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Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobic

pathogen that is involved in the pathogenesis of periodontitis and systemic

diseases. P. gingivalis has recently been detected in rheumatoid arthritis (RA),

cardiovascular disease, and tumors, as well as Alzheimer’s disease (AD), and the

presence of P. gingivalis in these diseases are correlated with poor prognosis.

Macrophages are major innate immune cells which modulate immune

responses against pathogens, however, multiple bacteria have evolved

abilities to evade or even subvert the macrophages’ immune response, in

which subsequently promote the diseases’ initiation and progression. P.

gingivalis as a keystone pathogen of periodontitis has received increasing

attention for the onset and development of systemic diseases. P. gingivalis

induces macrophage polarization and inflammasome activation. It also causes

immune response evasion which plays important roles in promoting

inflammatory diseases, autoimmune diseases, and tumor development. In

this review, we summarize recent discoveries on the interaction of P.

gingivalis and macrophages in relevant disease development and

progression, such as periodontitis, atherosclerosis, RA, AD, and cancers,

aiming to provide an in-depth mechanistic understanding of this interaction

and potential therapeutic strategies.
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Introduction

The innate immune system is the first line of defense against

pathogenic organisms. Macrophages are a critical component of

this innate immune response and are integral for initiating and

sustaining the adaptive immune response. Macrophages were first

discovered in the late 19th century (1) and are known to shape the

host immune response to bacterial infection through phagocytosis,

antigen presentation, and cytokine release (2). Macrophages are

highly plastic cells of the innate immune system and play central

roles in immunity against microbes, despite all these, macrophages

also contribute to a wide array of pathologies depending on specific

microenvironments. In atherosclerosis, macrophages are major

players that form foam cells and mediate plaque stability (3).

Microglial activation (the resident macrophages in the central

nervous system) is a salient feature of neuroinflammation that is

prominent in almost all neurodegenerative diseases (4). Tumor-

associated macrophages (TAMs) are one of tumor-infiltrating

immune cells suppressing immune surveillance. TAMs participate

in tumor angiogenesis by secreting pro-angiogenic factors,

including tumor necrosis factor-alpha (TNF-a), Interleukin-
1b(IL-1b), C-C motif chemokine ligand 2 (CCL-2), and matrix

metalloproteases (MMPs) (5), which are essential for metastasis and

development of late-stage cancers (6).

P. gingivalis is an oral colonizing pathogen that requires

hemin and iron for its growth and virulence. It is a Gram-

negative anaerobic pathogen, producing numerous virulence

factors such as fimbriae, capsules, lipopolysaccharide (LPS),

lipoteichoic acids, gingipains, and outer membrane vesicles

(OMVs)for its survival in hosts. Although P. gingivalis

comprises only 0.8% of total clones in active human

periodontitis, it is capable of remodeling benign microbiota

into dysbiotic ones and is a putative keystone pathogen in the

progression of periodontitis (7). Although the role of P.

gingivalis acting as an oral pathogen is well-known, the effects

of P. gingivalis extend beyond the oral cavity. In Alzheimer’s

disease (AD), P. gingivalis induced peripheral amyloid b protein

(Ab) influx, aggravating the progress of AD (8). In patients with

clinical and subclinical rheumatoid arthritis (RA), the number of

P. gingivalis was increased (9); transcriptome of human blood

samples also show that 14 periodontitis-associated pathways

were significantly expressed during RA pathogenesis in RA

patients and human gingival tissues from periodontitis

patients (9). Furthermore, P. gingivalis infection are related to

the production of anticitrullinated protein antibody (ACPA) in

RA (10). Patients diagnosed with esophageal squamous cell

carcinoma have poorer prognosis when P. gingivalis is

detected. Higher levels of P. gingivalis have been revealed in

infiltrating tumoral tissues than in normal ones (11, 12). These

observations strongly suggest that P. gingivalis may play critical

roles in systemic diseases.
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P. gingivalis’ role in systemic diseases were discovered, but

the mechanisms of how P. gingivalis participate in these

processes are rarely reported. We reviewed recent studies

about P. gingivalis associated diseases and proposed that

macrophages may serve as a communication network linking

P. gingivalis infection and systemic diseases. P. gingivalis can

invade and survive in resident macrophages, P. gingivalis-

infected macrophages were observed to injure distant organs

by producing cytotoxic extracellular vesicles in animal study

(13). P. gingivalis uses complex strategies to evade the major

antimicrobial mechanisms of macrophages, including pyroptosis

(14), uncoupled inflammation and immune response, and

disrupting phagosome-lysosome maturation (15). In this

review, we will discuss how P. gingivalis acts on macrophages,

evading the antimicrobial mechanisms of macrophages, and

influences the polarization of macrophages in different

microenvironments. The role of activation of NOD-LRR and

pyrin domain-containing protein 3 (NLRP3) inflammasomes in

macrophages by P. gingivalis will also be discussed. P. gingivalis

will promote the polarization of macrophages and

inflammasome activation if it is not eliminated by the hosts’

immune response. Thus, the survival and mechanisms of P.

gingivalis from the hosts’ immune response will need to be

studied and addressed. We also addressed that macrophages are

a double-edged sword in response to microbial infection, its

phenotype changes are essential in the processes of these

diseases. An in-depth understanding of P. gingivalis-

macrophage interaction with novel mechanistic insights into

the pathogenesis of P. gingivalis with associated systemic

diseases may be important for designing therapeutic strategies.
Macrophage polarization in
P. gingivalis-associated diseases

Macrophage polarization is the process in which

macrophages are activated at a certain point in space and time

and form different macrophage subtypes according to their

environments (16). There are two major macrophage

phenotypes, classically activated M1 macrophages and

alternatively activated M2 macrophages (17). Different

macrophage phenotypes have distinct functions. M1

macrophages can be polarized by granulocyte-macrophage

colony-stimulating factor (GM-CSF), LPS, IFN-g, and toll-like

receptor (TLR) ligands, while M2 macrophages are polarized by

macrophage colony-stimulating factor (M-CSF), IL-4, IL-13, IL-

10, and immune complexes (18). M1 macrophages upregulate

the expression of costimulatory molecules such as CD86 on the

cell surface (18). M2 macrophages exhibit anti-inflammatory

properties and express high levels of CD206, arginase-1 (Arg-1),

IL-10, and transforming growth factor-beta (TGF-b), which
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negatively regulate M1 macrophage activity and contribute to

the wound healing process (16, 18, 19).

M1 macrophages have different metabolic profile compared

to M2 macrophages. M1 macrophages utilize glycolysis

metabolisms while in M2 macrophages the tricarboxylic acid

(TCA) cycle has primacy over glycolysis (20). Metabolic

reprogramming influences macrophage polarization (21, 22).

In M1 macrophages the TCA cycle are broken in two places:

after citrate and after succinate, which leads to citrate and

succinate accumulation. Citrate was involved in producing

NO, ROS, and prostaglandins (20). 24h after macrophages

infected by P. gingivalis or its OMVs, will increase expression

of glycolytic genes (e.g., Glut-1, Hk1/2, Pfkfb, and Pkfl) and will

decrease TCA genes (e.g., Fh1, Pck2, and Suclg2) (23). P.

gingivalis infection impairs TCA and suppresses a-KG
production by down-regulation of Idh1/2 and Gpt1/2, while it

induces the accumulation of succinate (19). a-KG is a key

metabolite that induces M2 macrophage polarization,

prolylhydroxylases utilize a-KG as a substrate to destabilize

HIF-1a.HIF-1a degradation suppresses glycolysis, decreasing

M1 macrophage (24). Also, a-KG restricts M1 macrophage

activation by downregulating the NF-kB pathway. It is a co-

stimulator with Jmjd3. With their combination, they will

regulate the trimethylation of histone H3, lysine 27

(H3K27me3) on promoter regions of genes that define the M2

phenotype, thus promoting M2 macrophage activation (25)

(Figure 1). In addition, P. gingivalis activates TLR2 and TLR4
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and elicits the expression of TNF-a in macrophages (26). TNF-a
is an anti-M2 macrophage factor that blocks M2 macrophage

polarization on two levels: through its direct effects on

macrophages and the indirect effects of TNF-a on IL-13

production by other innate cell types (17).

An imbalanced M1/M2 ratio was discovered in various

systemic diseases and tumors (27). Below we have listed well-

studied examples such as periodontitis, RA, AD, and tumors, to

reflect the interaction between P. gingivalis and macrophages.
Periodontitis

Periodontitis is the sixth-most prevalent disease in the world,

affecting many adults (28). Bacterial infection and immunological

disorder are important elements of periodontitis. Gram-negative

anaerobic bacteria that colonize subgingiva initiate the progression

of periodontitis, and the host inflammatory response inflicts

irreversible damage to the periodontal tissues (29). P. gingivalis is

a putative keystone pathogen with the ability to impair innate

immunity and transform a normally symbiotic microbiota into a

dysbiotic state in periodontal tissue (7). Macrophages participate in

the initiation of inflammation and are the major immune cells

producing pro-inflammatory cytokines and mediating alveolar

bone resorption in periodontitis (30). P. gingivalis induces

M1macrophages by downregulating a-KG production (19), and

M1 macrophages were the dominant phenotype for the gingival
FIGURE 1

The mechanism of P. gingivalis in inducing macrophage polarization. P. gingivalis interacts with macrophages and increases the expression of key
glycolytic genes, while inhibits the expression of TCA associated genes. a-KG is an important immunomodulator of M2 macrophage activation
and can be suppressed by P. gingivalis through down-regulation of Idh1/2 and Gpt1/2, therefor induce classical M1 macrophage activation. M1
macrophages upregulate the expression of GPR91 and produce TNF-a, IL-1b, IL-6, NO, L-citrulline and HIF-1a, promoting the progress of RA and
periodontitis. In TME, lactate and hypoxia promote TAM polarization into M2-like macrophages, which deplete L-Arg resulting in suppression of
cytotoxic T-cell activation. M2 macrophages promote tumor metastasis by secreting CHI3L1 protein and MMPs, the CHI3L1 protein interacts with
IL-13Ra2 expressing on the cancer cells, leading to upregulation of MMPs.
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infiltration in response to P. gingivalis infection (31). Compared

with healthy gingival tissues, the number of M1 macrophages and

the M1/M2 ratio were enhanced (32). The production of pro-

inflammatory cytokines characterizes M1 macrophages however,

excessive or sustained pro-inflammatory cytokine production

promotes periodontal destruction (33), and decreasing the M1/

M2 ratio in mouse periodontitis models was proved effective in

preventing alveolar bone loss (34). The newly developed

nanocomposites which inhibit M1 macrophages’ polarization

simultaneously initiate M2 macrophage polarization exhibiting a

favorable repairment in periodontal soft tissue and decreased local

periodontal inflammation in rat models, suggesting that the

phenotypic switch of M1 to M2 might be a critical mechanism in

mediating periodontal tissue repair.
Rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by synovial inflammation and joint erosion,

affecting 1–2% of the population worldwide (35). Research shows

that oral microbiota dysbiosis is a high-risk factor for subclinical

RA, P. gingivalis as a keystone pathogen inducing dysbiosis (9, 10),

its DNA was found in the synovial tissue recently (36). In fact,

peptidylarginine deiminase (PPAD) produced by P. gingivalis is

able to citrullinate both endogenous and human proteins.

Citrulline-specific autoimmunity is a key feature of RA,

suggesting P. gingivalis may contribute to the development of RA

(37). P. gingivalis exposure leads to anti-cyclic citrullinated peptide 2

(anti-CCP2) production, and subsequent bone resorption also

confirms this hypothesis (38). Study has showed increased

macrophages in the inflamed synovial membrane, and exhibit the

potential of macrophages to be an early hallmark of active RA

(39).Considering that macrophages are major cells responding to

microorganism infection, it is very likely that the P. gingivalis-

macrophages interaction is an important mechanism in RA.

Macrophages are predominantly the M1 phenotype in RA (16),

which is known to produce many inflammatory cytokines that

promote RA progression, including TNF-a, IL-1b, IL-12, IL-18,
and IL-23 (40). Among these cytokines, TNF-a plays a major role

and leads to the development of chronic polyarthritis, TNF-a and

IL-6 together induce the differentiation of osteoclasts in a RANKL-

independent manner (41, 42). P. gingivalis induces the M1

macrophage activation. The metabolic remodeling in M1

macrophages fuels the production of lactate and succinate,

acidifying the extracellular space, which promotes the formation

of a low-glucose and high-lactate microenvironments, a typical

microenvironments in RA (43). Succinate accumulation leads to

HIF-1a activation via inhibition of prolyl hydroxylases, HIF-1a
stabilization and activation facilitate the metabolic shift from

OXPHOS to glycolysis, therefore, sustaining the inflammatory

phenotype of M1 macrophage (44). Extracellular accumulation of

succinate activates the G protein-coupled receptor 91(GPR91) on
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macrophages, is involved in pro-angiogenesis of RA, facilitating

immune cell extravasation into the synovium (45). iNOS is highly

expressed in M1 macrophages, which is then catalyzed by L-Arg

into NO and L-citrulline, L-citrulline is commonly accepted as a

biomarker in RA (40) (Figure 1). Transforming M1 into M2

macrophages resulted in the reduction of clinical arthritis scores

(40), suggesting that altered macrophages phenotype is a viable

therapeutic option in RA.
Alzheimer’s disease

Alzheimer’s disease (AD) is characterized by diminished

cognitive function, specifically dysfunction of memory and

judgment. The presence of extracellular Ab marks pathologically

AD. An anti-infectious agent in ADwas proposed around 30 years

ago on the basis of the discovery of herpes simplex virus 1 (HSV1)

DNA in brain tissue in a high proportion of older people (46), and

recently neuroinflammation has been suggested as a vital player in

AD (47).

The role of P. gingivalis in neuroinflammation was discovered

in recent studies, and small-molecule inhibitors targeting gingipains

blocked P.gingivalis-induced neurodegeneration significantly (48,

49). Microglia are resident macrophages in the central nervous

system constituting 5–10% of total brain cells, which changes their

phenotype when stimulated by cytokines or LPS (50). The

microglia-P.gingivalis interaction in the brain is related to the

process of neuroinflammation. In rat brain, P. gingivalis LPS was

discovered to activate microglia and increase the expression of

TNF-a, IL-1b, IL-6, higher levels of the CD86 marker, and iNOS.

INOS and CD86 are the landmarks of M1 microglia, were also

found in P. gingivalis infected microglia (51, 52), illustrating that P.

gingivalis LPS stimulates the M1 activation of microglia. It was

observed in animal models that P. gingivalis trigger the polarization

of M1 macrophages via TLR4/NF-kB signaling pathway (52). In

peripheral circulation, macrophages are one of the pools for Ab
(53), P. gingivalis activates the NF-kB/cathepsin B pathway,

promoting the generation of Ab by macrophages (54), then

peripheral Ab is transferred into the brain by advanced glycation

end products (RAGE) expressed on cerebral endothelial cells (8). In

vitro cell experiment confirmed that Ab could increase the

expression of iNOS whereas it downregulated Arg-1 in microglia,

inducing the M1 microglia (55).

Pro-inflammation cytokines released by M1 microglia can

aggravate AD, leading to synaptic dysfunction, neuronal death

and inhibition of neurogenesis (47). Microglia with M1

phenotype have decreased phagocytosis of Ab, and extracellular

Ab is an important characteristic of AD (56). The shift of M1

microglia to M2 phenotype showed decreased expression of pro-

inflammation cytokines, and an increased level of the triggering

receptor expressed on myeloid cells (TREM2) on the surface of

microglia, which plays an essential role in the clearance of Ab (57).

TREM2 overexpression induces microglial polarization towards the
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M2 phenotype by suppressing the NF-kB pathway, attenuates the

cognitive impairment (50).
Tumors

During early carcinogenesis, TAMs exhibit a higher degree

of similarity to M1 macrophages. M1 macrophages exert anti-

tumor functions, including directly mediating cytotoxicity and

antibody-dependent cell-mediated cytotoxicity to kill tumor

cells (58), therefore it can efficiently recognize and destroy

cancer cells. However, in the later stages of carcinogenesis,

various factors in tumor microenvironments (TME), such as

low pH and hypoxia promote TAM polarization into M2-like

macrophages (11). TAMs with numerous M2 macrophage

characteristics are linked to poor prognosis in cancer (17). M2

macrophages produce growth factors, protease and vascular

endothelial growth factors (59). They also suppress T-cell

functions by depleting L-arginine (L-Arg) and L-tryptophan

from the TME via the expression of arginase 1 (Arg1) and

indoleamine 2,3-dioxygenase (IDO), respectively (6). L-Arg is an

essential amino acid for the re-expression of T-cell receptors

following antigen engagement on T cells (5). M2 macrophages

promote tumor metastasis by secreting chitinase 3-like protein 1

(CHI3L1) protein. The CHI3L1 protein interacts with

interleukin-13 receptor a2 chain (IL-13Ra2) on the cancer

cells, leading to upregulation of MMPs (5) (Figure 1).

Increasing evidence support an association between P.

gingivalis and colorectal carcinoma, oral and esophageal

squamous cell cancer, pancreatic cancer (60–62). One report

indicated that in TME, P. gingivalis could increase the M2/M1

ratio and upregulate the expression of genes encoding for

protumor molecules in TAMs, but the specific mechanism is

yet unclear (11). M1 macrophages utilize glycolysis to generate

adenosine triphosphate (ATP), resulting in lactate accumulation.

In TME, lactate is not only a metabolic by-product, it stimulates

histone lactylation which increases the expression and genes

associated with M2 macrophage polarization (63).Stimulation

with LPS, 4h later, inflammatory response genes (for example,

Nos2) were induced, while Arg1 levels were markedly increased

24–48 h after M1 polarization. The late-phase switch to M2-like

phenotype originated from increased histone lactylation (64).

This may partly explain the function of P. gingivalis in TME.
Inflammasome activation in
macrophages induced by
P. gingivalis is implicated in multiple
diseases

Inflammasomes are large, multiprotein complexes localized

in the cytoplasm of the cell that initiate proteolytic processing of
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pro-inflammatory cytokines pro-IL-1b and pro-IL-18 into

mature inflammatory cytokines. Inflammasome activation

plays a key role in innate immunity and is involved in some

inflammatory diseases and tumors (3).

Typical inflammasomes are constructed of pro-caspase-1,

nucleotide-binding domain (NBD), and leucine-rich repeats

(LRRs), called the NBD-LRR (NLR) superfamily that is

responsible for the recognition of pathogen- associated

molecular patterns (PAMPs) or other signals (65) and adapter

molecule apoptosis-associated speck-like protein containing a

caspase activation and recruitment domain (ASC) (Figure 2).

Among these, caspase-1 cleaves pro-IL-1b and pro-IL-18, it also

mediates their maturation and excretion (66). Inflammasome

activation consists of two steps, an initial “cell priming” and a

second “triggering” event, resulting in the proteolytic maturation

and secretion of IL-1b (2).
Periodontitis

Various cytokines produced by macrophages have long been

believed to promote the development of periodontitis;

inflammasome activation induces the maturation of two vital

pro-inflammatory cytokines- IL-1b and IL-18 (67).

Upregulation of inflammasome components caspase-1,

NLRP3, and absent in melanoma 2 (AIM2) in gingival

epithelial cells and macrophages of periodontitis patients

suggests its role (68). NLRP3 inflammasomes is the most well-

studied inflammasomes, experiments in mice models proved

that alveolar bone loss induced by P. gingivalis infection was

suppressed significantly in NLRP3-KO mice (69). The activation

of NLRP3 inflammasome needs two steps, firstly NF-kB
signaling is activated and then NLRP3 inflammasomes are

assembled in response to the second stimuli (70).

As important pro-inflammation cytokines source,

macrophages interact with P. gingivalis activating NLRP3

inflammasomes. Compared to S. mitis, P. gingivalis promotes

more robust secretion of IL-1b in macrophages by both NLRP3-

caspase-1 canonical signaling pathway and NLRP3-caspase-4

signaling pathway (71). P. gingivalis induces the M1

macrophages accompanied by the release of HIF-1a, under
hypoxia condition, augmented NLRP3 mRNA expression and

more robust caspase-1 activation was detected in macrophages

(72). Live P. gingivalis upregulates the miR-155 in macrophages

to promote macrophage NLRP3 inflammasome activation (14).

The virulence factors of P. gingivalis play different roles in

inducing macrophage inflammasome activation. The OMVs of

P. gingivalis included prime signal and the second signal. Both

were needed to trigger the signaling cascade to activate

macrophage inflammasomes and secretion of IL-1b (73), while

gingipains apparently have a paradoxical role in activating

inflammasomes, namely, to enhance caspase-1 activation and

conversely, to cause proteolytic depletion of caspase-1 and IL-1b
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(23). NLRP3 inflammasome activation induce the macrophages

pyroptosis, pyroptosis was initially described as a form of

programmed cell death dependent on caspase-1, which was

first described in 1992 in macrophages infected with Shigella

flexneri (74). The prototypical form of pyroptosis is triggered by

activation of pro-inflammatory caspases (caspase-1, -4, and -5 in

humans and caspase-1 and -11 in mice) (75). Terminal cell lysis

is then mediated through cleavage of gasdermin D (GSDMD) by

one of these caspases (14, 76). Pore formation in the cell

membrane leads to the release of IL-1b and IL-18 and

promotes the destruction of periodontal tissue (76) (Figure 2).

Pyroptosis may be an antimicrobial response of macrophages to

eliminate intracellular P. gingivalis, it can also cause tissue injury,

accelerate bacterial dissemination, and inhibit bacterial clearance

from tissues (2).
Atherosclerosis

Atherosclerosis, a complex multi-factorial chronic

inflammatory disease, is characterized by the formation of

atherosclerotic plaques. Macrophage numbers increase up to 20-

fold within mouse aortas during atherogenesis (77), and the

presence of cholesterol-engorged macrophage foam cells in

atherosclerotic plaques is a hallmark of atherosclerosis (39).

According to the newest hypotheses, inflammatory processes and
Frontiers in Immunology 06
lipid metabolism imbalance jointly contribute to the formation of

atherosclerotic plaques in the arterial wall (78). P. gingivalis DNA

was detected in atherosclerotic plaque in subjects with periodontitis.

Clinical studies and animal models have reported that stimulation

with P. gingivalis accelerates atherosclerosis (79, 80). In vitro

research has shown that P. gingivalis can increase the expression

of cell adhesion molecules, pro-inflammatory cytokines, and

chemokines in endothelial cells, which have crucial roles in the

recruitment of monocytes to the vascular endothelium and the

subsequent formation of atherosclerotic plaques (81). The

macrophages-P. gingivalis interaction in atherosclerosis is related

to its initiation and progression.

A key feature of atherosclerosis is lipoprotein ingestion and

accumulation by arterial macrophages via CD36. P. gingivalis

increases the expression of CD36 and fatty acid binding protein 4

(FABP4) on macrophages, promoting the internalization of

oxidized LDL (o-LDL) and intracellular conversion of o-LDL to

cholesterol crystals (82, 83). Compared to nonatherosclerotic

vessels, the mRNA level of NLRP3 inflammasome-related genes

is significantly increased in human atherosclerotic plaques (84).

NLRP3 inflammasome activation plays an important role in

pathophysiology of atherosclerosis (Figure 2), and their silence

was reported to cause the stabilization of atherosclerotic plaque

(78). Cholesterol crystals in macrophages can damage the

phagolysosomes and induce the release of cathepsin B, and along

with P. gingivalis-induced ROS production in macrophages are able
FIGURE 2

The mechanism of P. gingivalis in activating the inflammasomes in macrophage: LPS binds to TLR4 and activates NF-macrophage:increases the
expression of keys are assembled in response to the second stimuli such as ROS, CatB, P. gingivalis OMVS and P. gingivalis RNA. The activation of
NLRP3 inflammasome induces the maturation of IL-1ression of keys are assembled in response to the second stimuli such as ROS, Cs macrophage
pyroptosis. Pore formation in the cell membrane leads to the release of IL-1b and IL-18 and promotes the destruction of periodontal tissue. P. gingivalis
increases the expression of CD36 and FABP4, promoting the internalization of o-LDL and intracellular conversion of o-LDL to cholesterol crystals,
which is able to activate NLRP3 inflammasomes. P. gingivalis also downregulates the ABCA1 on macrophages to promote cholesterol accumulation.
The accumulation of cholesterol together with the releases of cellular components by pyroptosis contribute to the formation of foam cells, the
hallmark cells of atherosclerosis.
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to activate NLRP3 inflammasomes. IL-1b is released through

NLRP3 inflammasome activation and promotes the rupture of

atherosclerotic plaques (70). Macrophages turn into foam cells in

four steps: uptake of lipoproteins by CD36, hydrolysis of cholesterol

esters, efflux of free cholesterol regulated by cholesterol transporters

ATP-binding cassettes A1 and G1 (ABCA1 and ABCG1), and re-

esterification of cytosolic cholesterol (85, 86). P. gingivalis

downregulates the ABCA1 on macrophages and promotes

cholesterol accumulation. IL-1b is a key cytokine in

atherosclerosis, and IL-1b-/- mice were reported to have a 30%

reduction in the size of atherosclerotic plaques compared with the

control group, in addition, monoclonal antibodies against IL-1b
inhibit plaque formation in apo E-/- mice (87). P. gingivalis activates

the NLRP3 inflammasomes followed by macrophage pyroptosis,

and macrophage pyroptosis releases cellular components into the

plaque milieu, which is thought to contribute to the formation of

the lipid-rich, acellular necrotic core, which characterizes vulnerable

plaques (88).
Macrophage immune response
suppressed by P. gingivalis promotes
disease progression

Survival of P. gingivalis from macrophages is an important

prerequisite for P. gingivalis to start its promotion in the M1
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macrophage polarization and activation of the inflammasomes.

P. gingivalis can suppress macrophage immune responses by

various mechanisms (Figure 3). Firstly, the capsule of P.

gingivalis is able to reduce the ability of macrophage to

phagocytose P. gingivalis, and the hemagglutinin/adhesion

domain of gingipains can cleave the LPS receptor CD14 from

the surface of macrophages, resulted in a lower ability to

phagocytize bacteria (89, 90). When phagocytosed by

macrophages, P. gingivalis is able to exit macrophages therefor

avoiding being killed (91). Besides, P. gingivalis utilizes the

complement C5a receptor 1-toll-like receptor 2 (C5aR1-TLR2)

pathway to subvert immune response and suppresses

phagolysosomal maturation, thus promotes intracellular

survival (15). P. gingivalis releases sialidase which increases

complement receptor 3 (CR3) activation in macrophages, then

P. gingivalis interacts with CR3 and activates downstream

extracellular signal-regulated kinases (ERK) 1/2, which reduces

the level of IL-12p70 and inhibits IL-12-mediated clearance of

pathogens (92). The inability of macrophages to clear P.

gingivalis is associated with diverse diseases.
Periodontitis

Toll-like receptors (TLRs) represent a conserved family of

receptors involved in the detection of pathogen-associated
FIGURE 3

The mechanism of P. gingivalis in suppressing macrophage immune response: Extracellular P. gingivalis increases CR3 activation in macrophages while
breakdowns C5 into C5a. The interaction of P. gingivalis with CR3 activates ERK 1/2, which reduces the cytokines level. The hemagglutinin/adhesion
domain of gingipains cleave the LPS receptor CD14 from the surface of macrophages, resulted in a lower ability to phagocytize bacteria. The PD-L1 in
macrophages is upregulated by P. gingivalis, which binds to PD-1 on T-cells and inhibits T-cell immune surveillance. CD47 is a phagocytosis inhibitor
expressed on almost all cancer cells, it is regulated by P. gingivalis and protects cancer cells for macrophage phagocytosis. Once P. gingivalis enters
into macrophages, intracellular P. gingivalis secretes OMVs containing SLs reduce the levels of pro-inflammatory cytokines, and initiates C5aR-TLR2
crosstalk signaling, activate the downstream PI3K pathway to suppress phagolysosomal maturation, avoiding being killed.
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molecular patterns (PAMPs) and the cellular response to

bacterial invasion (89). TLR2 plays an important role in P.

gingivalis infection. TLR2-deficient mice failed to induce alveolar

bone resorption, and P. gingivalis cannot be detected in the

gingival tissue of most Tlr2−/− mice at 24 h following oral

challenge (15). Once TLR2 is activated, P. gingivalis initiates

downstream phosphatidylinositol 3-kinase (PI3K) instead of

myeloid differentiation factor 88 (MyD88)signaling pathway to

escape immune clearance, TLR2- PI3K signaling suppressing the

phagolysosomal maturation thereby escaping intracellular

killing in macrophages (93). An in vitro experiment also

demonstrated that P. gingivalis displayed a significant cycle of

entering, exiting, and re-entering in macrophages to avoid being

killed (91), implicating that low abundance of P. gingivalis may

still induce severe tissue damage. Gingival tissues from healthy

individuals and those with periodontitis contain sphingolipids

(SLs), an amphipathic lipid that is essential for P. gingivalis to

survive under oxidative stress. SLs can be transported to

macrophages from P. gingivalis by OMVs and SLs reduce the

levels of pro-inflammatory cytokines, therefore limiting the

immune response to P. gingivalis (94).
Tumors

P. gingivalis is able to promote cancer development by

inhibiting apoptosis and accelerating gingival epithelial cell

proliferation in the oral cavity. In addition to this, P. gingivalis

also influences the immune response to oral cancer (11). One of

the hallmark features of cancer is evasion of immune

destruction. P. gingivalis and its LPS suppress the macrophage

immune response to tumor cells mainly through upregulating

PD-L1 in macrophages via the TLR-4 pathway (95). The

peptidoglycan of P. gingivalis can induce PD-L1 expression on

various cancer cells by a receptor-interacting protein kinase 2

(RIP2)-dependent mechanism or NOD1, NOD2 and MAPK

dependent signaling pathways (96). Programmed cell death 1

(PD-1) is expressed on activated T cells, B cells, monocytes, and

macrophages (97), the interaction of PD-L1 with its receptor

PD-1 inhibits T-cell responses, and a blockade of this interaction

has been proven to be an effective immunotherapy for several

different cancers (98). CD47, a “don’t eat me” signal, is a

phagocytosis inhibitor expressed on almost all cancer cells,

and the ability of P. gingivalis to upregulate the expression

level of cd47 in cancer cells may be another mechanism to

accelerate tumor development (11).
Discussion

The innate immune system is the first line of defense against

pathogenic organisms. Macrophages are a critical component of

this innate immune response and are integral for initiating and
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sustaining the adaptive immune response. However,

macrophages are a double-edged sword in the progression of

host immune responses. In this review, we discussed the recently

discovered mechanisms by which P. gingivalis induces

macrophage polarization, activates the inflammasomes, evades

the macrophage immune responses, showing that P. gingivalis

induces the onset and progression of diseases not only by

secreting various virulence factors but also by evading and

subverting host innate immune responses.

However, there are still some limitations, in that the

microenvironments surrounding macrophages is complex and

they can be exposed to various cytokines, even those with opposite

effects. The same molecular can play different roles in different

microenvironments. For example, while HIF-1a is critical for M1

macrophage polarization, the same regulator participate in lactate-

mediated M2 polarizations macrophage (24), hinting a role in both

M1 andM2macrophage polarizations, depending on the cues from

the microenvironments. Due to the complex interplay of cytokines,

metabolites and limited studies about the macrophages-P gingivalis

interaction in tumormicroenvironments, future research is expected

to decipher it. Although the complexity of M1/M2 ratio,

transforming the microglial polarization phenotype in mice models

suggested reduced arthritis and learning and memory cognitive

deficits (56, 99, 100) proved its therapeutic potentials. Considering

the ability of P. gingivalis to induce macrophages M1 polarizations,

blocking themacrophages-P gingivalis interactionmaybe a potential

therapeuticmethod. In addition, although inflammasome activation

is associated with various diseases and is discovered in P. gingivalis-

infected macrophages, studies have also reported that P. gingivalis

suppressed the inflammasome activation at the level of the second

signal (101). This hint that the ability of P. gingivalis to activate

inflammasomes is complex, and it’s necessary to uncover the

function of various virulence factors in inflammasome activation.

Besides, thedivergent rolesofNLRP3 inflammasomesarecomplex. It

carriesoutboth thepro-tumorigenicandanti-tumorigenic functions,

host defenses against microorganisms such as Candida albicans and

detrimental effects in other metabolic diseases including diabetes,

obesity and atherosclerosis (102). However, the inhibition of IL-1b
released by NLRP3 inflammasomes reduces cardiovascular burden

in clinical data andmice studies, suggesting thatmodulating NLRP3

inflammasomes or the downstream cytokines is still a promising

therapeutic direction in the future.

In this review, we summarized current studies about the

macrophages phenotype changes infected by P. gingivalis and its

systemic influence, although a more insightful mechanism of

macrophages- P. gingivalis interaction is needed, and the

mechanism of how P. gingivalis invades various tissues waiting

to be determined, targeting macrophages in diverse diseases,

reprogramming their phenotype and function, or clearing P.

gingivalis and its virulence factors to block the macrophage-P.

gingivalis interaction may be alternative therapeutic approach

for inflammatory diseases, tumors, and autoimmune diseases.

Considering P. gingivalis is an oral colonizing pathogen,
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sustaining a good oral hygiene or treating periodontitis may be

beneficial to curing some systemic diseases.
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