Y)) be arbitrary subbasic open set such that f ∈ π−1

x (Ux). By f (x) = ax ∈ πx(A), we have
f ∈ π−1

x (πx(A))
⋂
π−1

x (Ux) = π−1
x (πx(A)

⋂
Ux). Therefore, πx(A)

⋂
Ux , ∅, and hence πx(A)

⋂
Ux , ∅

or, equivalently, A
⋂
π−1

x (Ux) , ∅. Since A is irreducible, we deduce that all basic open sets containing
f must meet A. It follows that A = { f }. We conclude that the space Top0(X,Y) is bounded sober. �

Definition 3.7. Let X be a T0 space. We call X bounded d-space (b-d-space for short) if for every
upper bounded D ∈ D(X), we can find x ∈ X such that D = cl({x}).

Proposition 3.8. A bounded d-space is closed-hereditary and saturated-hereditary.

Proof. Suppose that X is a bounded d-space and A is a closed subspace of X. For each upper bounded
directed set D in A, it is clear that D is directed and has an upper bound in X. As X is a bounded
d-space, there exists a unique x ∈ X such that clX(D) = clX({x}). As the directed set D has upper bound
in A and A = ↓A, we have x ∈ A. Then clA(D) = clX(D) ∩ A = clX({x}) ∩ A = clA({x}). Hence, A is a
bounded d-space.

Let U be a nonempty saturated subspace of X. For each upper bounded directed set DU in U, it is
clear that DU is directed and has upper bound in X. From X being a bounded d-space, it follows that
we can find a unique x ∈ X such that clX(DU) = clX({x}). We know that x ∈ U by U = ↑U. Then
clU(DU) = clX(DU) ∩ U = clX({x}) ∩ U = clU({x}). Hence U is a bounded d-space. �

Definition 3.9. Let X be a T0 space. We call X weakly bounded well-filtered (w-b-WF for short)
provided that for arbitrary upper bounded Rudin set A ⊆ X, there exists x ∈ X with A = cl({x}).

Since S c(X) ⊆ Dc(X) ⊆ RD(X) ⊆ WD(X) ⊆ Irrc(X) for a T0 space X by [33, Proposition 2.6], it
is obvious that each bounded sober space is weakly bounded well-filtered and each weakly bounded
well-filtered space is a bounded d-space. By the following example, the well-known Johnstone’s dcpo
J equipped with Scott topology is a weakly bounded well-filtered space but not a well-filtered space.

Example 3.10. Let J be the well-known dcpo constructed by Johnstone in [11], that is, J = N×(N∪{ω})
with the order defined as follows: ( j, k) ≤ (m, n) iff j = m and k ≤ n, or n = ω and k ≤ m. It is well-
known that ΣJ is a dcpo and a non-sober space. Moreover, it was proved in [14, Example 3.1] that ΣJ

is not well-filtered. Now we show that ΣJ is weakly bounded well-filtered.
In fact, it is straightforward to verify that Irrc(ΣJ) = {↓x : x ∈ J} ∪ {J}. Since J does not have an

upper bound in ΣJ, we have that ΣJ is bounded sober, and hence it is weakly bounded well-filtered.
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Theorem 3.11. Let X be a T0 space. X is weakly bounded well-filtered if and only if for an upper
bounded closed set B and any filtered family {Ki : i ∈ I} ⊆ K(X) such that Ki ∩ B , ∅ for all i ∈ I,⋂

i∈I Ki ∩ B , ∅.

Proof. Let X be a weakly bounded well-filtered space, B an upper bounded closed set and {Ki : i ∈
I} ⊆ K(X) a filtered family with Ki ∩ B , ∅ for all i ∈ I. By Topological Rudin Lemma, we can find a
minimal upper bounded closed subset C ⊆ B with Ki ∩C , ∅ for all i ∈ I. Since X is weakly bounded
well-filtered, it is natural to find a unique x ∈ X with C = ↓x, then x ∈ Ki for each i ∈ I, which implies
that x ∈

⋂
i∈I Ki. Therefore, C ∩ (

⋂
i∈I Ki) , ∅, and hence B ∩ (

⋂
i∈I Ki) , ∅.

Conversely, let A be an upper bounded Rudin set in X. By the definition of Rudin sets, we can find
a filtered family {Ki : i ∈ I} ⊆ K(X) with A ∈ m({Ki : i ∈ I}). Therefore,

⋂
i∈I Ki ∩ A , ∅. Select a point

x ∈
⋂

i∈I Ki ∩ A. Then ↓x ⊆ A and (↓x) ∩ Ki , ∅. It follows from the minimality of A that A = ↓x. �

Proposition 3.12. Every bounded well-filtered space is weakly bounded well-filtered.

Proof. Assume that X is bounded well-filtered, B is an upper bounded closed set and {Ki : i ∈ I} ⊆ K(X)
is a filtered family with Ki ∩ B , ∅ for all i ∈ I. If

⋂
i∈I Ki ∩ B = ∅, then

⋂
i∈I Ki ⊆ X \ B. Since B

has upper bound, there exists a c ∈ X with B ⊆ ↓c. Clearly, c ∈ Ki for each i ∈ I, which means that⋂
i∈I Ki , ∅. As X is bounded well-filtered, it is natural that Ki ⊆ X \B for some i ∈ I, which contradicts

with Ki ∩ B , ∅ for each i ∈ I. Therefore,
⋂

i∈I Ki ∩ B , ∅. Thus X is weakly bounded well-filtered by
Theorem 3.11. �

The converse of Proposition 3.12 is not valid, see the following example.

Example 3.13. Let J = N × (N ∪ {ω}) be the Johnstone’s dcpo (see Example 3.10). Put P = J ∪ {a}
and a is incomparable with all elements of J. Then {a} ∈ σ(P) and Irrc(ΣP) = {↓x : x ∈ P} ∪ {J}. Since
J does not have upper bound in P, ΣP is weakly bounded well-filtered. Set Ki = {( j, ω) : j ≥ i} ∪ {a}.
Then {Ki : i ∈ N} is a filtered family and {Ki : i ∈ N} ⊆ K(ΣP). However,

⋂
i∈N Ki = {a} ∈ σ(P) and

Ki * {a} for each i ∈ I. Therefore, ΣP is not bounded well-filtered.

As every weakly bounded well-filtered space is k-bounded well-filtered, one can directly get the
following result by Proposition 3.12.

Corollary 3.14. Every bounded well-filtered space is k-bounded well-filtered.

By Example 3.13, we know that the converse of Corollary 3.14 is not valid in general.
Figure 1 shows the relationships among some types of weakly sober spaces.

Sober spaces -

?

Well-filtered spaces - d-spaces

?

?

Bounded sober spaces

?

-

k-bounded sober spaces -

Bounded well-filtered spaces
?

Weakly bounded
well-filtered spaces

?

k-bounded
well-filtered spaces

-Bounded d-spaces

Figure 1. The relationships among weakly sober spaces.
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4. Some properties of k-bounded well-filtered spaces and weakly bounded well-filtered spaces

In this section, it is shown that k-bounded well-filteredness and weakly bounded well-filteredness
both are saturated-hereditary, but k-bounded well-filteredness is not closed-hereditary. Moreover,
weakly bounded well-filtered spaces are closed under retracts and products.

Proposition 4.1. Suppose that X is k-bounded well-filtered and U is a nonempty saturated subspace
of X. Then U is a k-bounded well-filtered space.

Proof. Let C be a Rudin set in U and ∨UC exist. Let u = ∨UC. Then u is an upper bound of C in
X. For any upper bound v of C in X, since U is a saturated subspace of X and C ⊆ U, we have that
v ∈ U, and hence u ≤ v in U or, equivalently, in X. It follows that u = ∨XC, whence u = ∨XclX(C) by
Remark 2.1. Since C is a Rudin set in U, by Lemma 2.5, clX(C) is a Rudin set in X. From k-bounded
well-filteredness of X, it follows that there exists x ∈ X with clX(C) = clX({x}). Since C ⊆ U = ↑U and
C ⊆ ↓x, we obtain that x ∈ U and C = clU(C) = (clX(C)) ∩ U = (clX({x})) ∩ U = clU({x}). Thus as a
saturated subspace, U is k-bounded well-filtered. �

The following example shows that k-bounded well-filteredness is not closed-hereditary.

Example 4.2. Suppose that P = N∪{a, b} and the partial order ≤ on P is given as follows (see Figure 2):

(i) n < n + 1 for each n ∈ N,
(ii) n < a and n < b for all n ∈ N,

(iii) a and b are incomparable.

Figure 2. A closed subspace of a k-bounded well-filtered space is not k-bounded well-filtered.

Clearly, Irrc(ΣP) = {↓x : x ∈ P} ∪ {N}. The irreducible closed set N does not have supremum in ΣP,
and thus ΣP is k-bounded sober, hence k-bounded well-filtered.

Put A = N ∪ {a}. Then A = N ∪ {a} = ↓a is a closed subspace of ΣP and N is a Rudin set in the
subspace A. Indeed, set K = {↑An : n ∈ N}. It is clear that K ⊆ K(A) and N ∈ m(K). Moreover,∨

AN = a and N , ↓a = {a}. Therefore, A (as a closed subspace of ΣP ) is not k-bounded well-filtered.

Definition 4.3. ( [5]) A topological space X is a retract of a topological space Y provided that there
exist two continuous maps s : X → Y and r : Y → X with r ◦ s = idX.
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Next, we give an example to show that the class of k-bounded well-filtered spaces is not closed
under retracts.

Example 4.4. Let X = ΣP and Y = (A, σ(P)|A) be the two spaces in Example 4.2. f : X → Y is defined
as follows:

f (x) =

{
x, x ∈ N,
a, x ∈ {a, b},

and define g : Y → X by g(y) = y for each y ∈ Y , that is, g is the identical embedding of Y in X.
Clearly, f is continuous and f ◦ g(y) = y for each y ∈ Y , that is, f ◦ g = idY . Therefore, Y is a retract
of X. It has been shown in Example 4.2 that X is k-bounded well-filtered, but Y is not.

Proposition 4.5. Suppose that X is a k-bounded well-filtered space and Y is a topological space. If
there exist two continuous mappings f : X → Y and g : Y → X satisfying f ◦ g = idY and g ◦ f ≤ idX,
then Y is k-bounded well-filtered.

Proof. Firstly, it is trivial that Y is a T0 space.
Secondly, let F be a Rudin set in Y and ∨Y F exist. Let a = ∨Y F. Since g is continuous, by

Lemma 2.5, clX(g(F)) is a closed Rudin set in X. We show that ∨clX(g(F)) = g(a). For each x ∈ F,
by a = ∨Y F, we have that x ≤Y a and hence g(x) ≤X g(a). Therefore, g(a) is an upper bound of g(F).
On the other hand, for an arbitrary upper bound b of g(F), and for each x ∈ F, g(x) ≤X b, whence
x = f ◦ g(x) ≤Y f (b). Since g ◦ f ≤ idX, we have g ◦ f (b) ≤ b. Since ∨Y F = a ≤Y f (b), we have
g(a) ≤ g ◦ f (b) ≤ b. Thus g(a) = ∨clX(g(F)).

Finally, since X is k-bounded well-filtered, we can find a unique x ∈ X satisfying clX(g(F)) =

clX({x}). Then we show that F = clY({ f (x)}). On the one hand, F = f ◦ g(F) ⊆ f ◦ clX(g(F)) =

f (clX({x})) ⊆ clY({ f (x)}). On the other hand, f (x) ∈ f (clX(g(F))) ⊆ clY( f ◦ g(F)) = clY({F}) = F, so
clY({ f (x)}) ⊆ F. Therefore, F = clY({ f (x)}), proving that Y is k-bounded well-filtered. �

Example 4.6. Consider the space X = ΣP in Example 4.2. We know that X is k-bounded sober and
hence k-bounded well-filtered.

Let f = idX : X → X be the identity mapping. g : X → X is defined as follows:

g(x) =


x, x ∈ N,
a, x = a,
a, x = b.

Clearly, g is continuous and Z = {x ∈ X : f (x) = g(x)} = N ∪ {a}. It has been shown in Example 4.2
that subspace Z of X is not k-bounded well-filtered.

Theorem 4.7. Let Xi (i ∈ I) be T0 spaces and X =
∏

i∈I Xi. Then the followings are equivalent:

(1) X is k-bounded well-filtered.
(2) For all i ∈ I, Xi is k-bounded well-filtered.

Proof. (1)⇒ (2): For j ∈ I, suppose that F j is a Rudin set and ∨X j F j exists, denoted by ∨X j F j = x j.
For each i ∈ I, choose si ∈ Xi. Put B =

∏
i∈I Bi, where B j = F j and Bi = ↓si for i , j. Then

by [19, Theorem 2.10], B is a Rudin set in X and ∨X B = (ai)i∈I , where a j = x j and ai = si for i , j.
From the k-bounded well-filteredness of X, it follows that we can find a unique x = (xi)i∈I ∈ X with
B = clX({x}) =

∏
i∈I clXi({xi}). Then F j = p j(B) = {x j}. Thus X j is k-bounded well-filtered.
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(2) ⇒ (1): By [2, Theorem 2.3.11], X is a T0 space. Let F be a Rudin set in X and ∨XF exist,
denoted by ∨XF = b = (bi)i∈I . For all i ∈ I, set pi : X → Xi to be the ith projection. By Lemma 2.5,
clXi(pi(F)) is a Rudin set in Xi.

Claim 1. For each j ∈ I, b j is the supremum of p j(F) in X j.
For m ∈ p j(F), there is x = (xi)i∈I ∈ F with m = x j = p j(x) ∈ p j(F). Since (bi)i∈I = ∨XF, we have

x ≤ (bi)i∈I . Then m = x j = p j(x) ≤ p j(b) = b j, and hence b j is an upper bound of p j(F) in X j. Let s
be an upper bound of p j(F) in X j and c = (ci)i∈I , where c j = s and ci = bi if i , j. Then c is an upper
bound of F, whence b ≤ c and b j ≤ c j = s. Thus b j = ∨X j p j(F).

Claim 2. There is x ∈ X satisfying F = {x}.
For each i ∈ I, since Xi is k-bounded well-filtered, there is xi ∈ Xi with clXi(pi(F)) = clXi({xi}). Let

x = (xi)i∈I . Since F is a Rudin set, and hence a closed irreducible subset, then F =
∏

i∈I clXi(pi(F)) =∏
i∈I clXi({xi}) = clX({x}).
Therefore, X is k-bounded well-filtered. �

By the following example, a k-bounded well-filtered space X for which the function space [X → X]
equipped with the topology of pointwise convergence may not be k-bounded well-filtered.

Example 4.8. Let X = ΣP be the space in Example 4.2. It was shown in Example 4.2 that X is k-
bounded well-filtered. Clearly, f : X → X is continuous iff f : P → P is order preserving. For each
i ∈ N, define a mapping fi : X → X by

fi(x) =

{
b, x ∈ P \ {1},
i, x = 1.

Put D = { fi : i ∈ N}. It was proved in [24, Example 3.12] that D is a directed subset in [X → X]
under the pointwise ordering and ↓[X→X]D is a closed subset in [X → X] with respect to the topology
of pointwise convergence. So cl[X→X](D) = ↓[X→X]D. By [33, Proposition 2.6], we know thatDc(X) ⊆
RD(X) for each T0 space X. Then ↓[X→X]D is a Rudin set in [X → X]. Moreover, we see that g is
the only upper bound of D in [X → X], where g(x) = b for each x ∈ P, and hence g =

∨
[X→X]D.

However, ↓[X→X]D , ↓[X→X]{g}. Therefore, [X → X] of all continuous functions with the topology of
pointwise convergence is not k-bounded well-filtered.

Proposition 4.9. Weakly bounded well-filteredness is closed-hereditary and saturated-hereditary.

Proof. Suppose that X is a weakly bounded well-filtered space and A is a closed subspace of X. Then
A is T0. Assume that F is a Rudin set of A and has an upper bound in A. Then F is a closed subset
of X. By Lemma 2.5, F is a Rudin set in X and also upper bounded in X. By the weakly bounded
well-filteredness of X, we can find a unique x ∈ X with F = clX({x}). Since F ⊆ A, we have that x ∈ A
and F = clX({x}) ∩ A = clA({x}). Thus A is weakly bounded well-filtered.

Then assume that U ⊆ X is non-empty saturated and F is a Rudin set of U which has an upper
bound in U. Then U is T0 and by Lemma 2.5, clX(F) is a Rudin set in X. As F has an upper bound in
U, we can find a ∈ U satisfying F ⊆ ↓Ua = clX({a}) ∩ U = ↓Xa ∩ U ⊆ ↓Xa, and hence clX(F) is also
upper bounded in X. It follows from the weakly bounded well-filteredness of X that we can choose a
unique x ∈ X with clX(F) = clX({x}). Then F ⊆ clX({x}). Since U is a saturated subset of X and F ⊆ U,
we have x ∈ U. Therefore, F = clU(F) = (clX(F)) ∩ U = (clX({x})) ∩ U = clU({x}). Therefore, U is
weakly bounded well-filtered. �
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Proposition 4.10. Suppose that X is a weakly bounded well-filtered space and Y is a T0 space, Z = {x ∈
X : f (x) = g(x)} is weakly bounded well-filtered, where f , g : X → Y are both continuous mappings.

Proof. Suppose Z , ∅. Then since Z is a subspace of X, Z is T0. Assume that F ∈ RD(Z) which has an
upper bound in Z. By Lemma 2.5, clX(F) is a Rudin set in X. According to the hypothesis, there exists
a ∈ Z satisfying F ⊆ ↓Z{a} = clX({a}) ∩ Z = ↓X{a} ∩ Z ⊆ ↓X{a}, which means that a is an upper bound
of F in X. Then the Rudin set clX(F) is upper bounded in X. Since X is weakly bounded well-filtered,
we can choose a unique x ∈ X satisfying clX(F) = clX({x}). Then clY({ f (x)}) = clY( f (clX({x}))) =

clY( f (clX(F))) = clY( f (F)) = clY(g(F)) = clY(g(clX(F))) = clY(g(clX({x}))) = clY({g(x)}). As Y is
T0, it is clear that f (x) = g(x), and hence x ∈ Z. Thus we obtain that F = clZ(F) = (clX(F)) ∩ Z =

(clX({x})) ∩ Z = clZ({x}). In conclusion, Z is weakly bounded well-filtered. �

Proposition 4.11. The class of weakly bounded well-filtered spaces is closed under retraction.

Proof. Suppose that X is weakly bounded well-filtered and suppose further that Y is a retract of X.
Then we can choose two continuous mappings f : X → Y and g : Y → X with f ◦ g = idY . Firstly,
as a retract of T0 space X, Y is a T0 space. Then let F be an upper bounded Rudin set in Y . It follows
from Lemma 2.5 that clX(g(F)) is a Rudin set in X. Since F is upper bounded in Y , there exists b ∈ Y
with F ⊆ ↓Yb, and hence g(F) ⊆ g(↓Yb) ⊆ ↓Xg(b). Thus g(F) is upper bounded in X. Since X is
weakly bounded well-filtered, we can choose a unique c ∈ X with clX(g(F)) = clX({c}). We show that
F = clY({ f (c)}).

On the one hand, F = f ◦ g(F) ⊆ f (clX(g(F))) = f (clX({c})) ⊆ clY({ f (c)}). On the other hand, we
know that f (c) ∈ f (clX({c})) = f (clX(g(F))) ⊆ clY( f (g(F))) = clY(F) = F, whence clY({ f (c)}) ⊆ F.
Therefore, F = clY({ f (c)}). So Y is weakly bounded well-filtered. �

Theorem 4.12. Let Xi(i ∈ I) be T0 spaces and X =
∏

i∈I Xi. Then the followings are equivalent:

(1) X is weakly bounded well-filtered;
(2) Xi is weakly bounded well-filtered for all i ∈ I.

Proof. (1)⇒ (2): It is trivial by Proposition 4.11.
(2) ⇒ (1): Suppose A ∈ RD(X) which has an upper bound a = (ai)i∈I in X. Then for all i ∈ I,

by [29, Lemma 4.13], pi(A) ∈ RD(Xi) and pi(A) ⊆ pi(↓a) ⊆ ↓pi(a) = ↓Xiai. For each i ∈ I, since
Xi is weakly bounded well-filtered, we can choose a unique xi ∈ Xi satisfying pi(A) = clXi({xi}). Let
x = (xi)i∈I . Then it follows from [29, Corollary 2.7] that A =

∏
i∈I pi(A) =

∏
i∈I clXi({xi}) = clX({x}).

Thus X is weakly bounded well-filtered. �

5. Smyth power spaces of k-bounded well-filtered spaces and weakly bounded well-filtered
spaces

The Smyth power spaces are very important structures in domain theory and non-Hausdorff
topology, which can describe a demonic view of bounded non-determinism (see [5, 7, 17, 21, 22]).
Now we prove that for a T0 space X, if PS (X) is k-bounded well-filtered (resp., weakly bounded
well-filtered), then so is X. Two examples are given to show that the converses do not hold.

Proposition 5.1. Let X be a T0 space. If PS (X) is k-bounded well-filtered, so is X.
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Proof. Assume that PS (X) is k-bounded well-filtered and F is a Rudin set in X and ∨XF exists, denoted
by ∨XF = a. Let ηX : X → PS (X) be defined by ηX(x) = ↑x for each x ∈ X. It follows from [29,
Lemma 4.13] that ηX(F) = {↑x : x ∈ F} is a Rudin set in PS (X). Then we claim that ∨ηX(F) exists in
PS (X).

For each x ∈ F, since ∨XF = a, we have x ≤ a, that is, ↑x v ↑a. So ↑a is an upper bound of ηX(F) in
PS (X). For an arbitrary upper bound G ∈ K(X) of ηX(F), and for each x ∈ F, ↑x v G, that is, G ⊆ ↑x.
Therefore, G ⊆

⋂
x∈F ↑x = ↑ ∨X F = ↑a, i.e., ↑a v G. So ∨ηX(F) = ↑a, and hence ∨ηX(F) = ↑a

in PS (X) by Remark 2.1. Since PS (X) is k-bounded well-filtered, we can choose K ∈ K(X) satisfying
ηX(F) = cl({K}). Therefore, ↑a = ∨ηX(F) = ∨cl({K}) = K and hence ηX(F) = cl({↑a}). Let U ∈ O(X),
then

F ∩ U , ∅ ⇔ ηX(F) ∩3U , ∅
⇔ {↑a} ∩3U , ∅
⇔ ↑a ∈ 3U
⇔ {a} ∩ U , ∅.

Thus, F = clX(F) = clX({a}), that is, X is k-bounded well-filtered. �

Example 5.2. Suppose that X = ΣP is the space in Example 4.2. It is shown in Example 4.2 that X is
k-bounded well-filtered. Clearly, K(X) = {↑x : x ∈ P} ∪ {{a, b}}.

Put Q = N ∪ {a, b, c} and the order ≤ on Q is defined by the following (see Figure 3):

(a) a and b are incomparable,
(b) c < a and c < b,
(c) n < c for each n ∈ N,
(d) n < n + 1 for all n ∈ N.

Figure 3. The dcpo Q.

Then Q is a dcpo. Let f : PS (ΣP)→ ΓQ be defined as the following

f (x) =


n x = ↑n (n ∈ N),
a x = {a},

b x = {b},

c x = {a, b}.
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Clearly, f is a homeomorphism. In ΓQ, it is clear that N is a Rudin set (indeed, N ∈ m({↑Qn : n ∈ N}))
and c =

∨↑
QN. However, for any x ∈ Q, N , ↓Qx = clΓQ({x}). Therefore, ΓQ is not k-bounded

well-filtered and hence PS (K(X)) is not k-bounded well-filtered.

Theorem 5.3. For a T0 space X, if PS (X) is weakly bounded well-filtered, then so is X.

Proof. Suppose that A ∈ RD(X) which has an upper bound a in X. Then by Lemma 2.5, ηX(A) =

{↑a : a ∈ A} is a Rudin set in PS (X). It is clear that ↑Xa is an upper bound of ηX(A) in PS (X). Since
PS (X) is weakly bounded well-filtered, we can find a unique K ∈ K(X) satisfying clPS (X)(ηX(A)) =

clPS (X)({K}).

Now we show that K is supercompact. Let {Ui : i ∈ I} ⊆ O(X) with K ⊆
⋃

i∈I Ui, i.e., K ∈ 2
⋃

i∈I Ui.
By clPS (X)(ηX(A)) = clPS (X)({K}), we have that {↑a : a ∈ A} ∩ 2

⋃
i∈I Ui , ∅. Then there exists a0 ∈ A

and i0 ∈ I such that a0 ∈ Ui0 , that is, ↑a0 ∈ 2Ui0 . By ↑a0 ∈ clPS (X)(ηX(A)) = clPS (X)({K}), {K}∩2Ui0 , ∅

or, equivalently, K ⊆ Ui0 . Thus K is supercompact, and hence, by [8, Fact 2.2], K = ↑x for some x ∈ X,
whence clPS (X)(ηX(A)) = clPS (X)({↑x}).

Finally, we verify that clX(A) = clX({x}). Let U ∈ O(X). By clPS (X)(ηX(A)) = clPS (X)({↑x}), we have
that

A ∩ U , ∅ ⇔ ηX(A) ∩3U , ∅
⇔ {↑x} ∩3U , ∅
⇔ ↑x ∈ 3U
⇔ {x} ∩ U , ∅.

Thus, A = clX(A) = clX({x}) and X is weakly bounded well-filtered. �

Example 5.4. Let Y = {a1, a2, · · ·, an, · · ·} and X = N∪ Y . The order ≤ on X is defined as the following
(see Figure 4):

(i) n < n + 1 for all n ∈ N,
(ii) for any n,m ∈ N with n , m, an and am are incomparable,

(iii) for any n,m ∈ N, n and am are incomparable.

Let X be endowed with the topology τ = υ(X)
∨

2Y . It is straightforward to verify that the
specialization order of (X, τ) agrees with the original order of X and Irrc((X, τ)) = {↓x : x ∈ X} ∪ N.
Since N is not upper bounded in X, it is clear that (X, τ) is bounded sober and hence weakly bounded
well-filtered. Now we show that PS ((X, τ)) is not weakly bounded well-filtered.

Let K = {↑n ∪ Y : n ∈ N}. We first verify that K ⊆ K((X, τ)). For each n ∈ N, if ↑n ∪ Y ⊆⋃
i∈I(Ui ∪ Vi) =

⋃
i∈I Ui ∪

⋃
i∈I Vi, where Ui ∈ υ(X) and Vi ∈ 2Y , then ↑n ⊆

⋃
i∈I Ui. We can choose

i0 ∈ I such that ↑n ⊆ Ui0 . Then there exists a finite set F in X with n ∈ X \ ↓F ⊆ Ui0 . Then there is
J ∈ I(<ω) with ↑n∪Y ⊆

⋃
i∈J(Ui∪Vi), which means that ↑n∪Y is compact, whence a compact saturated

set.
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Figure 4. X is bounded well-filtered but PS (X) is not weakly bounded well-filtered.

Since X = ↑1 ∪ Y v ↑2 ∪ Y v · · ·↑n ∪ Y v · · ·, we know that K is directed. Then we claim that
K =

⋂
n∈N3{an}. Clearly, K ⊆

⋂
n∈N3{an}. On the other hand, if K ∈ K((X, τ)) and K ∈

⋂
n∈N3{an},

then for each n ∈ N, an ∈ K. So Y ⊆ K. Since K ∈ K((X, τ)), K , Y (note {an} ∈ τ for each n ∈ N
and Y =

⋃
n∈N{an}), whence there exists m ∈ N with m ∈ K. Let m0 = min{n ∈ N : n ∈ K}. Then

K = ↑m0 ∪ Y ∈ K . Hence,
⋂

n∈N3{an} ⊆ K . Thus K =
⋂

n∈N3{an}.
For each n ∈ N, {an} = ↓Xan is τ-closed. So K =

⋂
n∈N3{an} is closed in PS ((X, τ)). Moreover,

since
⋂

n∈N(↑n ∪ Y) = Y ∈ τ, we know that K is upper bounded in PS (X) (for each n ∈ N, {an} = ↑Xan

is an upper bound of K), hence K is an upper bounded Rudin set in PS (X). Suppose that there exists
G ∈ K((X, τ)) with K = clPS (X)({G}), then G ⊆

⋂
n∈N(↑n ∪ Y) = Y , i.e., G ∈ 2Y , and 2Y is open in

PS (X), but ↑n ∪ Y * Y for all n ∈ N, contradicting with K = clPS (X)({G}). Therefore, PS ((X, τ)) is not
weakly bounded well-filtered.

6. Non-reflectivity of the category of k-bounded well-filtered spaces

In this section, we mainly consider the following two questions.

Question 6.1. Is KBWF reflective in Top0?

Question 6.2. Is KBWFr reflective in Topr?

Then, we give negative answers to Questions 6.1 and 6.2, respectively. In this section, K always
denotes a full subcategory of Top0, and we call the objects of K K-spaces. Moreover, if homeomorphic
copies of K-spaces are still K-spaces, it will be called closed with respect to homeomorphisms.

Definition 6.3. ( [27, Definition 4.1]) A K-reflection of a T0 space X is a pair 〈X̃, µ〉 consisted by
a K-space X̃ and a continuous mapping µ : X → X̃ which satisfy that for any continuous mapping
f : X → Y to a K-space, we can choose a unique continuous mapping f ∗ : X̃ → Y with f ∗ ◦ µ = f .

X

f ��

µ // X̃
f ∗

��
Y

If K-reflections exist, are unique up to homeomorphism and denoted by Xk.
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Definition 6.4. [31, Definition 4.3] Suppose that a T0 space X has a greatest element>X and X\{>X} ∈

Irrc(X). Let > satisfy > < X. Then (C(X)\ {X \ {>X}})
⋃
{X∪{>}} is a topology on X∪{>}. X\

> denotes
the resulting space. For each x ∈ X \ {>X}, let the mapping η\X : X → X\

> be such that η\X(x) = x and
η
\
X(>X) = >. It is straightforward to prove that η\X is a topological embedding.

Definition 6.5. [31, Definition 4.4] We call a T0 space X a K¬-space if it satisfies the following four
conditions:

(1) X is not a K-space.
(2) X (with the specialization order) has a greatest element >X.
(3) X \ {>X} ∈ Irrc(X).
(4) {x} , X \ {>X} for each x ∈ X, or equivalently, X \ {>X} has no greatest element.

Since {>X} = ↓>X = X , X \ {>X}, condition (4) in Definition 6.5 is equivalent to the condition:
{x} , X \ {>X} for each x ∈ X \ {>X}.

Theorem 6.6. The KBWF-reflection of (N ∪ {>N}, σ(N ∪ {>N}) ∪ {>N}) does not exist.

Proof. Put L = N ∪ {>N}. The order on L is defined by 1 < 2 < 3 < · · · < n < n + 1 < · · · < >N and
endow L with the topology (as the set of all closed sets) τ = {↓n : n ∈ N} ∪ {∅, L} ∪ {N} (clearly, the set
of all open subsets is υ(L) ∪ {{>N}} = σ(L) ∪ {{>N}}). Then

(a) (L, τ) is not k-bounded well-filtered. Indeed, it is straightforward to verify that O((L, τ)) = {↑Lx :
x ∈ L} ∪ {∅} and K(X) = {↑Lx : x ∈ L}. Since N ∈ m({↑Ln : n ∈ N}), N is a Rudin set in (L, τ) and∨
N = >N. As N , ↓x for all x ∈ L, (L, τ) is not k-bounded well-filtered.

(b) (L, τ) has a greatest element >(L,τ).
Clearly, the specialization order of (L, τ) agrees with the original order on L. Whence (L, τ) has a
greatest element >(L,τ), namely, the element >N.

(c) Irrc((L, τ)) = {↓x : x ∈ L} ∪ {N} = {↓x : x ∈ L} ∪ {L \ {>(L,τ)} (note that L = ↓>N). Whence
L \ {>N} = N ∈ Irrc((L, τ)).

(d) {x} = ↓x , N = L \ {>N} for each x ∈ L.
(e) (L, τ) is a KBWF¬-space and Irrc((L, τ)) = {↓x : x ∈ L} ∪ {N} = {↓x : x ∈ L} ∪ {L \ {>(L,τ)}.

By (a)-(d), (L, τ) is a KBWF¬-space and Irrc((L, τ)) = {↓x : x ∈ L} ∪ {N} = {↓x : x ∈ L} ∪ {L \
{>(L,τ)}.

(f) 〈(L, τ)\>, η
\
L〉 is a sobrification of (L, τ), where η\L : (L, τ) → (L, τ)\> is defined by η\L(x) = x for

each x ∈ N and η\L(>N) = >.
By (e) and [31, Corollary 4.15], 〈(L, τ)\>, η

\
L〉 is a sobrification of (L, τ).

(g) 〈(L, τ)\>, η
\
L〉 is not a KBWF-reflection of (L, τ).

Assume, on the contrary, that 〈(L, τ)\>, η
\
L〉 is a KBWF-reflection of (L, τ). Let N>1>2 = N ∪

{>1,>2}. Define an order on N>1>2 by n < n + 1 and n < >1, n < >2 for any n ∈ N. Endow N>1>2

with the Scott topology σ(N>1>2). It is proved in Example 4.2 that (N>1>2 , σ(N>1>2)) is k-bounded
well-filtered.
Define a mapping f : (L, τ)→ (N>1>2 , σ(N>1>2)) by

f (x) =

n x = n ∈ N,

>1 x = >N.
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It is easy to see that f is a topological embedding. Since 〈(L, τ)\>, η
\
L〉 is a KBWF-reflection of

(L, τ), there is a unique f k : (L, τ)\> → ((N>1>2 , σ(N>1>2)) such that f = f k ◦ η
\
L, that is, the

following diagram commutes.

(L, τ)

f ''

η
\
L // (L, τ)\>

f k

��
(N>1>2 , σ(N>1>2))

Then f k(n) = f k(η\L(n)) = f (n) = n for each n ∈ N and f k(>) = f k(η\L(>N)) = f (>N) = >1.
For each n ∈ N, since n < >N < > in (L, τ)\>, we have that n = f k(n) ≤ f k(>N) ≤ f k(>) = >1

in (N>1>2 , σ(N>1>2)). Whence f k(>N) is an upper bound of N in N>1>2 and f k(>N) ≤ >1. So
f k(>N) = >1 and hence ( f k)−1(N) = N < C((L, τ)\>) (note that N is closed in (N>1>2 , σ(N>1>2))),
which contradicts the continuity of f k.
Thus 〈(L, τ)\>, η

\
L〉 is not a KBWF-reflection of (L, τ).

(h) The KBWF-reflection of (L, τ) does not exist.
By (e), (f), (g) and [31, Corollary 4.15], the KBWF-reflection of (L, τ) does not exist.

�Corollary 6.7. KBWF is not reflective in Top0.

Remark 6.8. Corollary 6.7 can be obtained by [20, Theorem 2.14, Example 3.7] in a different way.
In fact, let X and Xn be the spaces in [20, Example 3.7]. It was proved in [20, Example 3.7] that
each Xn is a k-bounded sober subspace of X and hence a k-bounded well-filtered subspace of X. Let
Y =
⋂

n≥2 Xn = [0, 1) ∪ {2}, then
∨

Y F = 2 and F = [0, 1) is a directed closed set in Y , but ∀x ∈ Y, F ,
clY({x}). Therefore, Y =

⋂
n≥2 Xn is not a k-bounded well-filtered space. That is, the category KBWF

does not satisfies (K3). It follows from [20, Theorem 2.14] that KBWF is not reflective in Top0.

Then, in [16, Theorem 3.3], it was proved that KBSob is not reflective in Topk (continuous
mappings preserving all existing sups of irreducible sets). In this paper, Topr denotes the category of
all T0 spaces with continuous mappings preserving all existing sups of Rudin sets. Similarly, we show
that KBWFr is not reflective in Topr, which gives a negative answer to Question 6.2.

Example 6.9. Let P = J ∪ {>1} be the subset of L = J ∪ {>1,>2} in [16, Lemma 3.1], where J is the
well-known Johnstone’s dcpo. In ΓP = (P, γ(P)), B = {(1, n) : n ∈ N} is an irreducible closed set
with ∨B = (1, ω). In ΓP, a subset is irreducible if and only if it is directed. Then, we know that B is
a directed closed set. Therefore, B is a Rudin set and ∨B = (1, ω). However, for all x ∈ P, B , ↓x.
Therefore, ΓP is not k-bounded well-filtered.

Theorem 6.10. The KBWFr-reflection of (P, γ(P)) does not exist.

Proof. Let X = ΓP in Example 6.9 and Y = ΣL in [16, Lemma 3.1]. By [16, Lemma 3.1], Y is k-
bounded well-filtered. We assume that the KBWFr-reflection of ΓP exists, then let αX : X → Xk be the
reflection of X in KBWFr. Let f : X → Y be such that f (x) = x for each x ∈ X. Then f is continuous
and f (∨XD) = ∨XD = ∨Y D = ∨Y f (D), where D is a directed subset of P. So, f is a homomorphism
in the category Topr. We can find a unique f ∗ : Xk → Y with f = f ∗ ◦ αX. Moreover, it was proved
in [16, Theorem 3.3] that Y and Xk are homeomorphic.
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Suppose that Z = Σ2 is the Sierpinski space, f0 is the constant mapping which maps x to 0 for each
x ∈ X and f ∗ is the constant mapping mapping y to 0 for each y ∈ Y . Let g : Y → Z be such that

g(x) =

{
0, x ∈ P;
1, x = >2.

Then f0 = f ∗0 ◦ f = g ◦ f , which is a contradiction since f ∗0 is unique. In conclusion, the KBWFr-
reflection of ΓP does not exist. �

Corollary 6.11. KBWFr is not reflective in Topr.

7. Conclusions

In this paper, based on Rudin sets, we investigate the relationships among some weakly sober spaces
and mainly study some properties of k-bounded well-filtered spaces and weakly bounded well-filtered
spaces. Combining some previous papers, such as [5,11–13,15,18,19,23,25,26,32,34–38], we obtain
the following Table 1. In this table, “ + ” means that the property is preserved, and “ − ” denotes that
the property is not preserved in spaces. Moreover, “?” denotes that we do not know the related results
and it need to study for further. Moreover, in this paper, we do not consider the property of reflection
of weakly bounded well-filtered spaces and lead it to be researched in the future.

Table 1. Some properties of kinds of spaces.

Item Closed
heredity

Saturated
heredity

Retract Product Functional
space

Smyth
power
construction

PS (X)
property
T ⇒ X
property T

Reflection

Sobriety + + + + + + + +

b-sobriety + + + + + + − +

k-b-sobriety − + − + − + − −

WF spaces + + + + + + + +

b-WF spaces ? + + ? ? + + ?
w-b-WF spaces + + + + ? + − ?
k-b-WF spaces − + − + − + − −

d-spaces + + + + + + − +

b-d-spaces + + + + ? + − ?
Almost sobriety − + + + − − − −
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