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Midas cichlid (Amphilophus citrinellus), a popular aquarium fish, attracts extensive 
attention from worldwide biologists mainly due to its morphological polymorphism (dark 
versus gold). Continuous efforts have therefore been paid to address mechanisms of its 
coloration variants, while it is far away from the detailed illustration of a clear regulatory 
network. Some limits may come from the absence of a high-quality genome assembly and 
a relatively accurate gene set. In this study, we sequenced about 149 Gb of nucleotide 
sequences of Midas cichlid, generating a genome assembly with a total size of 933.5 Mb, 
which exhibits a good genome continuity with a contig N50 of 10.5 Mb. A total of 25,911 
protein-coding genes were annotated and about 90% completeness was achieved, 
which helps to build a good gene pool for understanding expressional differences of 
color variation. With the assistance of the final gene set, we identified a total of 277 
differential expressional genes (DEGs), of which 97 up- and 180 downregulated were 
determined in dark-vs-gold comparisons. Two protein-protein interaction (PPI) networks 
were constructed from these DEGs, and three key functional modules were classified. 
Hub genes within each module were evaluated, and we found that the third key module 
contains tyrp1b, oca2, pmela, tyr, and slc24a5, which were previously proven to be 
associated with melanin formation. Two downregulated DEGs (myl1 and pgam2) in the 
first key module may be involved in muscle movement and spermatogenesis, implying 
that certain side effects could result from the morphological polymorphism. The first 
key module, consisting of proteins encoded by upregulated DEGs that were associated 
with MAPK signaling, Toll-like receptor signaling, and gonadotropin-releasing hormone 
pathways, may contribute to a negative upstream regulation or downstream influence on 
melanin biosynthesis. Taken together, our new genome assembly and gene annotation of 
Midas cichlid provide a high-quality genetic resource for biological studies on this species, 
and the newly identified key networks and hub genes in dark-vs-gold comparisons 
enhance our understanding of the transcriptional regulatory mechanisms underlying 
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INTRODUCTION

Midas cichlid, Amphilophus citrinellus, as a polychromatic fish 
has attracted extensive attention from worldwide biologists to 
study speciation and coloration mechanisms due to its great 
amount of intraspecific variations (Maan and Sefc, 2013; Sefton, 
2017). It can be mainly divided into dark- and gold-morph types, 
and the latter has been widely cultured for its aesthetic features 
that make it one of the most popular aquarium species worldwide 
(Oldfield, 2011). Exploration of its color regulation, a potentially 
conservative mechanism, is also instructive for studies on more 
colorful phenotypes in both freshwater and marine fishes. 
Meanwhile, Midas cichlid is a good genetic resource to produce 
derived species, such as a blood parrot that is a hybrid between 
Midas cichlid and its relative redhead cichlid (Paraneetroplus 
melanurus; Aqmal-Naser and Ahmad, 2020).

The conspicuous gold-morph of Midas cichlid has an unequal 
appearance frequency. Compared with dark-morph individuals, 
the gold-morph type occurs at a low frequency (1.9-23.9%) in 
previous surveys (Elmer et al., 2009; Elmer et al., 2010). The gold-
morph generation is related to loss of melanic pigmentation during 
adolescence, while some of them keep the dark coloration during 
their whole life (Henning et al., 2013). The mechanism controlling 
morphological polymorphism of Midas cichlid is assumed to be 
monogenic (Thomas, 1976; Henning et al., 2013), and the putative 
serine/threonine kinase gene (stk) has been considered as the 
molecular basis for differentiation of the dark/gold phenotypes 
(Kautt et al., 2020). However, more recently a new defined gene 
“goldentouch” may also contribute to the division of dark/gold 
types (Kratochwil et  al., 2022). A comparative transcriptomic 
analysis revealed significant transcriptional changes of the core 
genes involved in the melanosomal pathway, potentially acting as 
the main factors to affect the dark/gold differentiation (Henning 
et  al., 2013). These studies render continuous endeavors to 

explore genetic mechanisms associated with variation of dart-
to-gold phenotypes, yet it is still far away from a complete and 
clear illustration. Currently, two versions of genome assembly for 
Midas cichlid are publically available (Elmer et al., 2014; Abate 
and Noakes, 2021); however, their contiguity, mainly reflected by 
contig N50 (51.8 kb and 3.8 Mb, respectively) is relatively low. 
In this high-throughput sequencing era, the third-generation 
sequencing technology (with long sequencing reads) enables the 
ability to produce a longer and better contiguity, which further 
benefits a high-quality gene annotation for better understanding 
of gene expression patterns and transcriptional regulation of 
coloration in the representative Midas cichlid.

In the present study, we aim to sequence the whole genome 
of a gold-morph Midas cichlid (Figure 1A) with a high coverage 
depth. By a combination of Illumina and Nanopore sequencing 
technologies, we make efforts to construct a high-quality genome 
assembly with an improved continuity compared to previous 
versions. By using various gene prediction strategies and careful 
integration, we attempt to generate a non-redundant gene set, 
which can be effective for the study of transcriptomic differences 
between dark and gold types. With the assistance of this gene 
set, we can examine differentially expressed genes (DEGs) and 
evaluate key gene networks with hub genes to obtain a deeper 
understanding of the molecular mechanisms and biological 
effects underlying morphological polymorphism.

MATERIALS AND METHODS

Sampling and Sequencing
An adult gold-morph Midas cichlid (Figure  1A), bred in the 
Pearl River Fisheries Research Institute in Guangzhou city of 
China, was collected. It was determined as a male since its testis 
was anatomized (Figure S1). Its liver was sampled for Illumina 
next-generation sequencing (NGS), and its muscle was collected 
for Nanopore third-generation sequencing (TGS). Several tissues 
including muscle, heart, and brain were mixed for transcriptome 
sequencing, which enables a comprehensive coverage of mRNAs 
for a better gene annotation.

For the NGS, the quality of isolated genomic DNAs was 
verified by using an integrated strategy of the following methods: 
(1) DNA degradation and contamination were monitored on 
1% agarose gels; (2) DNA concentration was measured by a 
Qubit DNA Assay Kit in Qubit 3.0 Flurometer (Invitrogen, 
Carlsbad, CA, USA). A total amount of 0.2 μg DNA per sample 
was used as the input material for library preparations. The 
sequencing library was generated using Next Ultra DNA Library 
Prep Kit (New England Biolabs, Ipswich, MA, USA) following 
the manufacturer’s recommendations, and index codes were 
added to each sample for paired-end sequencing in an Illumina 

coloration changes not only in Midas cichlid but also in other fishes from freshwater to 
marine ecosystems.
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Abbreviations: actc1a, actin, alpha, cardiac muscle 1a; aldoaa, fructose-
bisphosphate aldolase, class i; atp2a1l, atpase sarcoplasmic/endoplasmic reticulum 
ca2+ transporting 1 like; cebpb, CCAAT/enhancer binding protein (C/EBP), beta; 
ckma, creatine kinase, muscle a; ckmb, creatine kinase, muscle b; egr1, early growth 
response protein 1; fos, V-fos FBJ murine osteosarcoma viral oncogene homolog; 
fosb, FBJ murine osteosarcoma viral oncogene homolog B; gpnmb, transmembrane 
glycoprotein nmb isoform x1; jun, jun proto-oncogene, AP-1 transcription factor 
subunit; junba, junB proto-oncogene, AP-1 transcription factor subunit a; junbb, 
junB proto-oncogene, AP-1 transcription factor subunit b; jund, junD proto-
oncogene, AP-1 transcription factor subunit; mybphb, myosin binding protein 
Hb; myh11a, myosin, heavy polypeptide 11, smooth muscle a; myl1, myosin, light 
chain 1, alkali; mylpfa, myosin light chain, phosphorylatable, fast skeletal muscle 
a; oca2, oculocutaneous albinism II; pgam2, 2,3-bisphosphoglycerate-dependent 
phosphoglycerate mutase; pmela, premelanosome protein a precursor; pnp4a, 
purine nucleoside phosphorylase 4a; slc24a5, solute carrier family 24 (sodium/
potassium/calcium exchanger), member 5; tnnt2a, troponin t type 2a; tnni2b.2, 
troponin I type 2b; tnnt3b, troponin t type 3b (skeletal, fast) isoform 1; tyr, 
tyrosinase precursor; tyrp1b, tyrosinase-related protein 1b precursor.
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HiSeq 2000 system (Illumina, San Diego, CA, USA). In brief, 
the genomic DNA sample was fragmented by sonication to a 
size of 350 bp. Sequence artifacts, including reads with adapter 
sequences, low-quality, and/or unrecognizable nucleotides, were 
removed. We used Fastp (version 0.19.7) (Chen et al., 2018) to 
perform basic statistics on the quality of these raw reads. The 
detailed steps of data processing were set as follows: (1) Discard 
any paired reads when either one contains adapter sequences; 
(2) Discard any paired reads when more than 10% of bases are 
uncertain in either one read; (3) Discard any paired reads if the 
proportion of low-quality (Phred quality < 5) bases is over 50% in 
either one read. For the TGS, a 20-kb library was constructed and 
sequenced on a Nanopore PromethION platform (Nanopore, 
Oxford, England) using the routine SMRT sequencing strategy.

For the transcriptome sequencing (RNA-seq), the integrity of 
total RNA was assessed using a Fragment Analyzer 5400 (Agilent 
Technologies, Santa Clara, CA, USA). Sequencing libraries were 
generated using NEBNext Ultra RNA Library Prep Kit (New 
England Biolabs) following the manufacturer’s instructions, and 
index codes were added to attribute sequences to each sample. 
Briefly, mRNAs were purified from the total RNA using poly-T 
oligo-attached magnetic beads. Fragmentation was carried out 
using divalent cations under an elevated temperature in NEBNext 
First Strand Synthesis Reaction Buffer (5x). First strand cDNAs 
were synthesized using random hexamer primers and M-MuLV 
Reverse Transcriptase (RNase H). Second strand cDNA synthesis 

was subsequently performed using DNA Polymerase I and 
RNase H. Remaining overhangs were converted into blunt ends 
via exonuclease/polymerase. After adenylation of 3’ ends of DNA 
fragments, NEBNext Adaptors with hairpin loop structures were 
ligated for hybridization. In order to select cDNA fragments 
of preferentially 250~300 bp in length, the library fragments 
were purified with an AMPure XP system (Beckman Coulter, 
Beverly, MA, USA). Subsequently, 3 μl of USER Enzyme (New 
England Biolabs) was used with size-selected, adaptor-ligated 
cDNAs at 37°C for 15 min followed by 5 min at 95°C before PCR. 
Then PCRs were performed with Phusion High-Fidelity DNA 
polymerase, Universal PCR primers, and Index primer pairs. 
At last, PCR products were purified, and then their quality was 
checked on an Agilent Bioanalyzer 2100 (Palo Alto, CA, USA).

Genome-Size Estimation and De Novo 
Genome Assembly
After obtaining the sequencing data, we firstly employed KAT 
(kmer analysis tools, version 2.4.2 (Mapleson et  al., 2017)) 
to evaluate if experimental contamination was hidden in the 
sequencing library. Then, we used kmc version 3.0.0 (Kokot et al., 
2017) to count 17-mer coverage depth and extracted heterozygous 
17-mers to estimate the ploidy of the sequenced fish using 
Smudgeplot default version (Ranallo-Benavidez et  al., 2020). 
Meanwhile, we applied GCE version 1.0.3 (Ranallo-Benavidez 

A
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FIGURE 1 |   Specimen and genome features. (A) Image of the sequenced Midas cichlid; (B) Contamination evaluation based on GC content and 17-mer 
frequency; (C) Ploidy estimation; (D) Genome-size estimation and heterozygous rate evaluation.
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et al., 2020) to estimate the genome size and heterozygous rate 
based on the 17-mer coverage depth.

After ensuring the quality in sequencing and some basic 
genome features such as ploidy, genome size and heterozygous 
rate, we generated de novo assemblies using three genome-
assemblers including NECAT version 0.0.1_update20200803 
(Chen et al., 2021), wtdbg2 version 2.5 (Ruan and Li, 2020), and 
flye version 2.9-b1768 (Kolmogorov et al., 2019). We chose the 
best result with a high contiguity (represented by a high contig 
N50) and a close length to the genome-size estimate as an 
optimized outcome, and this assembly was used for subsequent 
analyses. The errors in the assembly generated from TGS were 
fixed by two rounds of self-correction by TGS reads, then further 
polished by NGS reads with three iterations using NextPolish 
version 1.4.0 (Hu et al., 2020).

The quality of our assembly was evaluated by several 
approaches. Firstly, we applied conserved single-copy genes 
of Actinopterygii to align our assembly, which is conducted in 
BUSCOs (version 3) (Seppey et  al., 2019). Secondly, we used 
KAT to compare the k-mers that appeared in both our assembly 
and NGS; when a high rate of k-mers appeared in the assembly, 
it is proven to have a high completeness. Thirdly, we applied LAI 
(Ou et al., 2018) to evaluate the continuity of our assembly based 
on the ratio of whole LTR retrotransposons (LTR-RTs) using 
LTR_retriever version 2.9.0 (Ou and Jiang, 2018). Finally, we 
mapped previously published 37 transcriptomes from diverse 
tissues (see more details in Table S1) to our assembly for a quality 
evaluation. Meanwhile, we evaluated the two available versions 
of Midas cichlids genome in NCBI by comparing the indexes of 
contig N10, N50, N90, and BUSCOs under genome mode and 
LAI.

Reapeats and Gene Annotation
We firstly employed RepeatModeler version 2.0.1 (Flynn et  al., 
2020) calling RepeatScout version 1.0.6 (Price et al., 2005), TRF 
version 4.09 (Benson, 1999), RECON version 1.08 (Benson, 1999), 
LtrHarvest version 1.6.2 (Ellinghaus et al., 2008), and Ltr_retriever 
(Ou and Jiang, 2018) to build a de novo repeat library. Secondly, 
we searched the repeats belonging to lineages of Cichliformes 
including Midas cichlids from Repbase database (Bao et al., 2015) 
as an known library. The two libraries were combined and then 
searched in the assembled Midas cichlid genome with optimized 
parameters “-nolow -gff -poly -a -inv -e rmblast” to obtain a 
complete list of repeats in RepeatMasker version 4.1.1 (Chen, 
2004).

We applied three distinct strategies to locate protein-coding 
regions in the assembled Midas cichlid genome, including de novo, 
homolog-based and transcripts-based predictions. Two programs, 
Augustus version 3.3.3 (Stanke et al., 2006) and Snap version 2006-
07-28 (Korf, 2004), were used for de novo prediction. The proteins 
from seven representative species, including six Cichliformes and 
zebrafish (Table S2), were used for homolog-based prediction 
that was performed by Tblastn version 2.11.0 (Gish and States, 
1993) and Exonerate version 2.2.0 (Slater and Birney, 2005). For 
the transcripts-based prediction, we firstly generated a de novo 
assembly of transcriptome using Trinity version 2.11.0 (Haas 

et al., 2013), and then the produced raw transcripts were mapped 
onto the assembled genome by Blat version 36 (Kent, 2002) and 
Gmap version 2017-11-15 (Wu and Watanabe, 2005), followed by 
verification and integration to assemble spliced alignments (PASA, 
(Haas et al., 2008)) pipeline. Finally, we employed EvidenceModeler 
version 1.1.1 (Haas et al., 2008) to integrate these results generated 
from the above three strategies, and the false predictions with stop 
codon(s) inside coding regions were removed. To understand 
the biological functions of deduced proteins, we aligned their 
sequences to those that were reviewed in Uniprot database using 
Tblastn.

Comparative Transcriptomic Analysis 
Between Dark- and Gold-Morph 
Individuals
To explore gene transcriptional difference between the dark 
and gold phenotypes of Midas cichlid, we downloaded available 
scale transcriptomes from both groups to perform a comparative 
transcriptome analysis; the dark- and gold-morph adult 
individuals were chosen, and four repeated samples were checked 
for both color types (See Table S3). All the transcriptomes were 
mapped to our Midas cichlid genome assembly by Hisat2 version 
2.2.1 (Kim et al., 2019) to obtain coverage depth of every gene. 
Then, reads mapping counts were calculated based on gene 
annotation by Stringtie version 2.1.4 (Pertea et  al., 2015), and 
gene transcription levels were represented by TPM (transcripts 
per kilobase per million mapped reads). DEG analysis between 
dark- and gold-morphs was conducted using “edgeR” (version 
3.15) in the R package (Robinson et al., 2010), with 0.05 as the 
FDR (false discovery rate) cut-off and a log2FC (fold change) cut-
off of 1. Down- and upregulated DEGs were further summarized 
in a heatmap using TBtools version 1.098725 (Chen et al., 2020a) 
and enriched by GO (Gene Ontology) analysis using GOATOOLs 
version 1.2.3 (Klopfenstein et al., 2018).

Hub Genes Identification
To explore functional networks of these DEGs, we imported 
the proteins encoded by DEGs into STRING (with zebrafish 
as the representative species), a search tool for the retrieval of 
interacting genes (http://string-db.org) (Szklarczyk et al., 2010), 
to reveal their protein-protein interactions. The significantly 
enriched terms (p-value > 0.05) about KEGG pathways or GO 
biological processes were used to annotate the main functions 
of these DEGs. The predicted PPI networks were further 
imported into Cytoscape version 3.9.1 (Shannon et  al., 2003) 
for visualization, and the inside key functional modules were 
determined by the molecular complex detection technology 
(MCODE; version 1.32 (Bader and Hogue, 2003)) plug-in of 
Cytoscape with the following parameters “K-score = 2, degree 
cutoff=2, max depth = 100, score cutoff = 0.2 “. From each of 
the key functional modules, we identified hub genes by using the 
cytoHubba version 0.1 (Chin et al., 2014) plug-in of Cytoscape, 
and seven common algorithms (MCC, MNC, Degree, Closeness, 
Radiality, Stress, and EPC) were applied for practical prediction 
of hub genes.
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RESULTS

Sequencing Data Output and  
Genome Characterization
After quality control, a total of 71.9 Gb of Illumina NGS reads and 
77 Gb of Nanopore TGS reads for Midas cichlid were obtained. By 
breaking NGS data into k-mers (length = 17, 17-mers), a matrix 
containing distinct 17-mer counts at varying frequency and GC 
content was produced. We made a density plot that highlights 
genuine frequency between 40-85 folds with a GC content 
spreading from 3 to 17 (Figure  1B). No unexpected contents 
beyond the main density blocks were observed, indicating no 
contamination in the sequencing library of Midas cichlid.

We estimated the sample of Midas cichlid (Figure  1A) as a 
diploid by extracting and analyzing heterozygous 17-mer pairs 
(Figure  1C). Subsequently, we applied heterozygous mode to 
estimate heterozygous rate that is about 0.23% (Figure  1D). By 
using the routine k-mer frequency distribution analysis (Li et al., 
2010a), we estimate the genome size of Midas cichlid to be about 
957 Mb (Figure 1D).

Genome Assembly, Annotation, and 
Quality Evaluation
After comparing genome size and contig N50 value of various 
genome assemblies generated from different assemblers 

(NECAT, wtdbg2, flye), we chose the assembly from NECAT as 
the best one. After polishing sequencing errors produced in TGS, 
the contig N50 was improved, reaching 10.6 Mb, which is much 
higher than any version of previously reported draft (Table 1). 
Based on the final assembly size of 933.5 Mb, we calculated the 
NGS and TGS data used in this study as about 77- and 82.5-fold 
depth, respectively. The total sequencing coverage depth is about 
159.5-fold.

The estimated assembly completeness from k-mer (k=31, 
31-mer) spectrum using kmer analysis tools (KAT) is 
99.87% (Figure  2A). A Benchmarking universal single-copy 
orthologs (BUSCOs) estimate indicated a 98.2% completeness, 
which is slightly higher than the two previous versions of 
GCA_000751415.1 and GCA_013435755.1 (Figure  2B). When 
we referred to LTR assembly index (the ratio of complete LTR-
RTs, LAI), the LAI estimation was failed in the GCA_000751415.1 
as complete LTR-RTs are not enough for the analysis. The LAI 
was evaluated as 6.4 in the GCA_013435755.1. However, it was 
estimated as 10.6 for our assembly (see Table  1), reaching a 
reference genome level according to the previously established 
LAI standards (Ou et al., 2018). In addition, the mapping ratio of 
35 transcriptomes from different samples and replicates ranged 
from 94% to 98% (except for one at 87.45%; see Figure  2C), 
suggesting a high completeness of our current assembly. Taken 
together, these results support achievement of a high-quality 
genome assembly of Midas cichlid in this study.

A B

C

FIGURE 2 | Quality evaluation of the genome assembly of Midas cichlid. (A) A 31-mer spectrum comparison between our assembly and short-inserted libraries; 
(B)  BUSCO completeness comparison among our assembly and two other previously reported versions; (C) Mapping ratios of 35 transcriptomes from different 
tissues and replicates.
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For genome elements, we totally annotated 41.03% repeats 
in the assembled genome of Midas cichlid. Among these 
repeats, DNA transposons were the most (18.2%) in abundance, 
Retroelements occupied the second place with 12.54%, and 
the rest are unknown (see more details about the landscape of 
repeats in Figure S1). For gene structures, we totally annotated 
25,911 protein-coding genes after removal of possible false 
prediction such as premature stop codons within the preliminary 
list. The average length of these genes was 1,684.7 (Table  1). 
We assessed the quality of the final gene set and corresponding 
deduced proteins using BUSCOs under protein and transcript 
modes, and their completeness was estimated to be 90.6% and 
90%, respectively. These results suggest establishment of a high-
quality list of gene annotation, although it is unable to perform 
a quality comparison between our assembly and the previous 
versions (GCA_000751415.1 and GCA_013435755.1) due to 
non-disclosure of gene annotations in the latter datasets.

Identification of DEGs in the  
Dark-Vs-Gold Comparison
Based on our gene annotation and mapping comparison 
between dark- and gold-morph transcriptomes, we obtained 
the transcription level of each gene that was represented by 
transcripts per kilobase million (TPM). A total of 97 upregulated 
and 180 downregulated DEGs were obtained (Figures  3A, B). 
Interestingly, these downregulated DEGs were enriched in 
many biological processes (such as melanin metabolic process 
and melanin biosynthetic process), cellular components (such 
as pigment granule membrane, melanosome membrane, 
keratin filament, and intermediate filament), and molecular 
functions (such as serine-type peptidase activity and serine-type 
endopeptidase activity; Figure 3C). However, no significant GO 
terms were enriched for the upregulated DEGs.

Key Functional Modules and Hub Proteins 
of DEGs
After construction of protein-protein interaction (PPI) networks 
using those proteins derived from DEGs (Figures  4A, C), we 
identified one (Figure 4B) and two (Figures 4D, E) key functional 
modules for up- and downregulated DEGs, respectively. The PPI 
network derived from upregulated DEGs was enriched into a 
GO term of “regulation of transcription from RNA polymerase 

II promoter” and three KEGG (kyoto encyclopedia of genes 
and genomes) pathways including mitogen-activated protein 
kinases (MAPK) signaling, Toll-like receptor signaling, and 
gonadotropin-releasing hormone pathways. The inside key 
functional module contains eight genes, including fosb, jund, 
cebpb, jun, junbb, fos, junba, and egr1; among them, junbb, fos, 
junba, and egr1 were further identified as hub genes (Figure 4B).

Similarly, the first key functional module derived from 
downregulated DEGs (Figure 4D) contains 14 genes, including 
tnni2b.2, tnnt2a, mylpfa, myl1, ckma, ckmb, tnnt3b, pgam2, 
aldoaa, mybphb, oca2, atp2a1l, actc1a, and myh11a; among 
them, mylpfa, myl1, ckma, ckmb, tnnt3b, pgam2, and mybphb 
are identified as hub genes. The second key functional module 
derived from downregulated DEGs (Figure  4E) contains eight 
genes, including tyrp1b, oca2, pmela, mybphb, tyr, slc24a5, pnp4a, 
and gpnmb; among them, tyrp1b, oca2, pmela, tyr, and slc24a5 
are identified as hub genes.

DISCUSSION

Midas cichlids as a model organism attracts biologists’ interests 
due to its outstanding coloration polymorphism. A non-
reference transcriptomic comparison was performed before, 
revealing genes transcriptional variations during color changes 
[7]. However, gene specific expression in spatial and temporal 
patterns may lead to an incomplete scope to observe and identify 
DEGs. A high-quality reference genome and an effective gene set 
can help the practical RNA analysis for a better identification of 
DEGs. Despite the genome of this species was concerned with 
release of draft details in previous versions (GCA_000751415.1 
and GCA_013435755.1), the contiguity of assembled genome 
(represented by a contig N50) limited both assemblies’ quality 
(see more comparative details in Table  1). Our new assembly 
using about 160-fold sequencing-depth data obviously 
enhanced its contiguity, with improved contig N50 at 10.6 Mb 
(almost threefold as long as the version of GCA_013435755.1 
that is the best in public databases). Other quality evaluations 
including BUSCOs and LAI evaluation also indicate that our 
current assembly is much better than the previous ones, thereby 
benefiting in-depth biological studies on this specific species. In 
addition, we achieved a high-quality gene set of Midas cichlid, 
which would be efficient for uncovering key genes related to both 
coloration polymorphism and other biological characteristics.

TABLE 1 | Statistics and comparisons of different genome assemblies.

Index Our assembly GCA_000751415 GCA_013435755

Total length 933.5 Mb 891.1 Mb 961.2 Mb
LAI § 10.6 NA 6.4
Contig N10 31.8 Mb 51.8 kb 11.5 Mb
Contig N50 10.6 Mb 19.4 kb 3.8 Mb
Contig N90 2.0 Mb 4.5 kb 0.22 Mb
Annotated gene number 25,911 NA NA
Average gene length (bp) 1,684.7 NA NA
Complete BUSCOs ratio (Proteins) 90.6% NA NA
Complete BUSCOs ratio (Transcripts) 90.0% NA NA

§LAI: LTR Assembly Index; at a draft level when 0 < LAI ≤ 10, a reference level when 10 < LAI ≤ 20, and a gold level when LAI≥20 (Ou et al., 2018).
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In previous reports, 46 DEGs were identified between the two 
color morphs and the melanosomal pathway was revealed as a 
key factor to realize morphological differences (Henning et al., 
2013). These genes included slc24a5, mreg, pmel, and tyr gene 
family (Aqmal-Naser and Ahmad, 2020). Our identification of 
downregulated DEGs is consistent with the previous results, 
demonstrating the melanosomal pathway plays an essential role 
for the morph difference in dark-vs-gold comparison. These 
genes are a part of the second key functional module derived 
from those downregulated DEGs (Figure  4E). The hub genes 
within this module were also proven to be crucial for coloration 
formation or mutation in other organisms. For instance, slc24a5, 
tyrp1b, oca2, tyr, and pmela were determined to affect human 
pigmentation (Praetorius et  al., 2013); slc24a5, tyrp1b, oca2, 
gpnmb, and tyr are involved in pigment synthesis pathways 
in fishes (Braasch et  al., 2007); slc24a5, tyrp1b, tyr, and pmela 
contribute to pigmentation in Xenopus (Williams et  al., 2017); 
slc24a5, tyrp1b, oca2, and tyr participate in molanogenesis of 

black and white coat colors in mink (Song et al., 2017); slc24a5, 
oca2, tyr, and pmela are related to coloration of black and red 
skins in marine crimson snapper (Zhang et al., 2015). These genes 
are common in diverse species across the tree of life, revealing a 
relatively conserved genetic mechanism underlying coloration 
polymorphism in various vertebrates including freshwater and 
marine fishes.

In comparison to the well-known genes related to coloration 
polymorphism in the latter key functional module (Figure 4E), 
the gene functions of the former key module (Figure  4D) 
are less known. However, two hub genes, myl1 and pgam2, 
have an influence on muscle contraction (Lin and Lin, 2017), 
which reveals not only phenotypic differences, but also muscle 
movement variances, between the dark- and gold morph groups. 
Interestingly, one of the hub genes, pgam2, was reported to be 
involved in spermatogenesis (Welch et  al., 2000). This triggers 
an assumption that the fertility between dark- and gold-morph 
groups may also be different.

A B

C

FIGURE 3 | Identification of differentially expressed genes (DEGs) and enrichment of downregulated genes between dark and gold morphs. (A) A volcano plot 
of up- and downregulated genes (represented by red and blue dots, respectively); (B) A heatmap of transcriptional comparison between dark- and gold-morph 
individuals; (C) GO enrichment of downregulated DEGs.
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In nature, some dark-morph individuals enable a successful 
transmission to gold-morphs; however, a relatively large ratio of 
the latter individuals failed to be obtained, although the detailed 
reason for this failure is still unclear. In the present study, we 
propose that the possible cues may hide in the upregulated gene 
list. These hub genes, including egr1, jun, cebpb, jund, fosb, and 
fos, may play critical roles in regulation of the transcription of 
RNA polymerase II promoter (Alberini, 2009). This is involved in 
multiple biological processes, such as fos, jun, and jund participate 
in the MAPK signaling pathway (Cook et  al., 1999; Zhou et al., 
2007), fos and jun are involved in Toll-like receptor (TLRs) 
signaling (Li et  al., 2010b; Fan et  al., 2019), and egr1 and jun 
take part in gonadotropin-releasing hormone (GnRH) signaling 
pathway (Burger et al., 2009; Salisbury et al., 2009).

Despite a direct contribution to the coloration transmission 
had been assigned to the melanosomal pathway, we predict that 
those upregulated genes may also devote to a negative upstream 
regulation or downstream influence on the melanin biosynthesis 
in Midas cichlid. In previous reports, TLR members have been 
determined to play distinct roles in affecting melanocytes (i.e., 
melanin-producing cells), expression and melanin synthesis, and 
melanosome transport to modulate skin pigmentation (Koike 

and Yamasaki, 2020). Among them, TLR4 and TLR9 can enhance 
tyrosinase expression and melanogenesis through the MAPK 
signaling pathway and some other pathways (Koike and Yamasaki, 
2020). Thus, it is reasonable to postulate that these upregulated genes 
related to the TLR signaling pathway such as fos and jun may play 
an upstream regulation to melanin biosynthesis in Midas cichlid. On 
the other hand, the gold-morph Midas cichlid without black skin 
pigmentation could be triggered by seldom secretion of melanin-
concentrating hormone (MCH), which enables a low concentration 
of melanin in melanophores to result in a bright pallor. It has been 
demonstrated that MCH can directly inhibit GnRH neurons and 
affect expression of the GnRH signaling pathway (Wu et al., 2009). 
Therefore, it is possible that the downregulated DEGs in dark-morph 
Midas cichlid could lead to an alleviated inhibition of the GnRH 
signaling pathway. We thus propose that the TLR signal pathway 
possibly acts as an upstream modulator to affect the melanosomal 
pathway, causing a downstream influence on the GnRH signaling 
pathway. These pathways cooperate to differentially regulate the 
coloration of dark-vs-gold morphs in Midas cichlid. The innate 
immune stimulation via the TLR signal pathway may therefore 
work as a key contributor to cause morphological transmission in 
Midas  cichlid.

A B

D

E

C

FIGURE 4 | Construction of the protein-protein interaction (PPI) networks along with identification of key functional modules and hub genes. (A) The PPI network of 
those proteins derived from upregulated DEGs; (B) The identified key functional module and hub genes in (A); (C) The PPI network of those proteins derived from 
downregulated DEGs; (D) The first key functional module and hub genes in (C); (E) The second key functional module and hub genes in (C).
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CONCLUSIONS

In this study, with a high sequencing depth we generated an 
improved genome assembly of Midas Cichlid with a size of 933.5 
Mb and a contig N50 of 10.5 Mb, reflecting a good continuity 
and high quality. Good completeness and contiguity support 
our current assembly at a reference genome level. The protein-
coding gene annotation provided a good reference gene set for 
comparison of expressional differences of coloration variants, 
uncovering 97 up- and 180 downregulated DEGs between dark 
and gold morphs. We screened out five hub genes, tyrp1b, oca2, 
pmela, tyr, and slc24a5, which are potentially responsible for 
color determination in Midas cichlid. However, some other hub 
genes like myl1 and pgam2 have effects on muscle movement or 
spermatogenesis rather than coloration. The upregulated DEGs 
constitute a key module associated with MAPK signaling, Toll-
like receptor signaling, and gonadotropin-releasing hormone 
pathways for involvement in multiple biological processes. In 
summary, we predicted the key factors in determining coloration 
of Midas cichlid, although exploration of the detailed mechanisms 
for controlling morph variation requires more investigations. 
Our new assembly and an improved gene set provide excellent 
opportunities to not only examine transcriptional regulation 
of coloration as in the present study, but also to study other 
biological aspects of Midas cichlid and other fishes from 
freshwater to marine ecosystems.
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