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A better understanding of the role of mineralized tissues and their associated

factors in governing whole-body metabolism should be of value toward

informing clinical strategies to treatmineralized tissue andmetabolic disorders,

such as diabetes and obesity. This perspective provides evidence suggesting

a role for the arginine-glycine-aspartic acid (RGD) region, a sequence

identified in several proteins secreted by bone cells, as well as other

cells, in modulating systemic metabolic activity. We focus on (a) two of

the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family

genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like

growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental

endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8).

In addition, for our readers to appreciate the mounting evidence that a

multitude of bone secreted factors a�ect the activity of other tissues, we

provide a brief overview of other proteins, to include fibroblast growth factor

23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP),

tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich

MEPE-associated motif (ASARM), along with known/suggested functions of

these factors in influencing energy metabolism.

KEYWORDS

bone, mineralized tissues, arginine-glycine-aspartic acid (RGD), metabolic activity,

endocrinology, obesity

Introduction

Existing data provide credible evidence that proteins produced by mineralized

tissues affect the activity of tissues at distant sites (1–4). However, the specific

role of these proteins at distant sites has been elusive, with supportive evidence

that factors secreted by skeletal tissues may modulate metabolic activity. A better

understanding of the role of mineralized tissues and their associated factors in governing

whole-body metabolism should be of value toward informing clinical strategies

to treat mineralized tissue and metabolic disorders, such as diabetes and obesity.

Frontiers inDentalMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/journals/dental-medicine#editorial-board
https://www.frontiersin.org/journals/dental-medicine#editorial-board
https://www.frontiersin.org/journals/dental-medicine#editorial-board
https://www.frontiersin.org/journals/dental-medicine#editorial-board
https://doi.org/10.3389/fdmed.2022.974862
http://crossmark.crossref.org/dialog/?doi=10.3389/fdmed.2022.974862&domain=pdf&date_stamp=2022-07-27
mailto:martha.somerman@nih.gov
https://doi.org/10.3389/fdmed.2022.974862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdmed.2022.974862/full
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org


Nagasaki et al. 10.3389/fdmed.2022.974862

This perspective provides evidence suggesting a role for

the arginine-glycine-aspartic acid (RGD) region, a sequence

identified in several proteins secreted by bone cells, as well

as other cells, in modulating systemic metabolic activity. We

focus on a) two of the SIBLING (small integrin-binding

ligand, N-linked glycoprotein) family genes/proteins, bone

sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like

growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2)

and (c) developmental endothelial locus 1 (DEL1) and milk

fat globule–EGF factor-8 (MFG-E8) (Table 1 and below).

In addition, for our readers to appreciate the mounting

evidence that a multitude of bone secreted factors, not

just those with RGD regions, affect the activity of other

tissues, we provide a table (Table 2) to include the proteins,

fibroblast growth factor 23 (FGF23), phosphatase orphan 1

(PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific

alkaline phosphatase (TNAP) and acidic serine aspartic-rich

MEPE-associated motif (ASARM), along with known/suggested

functions of these factors, with an emphasis on their role in

monitoring metabolic activity. This latter table provides a brief

review with references provided for more detailed information.

Known factors and candidates for
regulating metabolic activity

Current understanding of
factors/environments influencing
systemic metabolic activity

Nutrient metabolism is essential for the survival, growth,

and development of all living systems. The whole-body

metabolic homeostasis of higher organisms relies on precise

sensing of the energy state of the body and coordinated

response of multiple organs to nutritional demands and

environmental changes. The central nervous system plays

an important role in regulating all aspects of metabolism,

including energy intake, absorption, utilization, and storage

(50, 51). One-way key metabolic tissues, such as the liver,

muscle, adipose tissue, pancreas, and gut, communicate with

the brain and each other is via secreted factors, including

protein hormones, cytokines, small molecules, metabolites, and

extracellular vesicles (52–57). Dysregulation of these inter-organ

communications contributes to the pathogenesis of metabolic

diseases, including obesity, type 2 diabetes, dyslipidemia, fatty

liver disease, and cardiovascular diseases.

Increasing evidence suggests that adipose tissues play a

central role in systemic metabolism, providing storage and

release of energy from white fat, expending energy to generate

heat in brown and beige fat, and secreting a diverse group of

bioactive mediators, collectively called “adipokines” (53, 58, 59).

Adipose tissue dysfunction in genetic and high-fat diets induced

obesity or in lipodystrophy causes toxic lipid accumulation in

the liver, skeletal muscle, and other tissues, leading to systemic

insulin resistance (60, 61). Adipose tissue inflammation and

misbalance between secretion of pro- and anti-inflammatory

adipokines also contribute to the pathogenesis of metabolic

dysfunction in obesity (62, 63).

Many studies have shown that alterations of glucose and

lipidmetabolism influence bone homeostasis (64). Skeletal tissue

growth and remodeling are energy consuming processes tightly

coupled with the regulation of systemic energy metabolism

and reproduction (65). Numerous hormones, such as estrogen,

testosterone, parathyroid hormone, insulin, adipokines (e.g.,

leptin, resistin, adiponectin, TNFα), vitamin D, as well as

neuropeptides modulate bone metabolic activity (4, 54, 64,

66–70). Recent studies have emphasized the role of the

bone marrow adipose tissue, located in close proximity to

skeletal lineage cells, in bone metabolism (71–74). Expansion

of this depot, observed in aging, obesity, diabetes, anorexia

nervosa, is often inversely associated with bone mineral

density. As bone marrow adipocytes and osteoblasts share a

common precursor, mesenchymal stem cells, imbalance between

adipogenesis and osteogenesis may contribute to bone loss

under pathological conditions. This broad overview underscores

the complex interactions between tissues required to modulate

metabolic activity including mineralized tissues, the focus of

this perspective.

Known and proposed functions of the
RGD region in proteins

Before moving forward with the major focus of this

perspective, the potential role of the tripeptide motif, RGD,

in regulating metabolic activity, a brief review of the activities

known and proposed for RGD-integrin-binding mediated cell

functions is provided for contextual purposes. The readers are

referred to a few of many excellent reviews, and references

therein: (75–77).

The interest in defining the functions of RGD peptides

and associated integrins was spurred on by early studies

suggesting that such molecules may serve as therapeutic

targets for numerous diseases. These studies demonstrated

that the RGD region of proteins via interactions with

their selective cell surface integrins promotes cell migration,

adhesion, and signal transduction, with changes in cell

proliferation and differentiation over a life span. Further

investigations have proposed roles for RGD-integrin binding

to include but not limited to modulating cancer cells e.g.,

progression, metastasis, angiogenesis, to controlling diseases

such as sepsis, fibrosis, neurological disorders, cardiovascular

diseases, and viral infections, to monitoring disease progression

(diagnostic/imaging tools) and controlling wound healing. At

a mechanistic level, studies have shown that in addition
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TABLE 1 RGD proteins and metabolic activity.

Protein Tisssue/cell expression Known function Proposed metabolic function Integrin receptor References

BSP Bones and teeth

(osteoblasts, cementoblasts,

osteoclasts) Tumors (breast,

prostate, lung cancer cells)

Promotes mineralization.

Promotes cell migration and

adhesion. Promotes cancer

progression and

bone-metastasis.

Regulates food intake and

energy metabolism.

αvβ3 Ballahcène et al. (5),

Ballahcène et al. (6), Foster

et al. (7), Wu et al. (8), Chen

et al. (9)

OPN Bones and teeth (osteoblasts,

cementoblasts, osteoclasts)

Kidneys (tubular

epithelial cells) Adipose tissue

(activated macrophages)

Dendritic, lymphoid,

mononuclear cells Tumors

(breast, prostate, lung,

colorectal cancer) Endothelial

cells, Smooth muscle cells,

Epithelial cells

Inhibits mineralization.

Promotes osteoclastogenesis.

Promotes cell migration and

adhesion.

Promotes cancer progression

and metastasis.

Promotes adipose tissue

macrophage infiltration.

Affects insulin responsiveness.

αvβ3, αvβ5, αvβ1

α4β1, α8β1, α9β1

Foster et al. (10), Nomiyama

et al. (11), Kiefer et al. (12),

Dai et al. (13), Zhao et al. (14)

IGFBP-1 Liver, Kidney, Decidua

Subcutaneous adipose tissue

Inhibits IGF action.

Regulates insulin sensitivity.

Modulates insulin-sensitizing

actions.

α5β1, α5β3 Hoeflich et al. (15), Haywood

et al. (16)

IGFBP-2 Embryonic and fetal tissues

Multiple tumors (glioma,

pancreatic, ovarian, breast,

prostate, lung, liver cancer)

Adipose tissue

Regulates IGF function.

Regulates embriogenesis.

Regulates tumorigenesis.

Regulates glucose clearance.

Regulates GLUT4

translocation in the muscle.

Regulates blood

glucose metabolism.

αvβ3, α5β1 Hoeflich et al. (15), Li

et al. (17), Reyer et al. (18),

Zhang et al. (19)

MFG-E8 Ubiquitous pattern of

expression in different cells

and tissues; first identified in

mammary gland, also

expressed in spleen, gut, lung

and adipose tissue

Promotes efferocytosis.

Promotes mucosal tissue

healing. Inhibits

osteoclastogenesis.

Mitigates endoplasmic

reticulum stress.

Promotes fatty acid uptake. αvβ3, αvβ5 Aziz et al. (20), Bu et al. (21),

Abe et al. (22),

Khalifeh-Soltani et al. (23),

Ren et al. (24)

DEL-1 Restricted pattern

of expression, e.g., endothelial

cells, MSCs, certain

macrophage subsets, brain,

lung, gingiva, adipose tissue;

no expression in liver

and spleen

Inhibits neutrophil

recruitment.

Inhibits osteoclastogenesis.

Promotes osteogenesis.

Promotes efferocytosis.

Regulates Treg cell stability

and function.

Might regulate metabolism in

a manner similar to MFG-E8

based on similar structure and

engagement of the same

integrins.

αvβ3, αvβ5, αLβ2, αMβ2 Hajishengallis &

Chavakis (25), Kourtzelis

et al. (26), Li et al. (27), Yuh

et al. (28), Shin et al. (29)
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TABLE 2 Non-RGD proteins and metabolic activity.

Protein Tisssue/cell expression Known function Proposed metabolic function Receptor/Substrate References

TNAP Expressed in many tissues;

Bone, Teeth, Growth plate

cartilage, Liver, Bile, Kidney,

Intestinal lumen, Brain,

Adipose tissue

Promotes mineralization by

generating Pi from PPi and

other factors.

Mutations in the gene (Alpl)

encoding TNAP lead to

hyphosphatasia (HPP), of

variable severity from lethal to

odontohyphosphatasia

(effects limited to

teeth/periodontium).

Controll metabolic syndrome

(MetS) and associated with

enhanced cardiovascular

mortality by exacerbating

vascular calcification.

Modulate bone marrow

mesenschymal progenitor cell

differentiation

toward adipocytes. Promotes

purinergic signaling.

Modulate

inflammatory pathways.

Adipocyte-TNAP plays a role

in thermogenesis.

Pyrophosphate Pyridoxal

5-phosphate (PLP)

Phosphoethanolamine (PEA)

LRP6/GSK3beta complex

Phosphocreatine

OPN

Lipopolysaccharides (LPS)

Polynucleotides

Toll-like receptor ligands and

others

Goettsch et al. (3), Millán

et al. (30), Briolay et al. (31),

Sun et al. (32), Bessueille

et al. (33), Krishnamurthy

et al. (34), Graser et al. (35)

FGF23 Osteocytes, Osteoblasts FGF23, a known hormone,

acts (as a complex with

FGFR/α-Klotho) in the renal

proximal tubules to regulate

phosphate reabsorption and

1,25(OH)2D3 metabolism

and in the distal tubules to

modulate sodium and calcium

reabsorption.

Propsed functions include

suppression of osteiblast

differentiation and matrix

minerlaization. As stated

under know functions, as a

hormone it effects overall

metabolic activity.

KLOTHO (a co-receptor)

FGF receptor 1 (FGFR1)

Bacchetta et al. (36),

Bhattacharyya et al. (37),

Minisola et al. (38)

OCN Osteoblasts, Cementoblasts A marker of osteoblast

differentiation.

Monitors bone formation.

Regulates energy metabolism

(glucose regulation and

insulin signaling) via effects

on adipocytes, hepatocytes

and pancreatic beta cells.

LRP5

Leptin

DMP1-ASARM

PHEX/IR (insulin receptor)

Wei et al. (1), Confavreux

et al. (2), Fulzele et al. (4), Wei

et al. (39), Ferron et al. (40),

Ferron et al. (41), Ducy

et al. (42)

(Continued)
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TABLE 2 Continued

Protein Tisssue/cell expression Known function Proposed metabolic function Receptor/Substrate References

PHOSPHO1 Chondrocytes, Osteoblasts,

Odontoblasts, Cementoblasts

Modulates skeletal, dentin

and cellular cementum

mineralization.

Initiates deposition of

hydroxyapatite inside

cell-derived

membrane-limited matrix

vesicles (MVs) by generating

Pi from hydrolysis of MV

membrane products.

Regulates insulin

responsiveness and obesity

(acting in an endocrine

fashion).

Phosphoethanolamine

Phosphocholine

Suchacki et al. (43), Zweifler

et al. (44), Houston et al. (45),

McKee et al. (46)

ASARM Osteoblasts, Odontoblasts Inhibits mineralization.

The MEPE (matrix

extracellular

phosphoglycoprotein)-

ASARM is a known substrates

for PHEX, with data

suggesting that the ASARM

motif regulates expression of

FGF23, a key factor in

monitoring levels of

phosphate in the blood.

Defective regulation of

ASARM affects energy

metabolism, resulting in

changes in fat mass, weight,

insulin sensitivity, levels of

leptin, serotonin and

aldosterone, sympathetic tone

and vascularization.

FGF23

MEPE

DMP1

OCN

Rowe et al. (47), Rowe

et al. (48), Salmon et al. (49)
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to RGD-integrin binding mediating adhesion to extracellular

matrix molecules, this interaction results in bidirectional

signaling across membranes thus functioning as controllers

of cellular processing (78, 79). Some interactions result in

multiprotein clustering, forming focal adhesions, the sites of

integrin-facilitated cell signaling. This elicits a cascade of

phosphorylating events of downstream molecules, most notably

focal adhesion kinase (FAK), mitogen-activated protein kinase

(MAPK), phosphoinositide kinase (PI3K)/Akt, and extracellular

signal regulated kinase (ERK) (76, 77). This brief synopsis,

demonstrating the varied mechanistic aspects of RGD-integrin

mediated cell behavior, sets the stage for the discussion below,

to consider how specific proteins and linked integrins, may

influence metabolic activity, both locally and at distant sites.

Belowwe consider six RGD containing proteins and their known

and proposed functions in modulating metabolic activity,

summarized in Table 1 (8, 9, 14, 19).

RGD containing proteins selective to
mineralized tissues proposed as
modulators of local and systemic
metabolic activity

OPN and BSP

In the late 1900s the role of the RGD region of proteins,

specifically OPN and BSP, found in high concentrations in

mineralized tissues and their associated receptors, primarily

integrins, was receiving notable attention. Since these early years

there have been considerable advances in defining the function

of the RGD region in proteins of mineralized tissues, as well as

other tissues.

As members of the SIBLING family, OPN and BSP contain

several highly conserved functional motifs, including a C-

terminal RGD-integrin binding domain known to promote

cell adhesion, migration and signaling (5, 6, 80, 81). OPN

and BSP, first identified in bone, were proposed to modulate

mineralization, where OPN is considered to act as an inhibitor

of nucleation and BSP as the crystal nucleator (10, 82–89). It is

now recognized that the expression of these genes/proteins is not

limited to mineralized tissues, as discussed below.

OPN: In addition to OPN’s role via the RGD region

in modulating cell behavior, OPN’s inhibitory effect on

mineralization has been ascribed to its negatively charged

phosphorylated serine residues, to its modulation of osteoclasts,

and to its ability to regulate pyrophosphate metabolism (90, 91).

Soon after the discovery of OPN it was found to be expressed

ubiquitously and to exhibit a variety of functions dependent on

the specific cells/tissues/organs expressing OPN. Relevant to this

perspective, OPN has been shown to have a role within bone as

a regulator of bone mass (92), as well as a role in modulating

systemic metabolic activity as described below.

OPN, also considered as a pro-inflammatory cytokine,

has been shown to modulate immune cell responses, with

an important role in advancing inflammation within many

tissues including adipose, cardiovascular and renal tissues, and

associated with obesity, insulin resistance and type 2 diabetes

(11, 12, 93–96). In this regard Dai and co-workers provided

data revealing the intricacies in defining the role of OPN as

a regulator of bone metabolic activity vs. systemic metabolic

activity (13). Data from their mouse studies demonstrate

that OPN is secreted by adipose tissue (epididymal white

adipose tissues) macrophages and selectively circulates to bone

marrow, activating osteoclasts to degrade bone and modulating

bone marrow-derived macrophages. In the latter case, the

macrophages engulf lipid deposits released from adipocytes in

the bone marrow and through a complex array of elegantly

designed studies the authors showed that OPN-neutralizing

antibodies ameliorated high fat diet assisted bone loss in these

mice. Mouse studies focused on determining OPN’s role in

metabolic dysregulation in the liver found that OPN regulated

cross talk between cholesterol (CHOL) and phosphatidylcholine

(PC) metabolism via enhancing expression of cholesterol 7

alpha-hydroxylase (CYP7A1). This finding suggested that OPN,

by disrupting PC and CHOL metabolism, may contribute to

non–alcoholic fatty liver progression in non-obese patients

(97). Further studies by other groups confirmed a role for

OPN in modulating age-related non–alcoholic fatty liver disease

(98). These studies provide evidence that OPN, regardless of

where expressed, affects metabolic activity via pro-inflammatory

events, and in many cases through integrin signaling pathways;

however, a specific role of the RGD region in mediating

these events was not discussed. In a study by Chen et al.,

focused on determining the factors involved in differentiation

of mesenchymal precursor cells along an adipogenesis vs.

osteogenesis pathway, the authors provided evidence that OPN-

integrin links (via αvβ1) may be involved in this process (99).

They further showed that the ratio of total fat weight to body

weight was significantly higher in OPN-deficient mice at 5 weeks

and 12 months vs. wild-type mice, reinforcing a role for OPN in

modulating systemic metabolic activity and confirming results

of other researchers related to the role of OPN in modulating

obesity (100, 101).

Collectively, impressive data exists supporting a role for

OPN in affecting systemic metabolic activity, although further

studies are warranted to determine if the RGD region of OPN

is involved.

BSP: BSP is more selective to mineralized tissues and

most studies have focused on defining the mechanisms

controlling BSP function in mineralized tissues. Data

from studies using BSP-deficient mice reveal that BSP is a

modulator of mineralization. The reader is refereed to several

articles and references thereof for details on tooth/bone

phenotype of BSP-deficient mice (7, 102–106). In brief,

BSP-deficient mice have alteration in bone homeostasis and
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mineralization (hypomineralized) and defects in the region

of the periodontium, to include impairments in formation

of cementum and surrounding alveolar bone, resulting in a

disorganized periodontal ligament (PDL) region, malocclusion

and exfoliation of teeth, similar to mice and humans with

alkaline phosphatase mutations (30). To define the role of the

RGD domain of BSP in controlling periodontal tissues, Nagasaki

et al. generated BSP-KAE knock-in (KI) mice, substituting a

non-function KAE (lysine-alanine-glutamic acid) sequence for

the RGD. The results emphasized the importance of the RGD

region for forming and maintaining the PDL region, but not for

promoting mineralization (107).

To the surprise of Nagasaki et al. the BSP-RGD non-

functionalized mice exhibited increased body weight and energy

intake with age (after 13 weeks postnatal) vs. wild-type mice.

Accordingly, weight of epididymal fat pad and size of white and

brown adipocytes were increased (108).

Brief reviews of metabolic functions of other RGD

containing proteins, insulin-like growth factor-binding proteins

1 and 2 (IGFBP-1, IGFBP-2), developmental endothelial locus-

1 (DEL-1) and milk fat globule–EGF factor-8 (MFG-E8) are

provided below, with references to reviews for more extensive

reports on their various roles.

Other RGD-containing proteins proposed
to a�ect systemic metabolic activity

IGFBP-1, 2

Insulin-like growth factor-binding proteins 1 and 2 (IGFBP

1 and 2) aremembers of a highly conserved family of six IGFBPs,

numbered IGFBP1 through 6 in vertebrates, that modulate the

actions of insulin growth factors (IGFs) and play vital roles in

regulating several cellular processes (15, 17, 109, 110). The IGFs

act as both endocrine hormones and autocrine/paracrine growth

factors, binding to the IGFBPs or IGF-1 receptor. While the

IGFBPs share about 50% homology with each other, each has

specific structural features and plays distinct roles locally and

systemically. In addition to the role in modulating circulating

and local levels on IGF via IGF-IGFBP binding, IGFBPs also

have activities independent of IGF binding. IGFBP-1 and 2 are

the smallest in size, 25kDa and 31kDa respectively, and are the

only IGFBPs that have RGD sequences. Interestingly, IGFBP1

and 2 are reported to serve as markers of autoimmune diseases

such as Type 1 diabetes mellitus and rheumatoid arthritis (110).

For IGFBP 1 and 2, their RGD region allows them to

influence cell adhesion, migration and signaling (18, 111, 112).

Data from mouse studies suggest that the RGD motifs of both

IGFBP1 and 2, signaling through specific integrins to include

α5β1, affect energy metabolism (111, 112). Further studies by

Haywood et al., using both in vitro and in vivo models (the

latter, metabolic profiling of obese mice), evaluated whether the

RGD domain of IGFBP1 could affect insulin sensitivity, insulin

secretion and whole-body glucose regulation (16). Their results

suggest that the RGD-integrin binding domain via cell signaling

enhanced insulin sensitivity and secretion and administration

of RGD synthetic peptide to obese mice could improve glucose

clearance and insulin sensitivity. The authors conclude that the

RGD domain of IGFBP-1 may hold promise as a therapeutic

approach to insulin resistance. In another study, using IGFBP-2

transgenic mice (female), Reyer et al. showed that an IGFBP-

2-RGD dependent mechanism was associated with impaired

glucose clearance and regulation of GLUT4 translocation in

muscle (18).

DEL1 and MFG-E8

Developmental endothelial locus-1 (DEL-1) and milk

fat globule–EGF factor-8 (MFG-E8) are structurally related

proteins consisting of N-terminal EGF-like repeats and C-

terminal discoidin I-like domains (20, 25). An RGD motif

present in the second EGF-like repeat enables both proteins

to interact with integrins such as αvβ3, αvβ5, although

DEL-1 has also been shown to bind to non-RGD-binding

integrins (αLβ2, αMβ2). DEL-1 and MFG-E8 generally behave

as anti-inflammatory and pro-resolving proteins, in large

part due to their capacity to promote efferocytosis (26,

113). Additionally, DEL-1 inhibits inflammation by regulating

neutrophil recruitment and T regulatory cell function (27,

114). DEL-1 and MFG-E8 have been shown to promote tissue

healing (21, 28) and bone homeostasis through effects on both

osteoblasts and osteoclasts (22, 28, 29, 115, 116). In this regard,

local administration of recombinant DEL-1 or MFG-E8 in the

gingiva of non-human primates inhibits periodontal bone loss

(29, 117). Despite sharing several functions, DEL-1 and MFG-

E8mediate non-redundant roles in in vivo experimental models,

presumably owing to their expression in different tissues, often

by different cell types, and/or their regulation by distinct

transcription factors (20, 26, 113, 118). It is also possible that

these “cousin” proteins may be involved in metabolic regulation.

MFG-E8 was reported to enhance the uptake of fatty acids

by adipocytes and this function required an intact RGD motif

since the effect was mediated by MFG-E8 interaction with

αvβ3 or αvβ5 integrins (23, 24). In the same study, MFG-

E8-deficient mice were protected from diet-induced obesity

(23). It is currently uncertain whether DEL-1 shares a similar

metabolic function, although its ability to interact with RGD-

binding integrins warrants relevant investigation. Interestingly

in that regard, EDIL3, the gene encoding DEL-1, has been

associated with susceptibility to childhood obesity (119) and is

overexpressed in diet-induced obesity in mice as well as in obese

humans (120).

Coupled with the above evidence providing a role for the

RGD region of proteins being involved in modulating energy

metabolism are studies highlighting that RGD-binding integrins
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may serve as therapeutic targets for controlling metabolic

activity and diseases, such as diabetic retinopathy (121), sepsis

(122) and inflammatory disorders (123).

Non-RGD containing proteins, associated
with mineralized tissues, purported to
influence systemic metabolic activity:

While this perspective highlights the RGD motif of

proteins and their role in controlling metabolic activity, the

fact that many genes/proteins associated with mineralized

tissues have been reported to affect systemic metabolic

activity provides additional support for the concept that

mineralized tissues, through direct or indirect mechanisms,

are important players in controlling whole-body homeostasis.

Table 2 provides a brief overview of some of these factors,

with additional references within these tables (31–49), for more

detailed information.

Discussion/Conclusion

This perspective provides data from studies over decades

clearly showing that factors secreted by mineralized tissues

as well as other tissues influence bone metabolic activity and

also systemic metabolic activity. Yet, there remain missing

pieces of the puzzle related to the mechanistic aspects for

the genes and associated proteins affecting bone/systemic

metabolic activity. Featured in this perspective is the need to

consider the role of RGD-associated proteins in monitoring

metabolic activity locally and systemically, with more answers

to be forthcoming as investigations continue along this line

of research. Such studies are important to better understand

whether therapeutics targeting specific proteins and/or the

specific RGD region may be attractive treatments for controlling

obesity and associated diseases.
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