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Introduction: Mounting evidence has revealed that the interactions and

dynamic alterations among immune cells are critical in shaping the tumor

microenvironment and ultimately map onto heterogeneous clinical outcomes.

Currently, the underlying clinical significance of immune cell evolutions

remains largely unexplored in hepatocellular carcinoma (HCC).

Methods: A total of 3,817 immune cells and 1,750 HCC patients of 15

independent public datasets were retrieved. The Seurat and Monocle

algorithms were used to depict T cell evolution, and nonnegative matrix

factorization (NMF) was further applied to identify the molecular classification.

Subsequently, the prognosis, biological characteristics, genomic variations, and

immune landscape among distinct clusters were decoded. The clinical efficacy

of multiple treatment approaches was further investigated.

Results: According to trajectory gene expression, three heterogeneous

clusters with different clinical outcomes were identified. C2, with a more

advanced pathological stage, presented the most dismal prognosis relative to

C1 and C3. Eight independent external cohorts validated the robustness and

reproducibility of the three clusters. Further explorations elucidated C1 to be

characterized as lipid metabolic HCC, and C2 was referred to as cell-

proliferative HCC, whereas C3 was defined as immune inflammatory HCC.

Moreover, C2 also displayed the most conspicuous genomic instability, and C3

was deemed as “immune-hot”, having abundant immune cells and an elevated

expression of immune checkpoints. The assessments of therapeutic
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intervention suggested that patients in C1 were suitable for transcatheter

arterial chemoembolization treatment, and patients in C2 were sensitive to

tyrosine kinase inhibitors, while patients in C3 were more responsive to

immunotherapy. We also identified numerous underlying therapeutic agents,

which might be conducive to clinical transformation in the future.

Conclusions: Our study developed three clusters with distinct characteristics

based on immune cell evolutions. For specifically stratified patients, we

proposed individualized treatment strategies to improve the clinical

outcomes and facilitate the clinical management.
KEYWORDS

hepatocellular carcinoma, single-cell RNA-seq, immunotherapy, heterogeneity,
prognosis, clinical treatment
Introduction

Hepatocellular carcinoma (HCC) is a common liver

malignant tumor, which ranks sixth in terms of global

incidence and second as a cause of global mortality (1). With

the knowledge of tumorigenesis that has evolved, HCC is

dominantly induced by a series of chronic liver diseases, such

as liver cirrhosis, HBV/HCV infection, and fatty liver disease (2).

Currently, more curative treatment approaches than ever are

proposed for HCC patients, including radical surgery,

transcatheter arterial chemoembolization (TACE), molecular

targeted agents, and immunotherapy (3). With the advent of

many treatments, there are more various options provided for

HCC patients to improve the clinical efficacy. However, due to

its superior aggressive capacity and high relapse, HCC patients

display a dismal prognosis, such that the 5-year survival is only

18% (4). In addition, previous research has elucidated that even

patients with the same clinical stage had differences in

therapeutic efficacy and display conspicuous heterogeneity in

prognosis (5, 6). This is mainly since the widely used clinical

classification systems focus on the clinicopathological

characteristics, which are limited to stratifying the patients and

thus ignoring their molecular features (7, 8). Hence, it is

imperative to increase the understanding of genomic

heterogeneity. Seeking a novel molecular classification is

significant to stratifying patients and making clinical decisions,

thus further improving the prognosis.

In recent years, the continued interests on single-cell RNA-

seq, an emerging technology, have provided the exploration of

tumor heterogeneity and depicted the characteristics of genomic

codes (9). The traditional RNA-seq technology actually obtains

the average number of gene expressions in tumor tissue or multi-

cellular populations, losing the transcriptome heterogeneity at
02
the cell level (10). Intriguingly, single-cell RNA-seq has been

proven as an advancement in decoding the genomic codes and

widely used to reveal inter-tumor and intra-tumor heterogeneity

(11, 12). Previous studies have demonstrated that the immune

microenvironment, hypoxia, and ferroptosis all display

significant heterogeneity in HCC (13–15). The tumor

microenvironment (TME) contained abundant immune cells,

stromal cells, and tumor cells as well as plays a key role in tumor

heterogeneity and malignant progression (14). Moreover, the

interactions and dynamic variations among immune cells are

critical to shape the TME and ultimately map onto

heterogeneous clinical outcomes (16). Therefore, it is essential

to explore the dynamic process of immune cell subpopulations

by single-cell RNA-seq and then further propose a new

molecular classification, indicating the heterogeneous genomic

characteristics and clinical outcomes.

With the enormous advancements in tumor research,

individualized comprehensive treatments and precision

medicine have gradually become the goal of humans (7).

Using a traditional therapy strategy might bring overtreatment

or undertreatment as lacking the knowledge of molecular

characteristics, while integrated treatments unite novel

approaches, such as immunotherapy and targeted therapy, and

might produce encouraging efficacy (6, 8). Immunotherapy has

made revolutionized impacts on anti-tumor therapy, which

performs its capacity by acting on specific molecular markers,

including PD1, PD-L1, and CTLA-4. Nevertheless, only a subset

of patients displayed a curative response (17). As a common

targeted therapy, multi-kinase inhibitors (tyrosine kinase

inhibitors, TKIs) perform tumor suppression via restraining

tumor angiogenesis and cell proliferation. However, a part of

the patients present obvious drug resistance (18). Thus, patients

with HCC are stratified appropriately, and personalized
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therapeutic strategies are implemented, which are conducive to

enhancing the clinical efficacy. Additionally, owing to the poor

therapeutic efficacy of chemotherapy and high expense (3),

developing novel potential agents might bring the dawn for

HCC patients.

In this context, according to single-cell RNA-seq data, we

depicted the landscape of immune cells and identified the

trajectory genes involved in the dynamic evolution of CD8+ T

cells. Subsequently, three heterogeneous clusters were developed by

The Cancer Genome Atlas (TCGA)-Liver Hepatocellular

Carcinoma (LIHC) cohort and validated using eight independently

external cohorts. The three clusters had distinct prognosis, biological

characteristics, genomic variations, and immune infiltration

microenvironment. In addition, the treatment recommendations

were proposed for HCC patients using diverse clinical treatment

cohorts, including immunotherapy, TACE, and sorafenib therapy.

The potential therapeutic agents were also identified among the

three clusters. Overall, the patients in the three clusters displayed

distinct therapeutic responses, which provide the theoretical basis for

developing an individualized treatment strategy.
Materials and methods

Data acquisition and processing

A total of 15 independent public datasets were collected and

processed in this study, including single-cell RNA-seq cohort,

high-throughput RNA-seq cohorts, microarray cohorts, and

clinical treatment cohorts. The single-cell RNA-seq cohort

GSE140228 was downloaded from Gene Expression Omnibus

(GEO), which deciphered the immune landscape and dynamics

of HCC. The TCGA-LIHC cohort (n = 369), International

Cancer Genome Consortium (ICGC)-LIRI cohort (n = 232),

and GSE14520 cohort (n = 221) included gene expression, and

corresponding complete clinical information were retrieved

from TCGA, ICGC, and GEO, respectively. In the TCGA-

LIHC cohort, somatic mutation data and copy number

variation (CNV) information were accessed from the online

portal cBioPortal. In addition, the E-TABM-36 cohort (n = 60)

was generated from ArrayExpress database. Other microarray

cohorts were also collected from the GEO database,

encompassing GSE25097 (n = 268), GSE76427 (n = 115),

GSE116174 (n = 64), GSE144269 (n = 68), GSE104580 (n =

147), and GSE109211 (n = 67). Among these, GSE104580 and

GSE109211 contained TACE treatment and sorafenib therapy

information, respectively. Additionally, we enrolled four eligible

immunotherapy cohorts with 98 non-responders and 41

responders, including GSE35640 (n = 56), GSE91061 (n = 39),

GSE100797 (n = 21), and Nathanon (n = 23) cohorts. The details

of all retrieved cohorts are shown in Supplementary Table S1.

The RNA-seq raw count data were converted to transcripts per

million format and further log-2 transformed. The expression
Frontiers in Immunology 03
profiles from GEO and ArrayExpress databases were processed

and normalized by affy and lumi packages based on different

platforms. According to the RECIST v1.1 standard, patients with

complete response/partial response and patients with stable disease/

progressive disease were deemed as responders and non-responders,

respectively. Patients who were not evaluable were excluded.
Single-cell RNA-seq data analysis

The Seurat (v4.0.6) package was utilized to process data for

further dimension reduction and cell clustering analysis (19).

Single-cell gene expression profiles were filtered to exclude cells

that had either over 10% mitochondria genes or fewer than 200

transcripts/cell. PCA linear dimensional reduction and clustering

visualization were performed using RunPCA function and

RunTSNE function implemented in Seurat. The SingleR package

was applied to annotate distinct cell clustering, and then unique

marker genes were identified via the FindAllMarkers function of

Seurat. The irGSEA package with UCell method was used to

accomplish single-cell gene set enrichment analysis. The pseudo-

time trajectory analysis of single cells was conducted by Monocle 2

package (20). Cellular trajectory ordered in pseudo-time was

presented with multiple branches, and genes along the trajectory

were enrolled in a subsequent analysis.
Cluster identification via nonnegative
matrix factorization

Nonnegative matrix factorization (NMF) algorithm executed in

theNMF package was performed to identify molecular clustering by

factorizingmatrix and running iterations (21). Using univariate Cox

regression, the trajectory genes were screened, and prognosis-

associated candidate genes were generated for a better clinical

application. Based on the nonnegative matrix of these genes,

consensus clustering was deciphered with the following criteria in

the NMF package: possible factorization ranks = 2–9, number of

iterations = 100, and method = “lee”. Cophenetic coefficient was

employed to determine optimal rank, and silhouette statistic was

used to quantify the robustness of clustering patterns. Usually, when

the value of cophenetic correlation coefficient starts decreasing, it is

deemed as optimal factorization rank (21). The magnitude of

silhouette coefficient was linked with the similarity of a sample to

its own cluster, a higher silhouette value, and a better one matched

to its own cluster (22).
Weighted gene co-expression network
analysis

The weighted gene co-expression network analysis

(WGCNA) aims to explore and reveal the correlations
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between gene modules and phenotypes (23). The characteristic

genes of distinct clusters were identified using the WGCNA

package. After excluding the outlier samples, gene co-expression

network was constructed based on the top 5,000 genes and

further transformed into a scale-free network via selecting an

appropriate soft threshold b. Subsequently, the topological

overlap matrix (TOM) describing the overlap of network

neighbors and 1-TOM representing gene dissimilarity were

generated by the weighted adjacency matrix. Eventually, gene

modules with various colors were identified by dynamic tree

algorithm. Based on the relationship between the module

eigenvalue and phenotypes, three modules with highest

correlation were filtered, and the characteristic genes were

acquired for subsequent analysis.
Nearest template prediction validation

The nearest template prediction (NTP) is a flexible approach

that evaluates class prediction confidence for a single patient (24).

To further assess the reliability and stability of clusters, the NTP

algorithm implemented in the CMScaller package was utilized to

validate by multiple cohorts from inconsistent platforms. The

signature gene list used in NTP was derived from modules’

characteristic genes and differentially expressed genes.
Explorations of the underlying biological
characteristics

To explore the specific biological characteristics of distinct

clusters, gene set enrichment analysis (GSEA) algorithm was

performed, which displayed pathway activities by gene rank

information. Differentially expressed genes (DEGs) were

identified via the limma package and then ordered according

to descending log2 fold change value. The clusterProfiler package

was used to exhibit the GSEA analysis, and Benjamin–

Hochberg-corrected adjusted P-value <0.05 was regarded as

statistically significant. The gene set variation analysis (GSVA)

was broadly utilized in pathway activity assessment (13). Based

on 50 Hallmark gene sets, the GSVA package was applied to

further evaluate and elucidate different biological characteristics

among clusters.
Somatic mutation and copy number
variation analysis

The landscape of genomic variations was depicted by the

mutation and CNV data. The maftools package was used to

display somatic variants among distinct clusters, including single-

nucleotide polymorphism (SNP), insertion and deletion (INDEL),

tumor mutation burden (TMB), and mutation frequency (25).
Frontiers in Immunology 04
Generally, frequently mutated genes (FMGs) that had top 20

mutation frequency were considered the main driver genes for

malignant tumor (26). We also dissected the CNV among clusters

and further exhibited frequently AMP or HOMDEL genes, which

possessed the top 10 genes with amplification or deletion.
The assessment of immune cell
infiltration and immunotherapy

To decode the landscape of immune cell infiltration,

immune gene sets were obtained from a previous study which

stored 28 immune cell subgroups (27) (Supplementary Table

S2). The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to compute the relative infiltration

abundance of 28 immune cells. The expression of 27 immune

checkpoints was evaluated to further depict the tumor immune

microenvironment, encompassing the B7-CD28 superfamily,

TNF superfamily, and other molecules (15) (Supplementary

Table S3). The capacity of antigen presentation was estimated

based on nine human leukocyte antigen (HLA) molecule

expression profiles (16). Two prevalent approaches were

employed to assess the immunotherapeutic efficacy among

distinct clusters, including T cell inflammatory signature (TIS)

and unsupervised subclass mapping (Submap). TIS, which

contained 18 inflammatory genes, was scored by ssGSEA

algorithm, which gave a higher score to indicate a better

response to PD-1 blockade (28). The Submap was utilized to

measure the expression profile similarity between HCC patients

and immunotherapeutic patients, which was consistent with the

similarity of clinical responses (29). Four immunotherapy

cohorts were applied to further reveal the immunotherapy

significances of different clusters. Receiver operating

characteristic curve (ROC) was executed to estimate the

accuracy of the immunotherapeutic prediction.
The evaluation of clinical treatment

The pRRophetic package encompassing linear ridge

regression model was applicable to predict drug response

based on gene expression data (30). Using pRRophetic package,

we calculated the half-maximal inhibitory concentration (IC50)

of clinical tissues. Potential therapeutic agents were screened

when the IC50 value was lowest among distinct clusters. The

Connectivity Map (CMap) was a systematic approach for

searching potential therapeutic compounds based on the

similarity of gene expression profile (31). We executed CMap

database to identify potential therapeutic compounds and target

pathways. DEGs were firstly screened by the limma package, and

the expression similarity was compared with database

signatures, and then enrichment score-quantified therapeutic

value was generated. Additionally, the TACE and sorafenib
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treatment-associated cohorts were also enrolled to assess the

clinical efficacy among distinct clusters.
Statistical analysis

The Kaplan–Meier and Cox regression analyses were

conducted by the survival package. The log-rank test was applied

to compare the survival statistics of categorical variables.

Multivariate Cox regression analysis was utilized to calculate the

hazard ratio and verify the independent significance of multiple

traits. Using Pearson’s correlation analysis, the correlation between

two continuous variables was evaluated. Kruskal–Wallis test was

performed to compare the difference among three groups. The

pROC package was carried out to draw the ROC for predicting

binary categorical variables. All data cleaning, statistical analysis,

and visualization were conducted in R v4.1 software. All statistical

tests were two-sided. P <0.05 was considered statistically significant.
Results

Single-cell analysis reveals cell subtypes

To depict the landscape and dynamics of CD45+ immune cells,

single-cell transcriptomes were performed with subcluster analysis

and visualized by t-distributed stochastic neighbor embedding (t-

SNE) approach. A total of 3,817 immune cells originated from

tumor and normal tissue were classified into 17 clusters (Figure 1A).

Based on the gene signature of distinct subclusters, these cells were

mainly composed of five immune cell clusters, including B cells,

dendritic cells, monocyte cells, natural killer cells, and T cells

(Figure 1B). To describe the source of immune cells, 2,212

tumor-derived cells and 1,605 non-tumor-derived cells were

clustered separately (Figure 1C). Single-cell enrichment analyses

exhibited that all cells were involved in immune inflammation

pathway, especially dendritic cells, monocyte cells, and T cells

(Figure 1D). We further measured the percentage composition

and extracted the top 5 markers of each immune cells cluster

(Figures 1E, F). In addition, the accuracy of B cell populations was

verified by analyzing the expression of specific markers: CD79A,

IGHG3, and IGLC2 (Supplementary Figures S1A–F). A concern

was that T cells from tumor tissue displayed the most prevalent cell

cluster. It was well known that T cells had anti-tumor immunity

ability and power in directly killing cells in tumor progression.

Thus, T cells were further explored and decoded at single-cell level.
The dynamics of T cells during
HCC progression

The tumor-derived T cells were employed to reveal the

evolution of T cells using dimensional reduction, unsupervised
Frontiers in Immunology 05
clustering, and trajectory analysis. All T cells were clustered

again and divided into six cell subpopulations (Figure 2A and

Supplementary Figure S2A). A previous study has elucidated

that CD3D and CD3E were shared gene markers of CD4+ and

CD8+ T cells (32). Thus, our study suggested that the T cells

retrieved in this study mainly consisted of CD4+ and CD8+ T

cells (Figures 2B, C and Supplementary Figures S2B, C). The

specific marker gene CD4 was expressed in clusters 1, 2, 3, and 5,

which indicated that these clusters represented CD4+ T cells

(Figure 2D and Supplementary Figure S2D). We also noticed

that cluster 0 and cluster 4 were enriched for CD8+ T cell

markers, such as CD8A and CD8B, confirming the identity of

CD8+ T cells (Figures 2E, F and Supplementary Figures S2E, F).

These specific cell subpopulations were visualized with two-

dimensional distributions by the t-SNE method (Figure 2A). As

the tumor progressed, the cell status in TME was dynamic rather

than immobile, and the dynamic process was depicted by the

Monocle algorithm. For CD4+ T cells, there was a gradual

evolution process from CD4+ T clusters 3 and 4 to CD4+ T

clusters 1 and 2 (Supplementary Figures S2G, H). The immune

checkpoints were further investigated in CD8+ T cells (32).

Strikingly, most inhibitory checkpoints represented T cell

exhaustion, such as HAVCR2 (TIM3), LAG3, TIGIT, PDCD1

(PD-1), and CTLA-4, which were significantly upregulated in

CD8+ T cluster 2 (Figure 2G). The pseudo-time and trajectory

analysis indicated that CD8+ T cells tended to be exhausted with

tumor progression, which might be linked with poor prognosis

(Figures 2H, I). A previous study had also demonstrated that T

cell exclusion is common in TME and associated with immune

privilege (33). Thus, these genes along the trajectory might play

an important role in TME and in the clinical outcomes of HCC

patients (Supplementary Table S4).
The identification of three
molecular clusters

The trajectory genes were employed to extract prognosis-

associated candidate genes. Based on the expression of these

genes, the NMF approach was utilized to decipher

heterogeneous molecular clusters. As illustrated in Figure 3A,

the optimal cluster option was three due to the cophenetic

coefficient that started to rapidly decline. The consensus

matrices also suggested that three clusters had optimal

stratification (Figure 3B). The silhouette statistic was used to

assess the stability of molecular clusters, and the samples were

further detected by silhouette width (34). Therefore, samples

with a positive silhouette width were divided into three stable

and robust clusters (Figure 3C). To facilitate the clinical

application, the prognostic significance of clusters was further

explored. C2 exhibited poor overall survival (OS) and

recurrence-free survival, whereas C3 presented a favorable

prognosis (P <0.05) (Figures 3D, E).
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The characteristic genes and specific
pathway of three clusters

The characteristic genes of three clusters were identified using

WGCNA package. First of all, the outlier samples were removed,

and then the remaining samples were clustered (Supplementary

Figure S3A). When b was set to 6, the no-scale R2 was 0.9,

developing a scale-free network (Figure 4A). As shown in

Supplementary Figure S3B, the TOM network was displayed via

a heat map. Subsequently, a total of 12 co-expression modules were

obtained by dynamic tree cutting, and the eigengene adjacency of
Frontiers in Immunology 06
various modules was depicted via a heat map (Supplementary

Figures S3C, D). Furthermore, the module–trait relationships were

exhibited to measure the correlations between the modules and the

three clusters. The turquoise, blue, and purple module presented the

strongest correlation with C1, C2, and C3, respectively (Figure 4B).

The correlation values between gene significance and module

membership indicated that the construction of the gene modules

was robust (Figures 4C–E). The genes in each module were defined

as characteristic genes and are shown in Supplementary Table S5.

To decode the specific biological characteristics of three clusters, we

performed GSEA analysis using gene sets from Gene Ontology and
B

C D

E F

A

FIGURE 1

Single-cell RNA-seq profiling of different immune cell clusters derived from hepatocellular carcinoma (HCC). (A–C) t-distributed stochastic
neighbor embedding plot of all the single cells, with each color coded for (A) 17 major cell clusters, (B) immune cell types, and (C) sample origin
(normal or tumor) in HCC. (D) Single-cell gene set enrichment analysis of inflammatory response activity among distinct immune cell types.
(E) Proportions of five immune cell types originated from tumor and normal tissue. (F) Top five marker genes of five immune cell types identified
in this profile.
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Kyoto Encyclopedia of Genes and Genomes. C1 was mainly

associated with metabolism pathways, including fatty acid

oxidation and bile secretion. There are tight links between tumor

immune microenvironment and metabolism activity such as fatty

metabolism and bile acid metabolism in liver. The important source

of energy is generated from the elevated lipid metabolism activity,

which is the power and key regulator for immune cells and tumor

cells. Meanwhile, elevated lipid metabolism activity impacts the

inflammatory pathway in the tumor microenvironment, even

resulting in immune escape (35). C2 possessed conspicuous

enrichment in proliferation pathways such as cell cycle and

nuclear division. C3 was obviously enriched in immune pathways
Frontiers in Immunology 07
encompassing the adaptive immune response and chemokine

signaling pathway (Figures 4F, G). Therefore, we characterized C1

as lipid metabolic HCC and C2 as cell proliferative HCC, whereas

C3 was defined as immune inflammatory HCC.
Nearest template prediction verifies
three heterogeneous clusters

Based on signature gene expression, NTP analysis was

performed to assess the reliability and stability of the three

clusters. The signature genes were generated from the overlaps
B C

D E F

G H I

A

FIGURE 2

Dynamics of T cells during hepatocellular carcinoma (HCC) progression. (A) t-SNE plot of only T cells, with each color coded for CD4+ T and
CD8+ T cell clusters. (B, C) t-SNE plots showing the expression level of specific T cell subset marker genes, (B) CD3D, and (C) CD3E. (D–F)
Violin plots demonstrating the identity of CD4+ T cells and CD8+ T cells through analyzing the expression of specific markers (D) CD4,
(E) CD8A, and (F) CD8B. (G) Heat map of immune checkpoints upregulated or downregulated in CD8+ T cells. A row Z-score was used to
represent the expression level. (H) Differentiation trajectory of CD8+ T cells in HCC, with a color code for pseudo-time. (I) Differentiation
trajectory of CD8+ T cells in HCC, with a color code for clusters.
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between characteristic genes and upregulated DEGs (24). Using

the NTP method, a total of eight cohorts obtained from distinct

platforms were executed to measure and evaluate the prediction

confidence for each patient, including GSE14520 (Figure 5A),

ICGC-LIRI (Figure 5C), E-TABM-36, GSE76427, GSE25097,

GSE104580, GSE116174, and GSE144269 (Supplementary

Figures S4A–F). Consistent with a previous study, patients

with false discovery rate <0.05 were detected for a subsequent

analysis (36). In GSE14520 and ICGC-LIRI cohorts, Kaplan–

Meier and multivariate Cox regression analyses were utilized to

further elucidate the prognostic implications of the three
Frontiers in Immunology 08
clusters. The Kaplan–Meier analysis suggested that C2 still

possessed the most unfavorable OS, while C3 presented the

most favorable OS (P <0.05), which was coincident with

previous results (Figures 5B, D). Multivariate Cox regression

indicated that C2 was an independent prognostic indicator in

the TCGA-LIHC, GSE14520, and ICGC-LIRI cohorts

(Figures 5E–G). In addition, the proportions of the three

clusters were displayed among distinct cohorts, which showed

a high similarity (Figure 5H). Overall, the three clusters had

heterogeneous clinical outcomes and were reproducible and

robust in HCC.
B

C

D E

A

FIGURE 3

Development of three molecular clusters with heterogeneous clinical outcomes by nonnegative matrix factorization (NMF) analysis. (A) The
optimal rank was 3 as the cophenetic coefficient started firstly decreasing. (B) Consensus map of NMF clustering results in The Cancer Genome
Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort. (C) Silhouette statistic of three heterogeneous clusters. (D) Kaplan–Meier curves of
overall survival according to three clusters in the TCGA-LIHC cohort. (E) Kaplan–Meier curves of recurrence-free survival according to three
clusters in the TCGA-LIHC cohort.
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The landscape of genomic variations

We further depicted the landscape of genomic variations

among the three heterogeneous clusters. As illustrated in

Figure 6A, the mutation frequency of the top 20 FMGs was

exhibited, and the overview of SNP, INDEL, and TMB was also

displayed. To increase the understanding of somatic mutation,
Frontiers in Immunology 09
we compared the mutational differences of 20 FMGs among

three clusters (Figure 6B). Strikingly, there were three universal

FMGs exhibited in all molecular clusters, encompassing TP53,

CTNNB1, and TTN, indicating that these FMGs might play a

key role in tumorigenesis or tumor progression (Figure 6B).

Among the three FMGs, the CTNNB1 and TTN mutations were

pronounced in C1, while the TP53 mutation was dominant in
B

C D E

F

G

A

FIGURE 4

Identification of characteristic genes and specific biological pathways. (A) Analysis of network topology for different soft-threshold power by
weighted gene co-expression network analysis. The left panel shows the impact of soft-threshold power on the scale-free topology fit index;
the right panel displays the impact of soft-threshold power on the mean connectivity. (B) Correlation analysis between module eigengenes and
molecular phenotype. (C–E) Scatterplot of module membership vs. gene significance of the three modules, including (C) turquoise, (D) blue,
and (E) purple modules, respectively. (F, G). Enrichment plots depicted by gene set enrichment analysis based on (F) Gene Ontology and
(G) Kyoto Encyclopedia of Genes and Genomes gene sets, respectively.
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C2. A previous study had elucidated that the gradual

accumulation of gene mutations was prone to tumorigenesis

(37). C3 possessed the lowest gene mutation relative to others,

implying better clinical outcomes. We further explored the

summary of CNV and depicted the top 10 frequent AMP and

HOMDEL genes among the three clusters (Figure 6C).

Interestingly, C2 was characterized by a higher CNV

compared to the other clusters, and CSMD1 gene had the

most conspicuous CNV loss (Figure 6C). In line with previous

research, the loss of a putative tumor suppressor gene, CSMD1,

might be the driven event in HCC progression (38, 39). Taken
Frontiers in Immunology 10
together, patients in C2 conveyed prominent genomic

variations, indicating a highly genomic instability.
The assessment of immune infiltration
and immunotherapy

The 50 Hallmark gene sets were broadly performed in cancer-

related research (14).We further revealed the potential carcinogenic

characteristics of the three clusters using GSVA algorithm.

Consistent with the above-mentioned results, C1 was
B

C D

FE

G H

A

FIGURE 5

Validation and clinical features of three heterogeneous clusters. (A) Heat map of the expression level of the template feature between three
clusters in the GSE14520 cohort. (B) Kaplan–Meier curves of overall survival (OS) according to three clusters in the GSE14520 cohort. (C) Heat
map of the expression level of the template feature between three clusters in the ICGC-LIRI cohort. (D) Kaplan–Meier curves of OS according
to three clusters in the ICGC-LIRI cohort. (E–G) Multivariate Cox regression of OS in (E) TCGA-LIHC, (F) GSE14520, and (G) ICGC-LIRI cohorts.
(H) Proportions of three clusters among nine cohorts derived from distinct platforms.
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characterized by lipid metabolic pathways, and C2 was mainly

associated with cell proliferative pathways, while C3 was enriched in

immune inflammatory pathways (Supplementary Figure S5A).

These results indicated that patients in C3 might obtain better

immunotherapeutic efficacy. Therefore, the landscape of immune

cell infiltration and immune checkpoint expression was delineated

to decipher the underlying mechanism. Compared to other clusters,

C3 exhibited more infiltration abundance of immune cells

(Figure 7A). Patients in C3 tended to be the “immune-hot”

subtype, which stored massive immune cells in TME, including
Frontiers in Immunology 11
CD4+ T cell, CD8+ T cell, activated dendritic cell, nature killer cell,

and so on (P < 0.05) (Supplementary Figure S6A). Among the three

clusters, C3 also displayed the highest expression of immune

checkpoints, such as CD274 (PD-L1), CTLA-4, and LAG3, which

suggested that C3 might be more sensitive to immune checkpoint

inhibitors (ICI) therapy (Figure 7B). Furthermore, the expression of

HLA molecules was conspicuously higher in C3, which proved that

patients in C3 possessed a strong power of antigen presentation

(Figure 7C). Overall, precision immunotherapy might be applicable

to patients in C3.
B

C

A

FIGURE 6

Characteristics of genomic variations among three clusters (A, B). (A) The waterfall plot depicted the differences in frequently mutated genes
(FMGs) of hepatocellular carcinoma among three clusters. The right panel shows the mutation rate, and genes were ordered by their mutation
frequencies. (B) Mutation frequency of the top 20 FMGs among three clusters. (C) Amplified and homozygously deleted genes among the three
clusters. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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To yield deep insights on immunotherapy, the TIS and

Submap methods were applied to assess the clinical efficacy

among distinct clusters. As expected, C3 had the highest TIS

score, hinting immune activation and elevated response to ICIs

(P < 0.0001) (Figure 7D). Based on the Submap algorithm,

patients in C3 had a superior similarity of expression patterns

with patients responding to PD-L1 inhibitor (Bonferroni
Frontiers in Immunology 12
corrected P <0.01), indicating more benefits from anti-PD-L1

treatment (Figure 7E). Subsequently, the characteristic genes of

C3 were extracted to serve as the measured score, named as

cluster-associated immunotherapy score (CAIS). The patients

were classified into high and low groups based on the constant

ratio (3 vs. 7). Four immunotherapy cohorts contained 98 non-

responders, and 41 responders were retrieved to evaluate the
B

C D E

F
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A

FIGURE 7

Immune landscape and immunotherapy responses. (A) Infiltration abundance of 28 immune cell subsets evaluated by single-sample gene set
enrichment analysis algorithm. (B) Twenty-seven immune checkpoint profiles of three clusters. (C) Distribution of nine human leukocyte antigen
molecular expressions among three clusters. (D) Distribution difference of T cell inflammatory signature prediction scores among three clusters.
(E) Submap analysis manifesting that C3 could be more sensitive to anti-PD-1 therapy (Bonferroni, P < 0.01). (F) Immunotherapy response ratio
of cluster-associated immunotherapy score (CAIS) in GSE100797, GSE35640, GSE91061, and Nathanon cohorts. (G) Receiver operating
characteristic curves of CAIS to predict the benefits of immunotherapy in GSE100797, GSE35640, GSE91061, and Nathanon cohorts. nsP < 0.05,
***P < 0.001.
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clinical applications of CAIS. Notably, patients in the high group

exhibited a superior response to immunotherapy in all cohorts

(Figure 7F). The area under the curve values of CAIS for

predicting the accuracy of immunotherapeutic efficacy were

0.721, 0.709, 0.719, and 0.737 in GSE100797, GSE35640,

GSE91061, and Nathanon cohorts, respectively (Figure 7G).

Collectively, the above-mentioned data suggested that CAIS

was a robust and promising immunotherapy indicator.

Patients in C3 were recommended to be taken into

consideration in using immunotherapy.
The evaluation of clinical treatment
and identification of potential
therapeutic drugs

Two other clinical treatment cohorts, GSE140580 and

GSE109211, were collected to seek a high-potency treatment

strategy and facilitate the clinical benefits for HCC patients. The

TACE and sorafenib therapies were widely applied to clinical

practice. As displayed in Supplementary Figure S5B, both C1

and C3 were characterized with early AJCC stage, which is

predominantly associated with a superior prognosis. According

to the updated clinical guideline, the TACE treatment was

recommended for patients with primary stage (7). In line with

that, our results also demonstrated that patients in C1 and C3

had a desirable efficacy for TACE treatment (Figure 8A). The

therapy sensitivity of sorafenib was further estimated among the

three clusters, and it was substantiated that patients in C2 could

obtain more clinical benefits (Figure 8B). To identify latent

therapeutic drugs, the pRRophetic package was used to

evaluate the sensitivity of numerous agents, which was

quantified by half-maximal inhibitory concentration (IC50). In

the TCGA-LIHC cohort, patients in C2 also displayed superior

response to nilotinib and bosutinib relative to other clusters

(Figures 8C, D). Furthermore, patients in C1 might be more

sensitive to axitinib for the lower IC50 value (Figure 8E).

Obatoclax, docetaxel, and cisplatin were potential therapeutic

agents for patients in C3 (Supplementary Figures S6B–D). These

drugs might be developed into promising therapeutic agents for

distinctly classified HCC patients. The CMap database contained

a massive gene expression profile, which could assess the

relationships among gene expression, phenotype, and drugs,

and was further utilized to identify other potential compounds

and shed light on the mode of action. We exhibited 20

compounds that possessed personalized therapeutic potential

for three clusters (Figure 8F). The targeted pathways of these

compounds were depicted, which could be used to develop

numerous drugs (Figure 8G). According to patients in distinct

clusters, applying individualized therapy patterns would

produce curative clinical efficacy.
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Discussion

As we have known, the HCC is characterized by

high heterogeneity and inferior prognosis (2). Together with

the updated guidelines and deep research, there are various

treatment options for HCC patients (3, 7). Nevertheless, the

standardized treatment displays heterogeneity even with patients

in the same clinical stage, which is mainly owing to ignoring

patients with distinct molecular characteristics (40). The

heterogeneous clinical outcomes mean that it is necessary to

explore genomic characteristics and develop a new molecular

classification for HCC patients.

In this study, using the advantage of emerging technology at

exploring tumor heterogeneity, we performed single-cell RNA-

seq analysis to uncover the immune cell subpopulations and the

dynamics of T cells. Previous studies had reported that TME is

strongly correlated with tumor heterogeneity and modulates

anti-tumor immune responses (14, 41). Among various cell

distributions in TME, the T cells play a leading role in

immune regulation and exert anti-tumor activity (42). The

CD4+ T cells are recognized to portray an accessory role, and

CD8+ T cells are defined as cytotoxic T lymphocytes killing

tumor cells (43). Moreover, both of them are linked with

prognosis and immunotherapy responses (42, 43). The distinct

immune cells were depicted, and specific markers were identified

based on a single-cell level. We also demonstrated that the

immune inflammatory pathway was active among immune cell

clusters. The T cells possessed a dynamic process, and CD8+ T

cells were likely to be exhausted in the course of tumor

progression. In our opinion, genes along the evolutive

trajectory of CD8+ T cells were significant to prognosis and

heterogeneous clinical efficacy, which are good bases to

construct a molecular classification.

Subsequently, the NMF algorithm was utilized to identify

heterogeneous molecular clusters, and the WGCNA algorithm

was performed to detect characteristic genes. Based on multiple

assessment indexes, three robust clusters were identified in the

TCGA-LIHC cohort. Further prognostic implications were

explored, and the results suggested that C2 presented adverse

prognosis and could serve as an independent prognostic

indicator. Among the three clusters, the overlap of

characteristic genes and differentially upregulated genes was

defined as signature genes, and then the NTP algorithm was

employed. The results indicated that the three clusters with

heterogeneous clinical outcomes were reproducible and robust

in eight cohorts obtained from different platforms,

encompassing GSE14520, ICGC-LIRI, E-TABM-36, GSE76427,

GSE25097, GSE104580, GSE116174, and GSE144269.

Our study also delineated the underlying biological

characteristics of the three clusters. Both GSEA and GSVA

enrichment analyses elucidated that C1 was dominantly
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associated with lipid metabolic pathways, and C2 was significantly

enriched in cell proliferative pathways, while C3 was mainly

associated with immune inflammatory pathways. In addition, the

three clusters displayed diverse genomic characteristics. Both

somatic mutation and CNV emphasized that C2 had the most

conspicuous genomic instability. Previous research had suggested

that patients with TP53 mutation were more likely to encounter

immune escape and have a dismal prognosis (44). Consistent with
Frontiers in Immunology 14
that, our study also proved that C2, with the highest TP53mutation,

presented an inferior prognosis. Patients with Wnt/CTNNB1

mutations are linked with resistance to immunotherapy (45).

Correspondingly, C1 had a higher mutation frequency of

CTNNB1, implying poor immunotherapy response. Due to the

superior immune inflammatory activity, good clinical outcomes,

and more stable genomic features, patients in C3 were more prone

to exert anti-tumor activity and benefit from immunotherapy.
B C

D

E

F

G

A

FIGURE 8

Evaluation of treatment efficacy and identification of potential therapeutic agents. (A) Treatment response ratio among three clusters of
transcatheter arterial chemoembolization (TACE) in GSE104580. (B) Treatment response ratio among three clusters of sorafenib in GSE109211.
(C–E) Distribution of IC50 value among three clusters of (C) nilotinib, (D) bosutinib, and (E) axitinib. (F) Heat map of enrichment score generated
from potential therapeutic compounds. (G) Description of mode of action of compounds targeting corresponding molecular pathways. nsP <
0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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As is well known, distinct molecular characteristics could

map into heterogeneous clinical outcomes and hint at

individualized treatment recommendations. Seeking a

personalized treatment strategy is essential to tailor a clinical

management for HCC patients, thus improving their prognosis

and therapeutic efficacy. Among the three clusters, therapeutic

efficacy was assessed and compared for distinct clinical

treatments. C3 was determined to have an “immune-hot”

pattern with abundant immune cells and an elevated

expression of immune checkpoints, such as CD4+ T cell,

CD8+ T cell, activated dendritic cell, CD274 (PD-L1), CTLA-

4, LAG3 molecular, etc. The dendritic cell initiates immune

responses, and activated CD8 T cells have an anti-tumor effect,

thus eliminating tumor cells (42, 46). Moreover, PD-L1 is

correlated with immune escape and releases negative

regulatory signaling (42). On one hand, the CTLA-4 binding

to B7 inhibits T cell activation; on the other hand, CTLA-4

drives immunosuppressive Treg cell activation (47). C3 also

indicated a strong ability of antigen presentation. Two prevalent

approaches, TIS and Submap analysis, showed that C3 might

obtain more benefits from immunotherapy. Overall, patients in

C3 should be recommended to take more consideration for

immunotherapy. Our study also suggested that patients in C1

were advised to TACE treatment, and patients in C2 were

encouraged to apply sorafenib treatment.

As described above, C2 is characterized by elevated

proliferative activities, pronounced genomic instability, high

malignant phenotype, and poor prognosis; more considerations

are needed to facilitate prognosis and therapeutic efficacy for

patients. In clinical practice, some patients are sensitive to a

specific drug therapy, while some patients are suffering from

drug side effects (48). Previous studies suggested that the

combination of anti-angiogenic therapy and immunotherapy

has a huge potential to improve prognosis and facilitate clinical

efficacy (49, 50). To deliver a precise treatment, the potential

therapeutic drugs for C2 were identified by pRRophetic algorithm,

such as nilotinib and bosutinib. Tyrosine kinases are promising

therapeutic targets for HCC, and nilotinib, a TKI, could slow

down HCC growth in mice by inhibiting ABL1 gene expression

(51). A third-generation TKI, targeting Axl, restrains Slug

expression and further decreases tumor invasiveness in HCC

cell lines (52). These TKIs brought more effective treatment

recommendations to C2 with elevated proliferative activities,

thus improving the clinical outcomes. Moreover, patients with

HCC display poor sensitivity to chemotherapy and bear the heavy

burden of costs (53, 54). The development of novel potential

therapeutic agents might bring more therapy application offer

hopes to HCC patients. Based on Camp datasets, we depicted

representative therapeutic compounds and the underlying
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mechanism of action, which laid a foundation for

drug development.

Our study identified three heterogeneous clusters and

proposed individualized treatment strategies. Although it is

attractive to improve prognosis and facilitate clinical

management, some limitations should be acknowledged. First,

all the samples enrolled in this research were retrospective, and a

prospective study should be applied to validate the results.

Second, a multicenter and large-sample dataset, containing

eligible patients with immunotherapy, needs to be further

executed to assess the clinical efficacy. Third, the novel

potential therapeutic agents should be further investigated and

explored by clinical trial research.

In conclusion, we revealed the tumor heterogeneity and

proposed three clusters in HCC. Various molecular

characteristics were depicted among the three clusters, which

had distinct clinical outcomes, biological features, genomic

variations, immune landscape, and treatment responses.

Patients in C1 were advised to TACE treatment, and patients

in C2 were encouraged to TKI treatment, while patients in C3

were recommended to immunotherapy. Taken together, this

work afforded a robust classification system and provided

individualized treatment strategies, which contributed to

improving the clinical outcomes and facilitating the

clinical management.
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