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Background: The purpose of this paper is to demonstrate a mechanism for

deploying and validating an AI-based system for detecting abnormalities on

chest X-ray scans at the Phu Tho General Hospital, Vietnam. We aim to

investigate the performance of the system in real-world clinical settings and

compare its e�ectiveness to the in-lab performance.

Method: The AI system was directly integrated into the Hospital’s Picture

Archiving and Communication System (PACS) after being trained on a

fixed annotated dataset from other sources. The system’s performance was

prospectively measured by matching and comparing the AI results with

the radiology reports of 6,285 chest X-ray examinations extracted from the

Hospital Information System (HIS) over the last 2 months of 2020. The

normal/abnormal status of a radiology report was determined by a set of rules

and served as the ground truth.

Results: Our system achieves an F1 score—the harmonic average of the

recall and the precision—of 0.653 (95% CI 0.635, 0.671) for detecting any

abnormalities on chest X-rays. This corresponds to an accuracy of 79.6%, a

sensitivity of 68.6%, and a specificity of 83.9%.

Conclusions: Computer-Aided Diagnosis (CAD) systems for chest radiographs

using artificial intelligence (AI) have recently shown great potential as a second

opinion for radiologists. However, the performances of such systems were

mostly evaluated on a fixed dataset in a retrospective manner and, thus, far

from the real performances in clinical practice. Despite a significant drop from

the in-lab performance, our result establishes a reasonable level of confidence

in applying such a system in real-life situations.
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Computer-Aided Diagnosis, deep learning, clinical validation, Picture Archiving and
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1. Introduction

Chest radiograph, or chest X-ray (CXR), remains one of

the most common, yet hard to interpret, imaging protocols in

medicine. It is hoped that a Computer-Aided Diagnosis (CAD)

system using artificial intelligence (AI) can effectively assist

radiologists and help mitigate the misdiagnosis rate on CXRs.

Leveraging recent advances in deep learning (1), such systems

have achieved a great success in detecting a wide range of

abnormalities on CXRs (2–13). Most of the existing systems are

supervised-learning models trained and validated on different

parts of a dataset that was collected and labeled in a retrospective

fashion. For example, several deep learning models were

developed (3, 5) on the ChestX-ray14 dataset (14) for classifying

14 common thoracic pathologies. Recently, most algorithms for

detecting abnormalities on CXRs were trained and validated on

the CheXpert (4, 6, 12) and MIMIC-CXR (15) datasets, which

include the same set of 14 findings that are slightly different

from the labels of ChestX-ray14. The performances of the

aforementioned AI systems in differentiating multiple findings

on CXRs were reported to be comparable with radiologists.

Other works were devoted to detecting a specific lung disease

such as pneumonia (2), pulmonary tuberculosis (9, 11) and lung

cancer (16). Notably, Rajpurkar et al. (2) trained a convolutional

neural network (CNN) for detecting pneumonia that achieved

an F1 score of 0.435 (95% CI 0.387, 0.481) on the ChestX-

ray14 dataset, which performance was claimed to exceed those

of practicing radiologists. Tang et al. (17) proposed to train an

abnormality classifier, which is closely related to our work, with

various CNN architectures over three CXR different datasets: the

ChestX-ray14, the RSNA Pneumonia Detection Challenge (18),

and the Indiana University Hospital Network (19). Although

reaching impressive AUC (Area under the receiver operating

characteristic Curve) performances of 0.9x, those models were

again evaluated on retrospective curated datasets that might be

drastically different from the real data in clinical settings.

Unlike existing works, our study does not focus on

developing and retrospectively evaluating an AI-based CAD

system for CXR. Instead, we propose a framework to

prospectively validate such a system while deployed at a clinical

site for a significantly long period. In particular, we integrate

our system, VinDr-CXR, directly to the Picture Archiving

and Communication System (PACS) of the Phu Tho General

Hospital—a provincial hospital in Vietnam. The system consists

of three AI models that were trained on our dataset (20)

collected from other sources. All CXRs generated by the PACS

during 2 months are prospectively automatically analyzed by

the VinDr-CXR. The obtained AI results are then matched and

compared with the radiology reports extracted from theHospital

Information System (HIS) to compute the system’s performance

in distinguishing abnormal vs. normal CXR studies. Despite the

ability of the system to localize multiple classes of lesions, we

only measure its performance as a binary classifier. The reason

for doing so is that it is much more reliable to decide if a

radiology report is abnormal than to interpret its subtle details.

We also propose simple template matching rules to determine

the normal/abnormal status.

Over the last 2 months of 2020, the VinDr-CXR system

generated AI results for 6,687 CXR studies taken at the Phu

Tho General Hospital, 6,285 of which were matched with

corresponding radiology reports from the HIS. The matching

was nontrivial since the PACS, and the HIS were not linked by

accession numbers. Instead, we had to rely on the patient ID, and

other attributes of the Digital Imaging and Communications in

Medicine (DICOM) files and the radiology reports. By treating

the normal/abnormal status of the 6,285 matched reports as a

ground-truth reference, the abnormality classifier of the VinDr-

CXR yielded an F1 score of 0.653 [95% Confidence Interval (CI)

0.635, 0.671]. The 95% CI of the F1 score statistic was obtained

by bootstrapping (21), a method that was also used in the work

of Rajpukar et al. (2). The F1 score obtained in this clinical

setting is significantly below the one achieved while training

and validating the model “at home” on a retrospective dataset.

Nonetheless, the reported performance still gives us a high level

of confidence in deploying the VinDr-CXR system in clinical

practice. It also serves as a good baseline for similar AI-based

CAD systems to be clinically validated.

2. Materials and methods

The ethical clearance of this study was approved by the

Institutional Review Board (IRB) of the Phu Tho General

Hospital before the study started. The need for obtaining

informed patient consent was waived because this study did

not impact clinical care or workflow at the hospital, and all

patient-identifiable information in the data has been removed.

We propose an overall scheme for validating our CAD

system, VinDr-CXR, as illustrated in Figure 1. A set of AI results

is obtained by directly integrating VinDr-CXR into the Phu

Tho General Hospital PACS, while the corresponding radiology

reports are extracted from the HIS via an Extensible Markup

Language (XML) parser. These two sets of results are then

pairwise matched and compared to each other to determine the

correctness of the system in detecting abnormal CXRs. The final

result of the validation will be reported as an F1 score, a metric

that balances the precision and recall of a binary classifier.

2.1. Development of AI models

As shown in Figure 2, the VinDr-CXR system is a

concatenation of three AI models: the PA classifier, the

abnormality classifier, and, finally, the lesion detector. This

system takes as input a CXR from the PACS and returns the

probability that the image is abnormal and the locations of
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FIGURE 1

Validation scheme. PACS and HIS are linked by Patient ID.

FIGURE 2

VinDr-CXR pipeline. The system includes three concatenated AI models that are integrated to the PACS via a CXR adapter. The output of the

system is the probability of the CXR being abnormal and the locations of the lesions, if any.

TABLE 1 Performance of the lesion detector on 17 classes of

abnormality.

Lesion class AP@0.4

Aortic enlargement 0.663

Atelectasis 0.231

Calcification 0.272

Cardiomegaly 0.860

Clavicle fracture 0.459

Consolidation 0.281

Emphysema 0.185

Enlarged PA 0.256

Infiltration 0.318

Interstitial lung disease (ILD) 0.315

Nodule/Mass 0.251

Opacity 0.197

Pleural effusion 0.387

Pleural thickening 0.228

Pneumothorax 0.579

Pulmonary fibrosis 0.340

Rib fracture 0.381

mAP 0.365

The bold values are the average performance of all lesson classes.

multiple classes of lesions if any. All constituent models of

VinDr-CXR were obtained by training deep neural networks

entirely on our dataset, also called VinDr-CXR, part of

which was made publicly available (20). This dataset was

retrospectively collected from our partner hospitals in Vietnam

and annotated by a team of experienced radiologists. At least

one radiologist manually labeled each image in the dataset with

a list of six different diagnoses where 22 types of lesions were

annotated with bounding boxes. It is important to emphasize

that none of the training data was from the Phu Tho General

Hospital. Each model was trained and validated before being

deployed in the real clinical workflow of the hospital. We did

not make any changes to the models during the 2 months of

the clinical trial. This is to ensure that our models are not

biased to the real-life validation setup. We briefly describe the

development of the three AI models; details of the training will

be presented somewhere else.

2.1.1. PA classifier

This PA classifier is attached to the CXR adapter to guarantee

that only CXRs of the Posterior-Anterior (PA) view will be

passed to the abnormality classifier, trained only on this type

of image. The output of the PA classifier is a probability of the

input image being a PA-view CXR. If this probability is greater

than a normalized threshold of 0.5, the image will go through to

the abnormality classifier; otherwise, the system will output an

indicator that the image is invalid. The PA classifier adopted the

ResNet-18 architecture (22) that was trained and validated on a

dataset of a total of 9,864 scans, where 4,329 of them are actual

PA-view CXRs taken from the VinDr-CXR dataset. The negative
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FIGURE 3

Procedure for extracting all radiology reports of CXR examinations from HIS. The original names of the attributes, which are in Vietnammese, are

put inside square brackets.

training examples included lateral-view CXRs and images of

other body parts that sometimes got through the CXR filter due

to mismatched DICOM tags. The trained PA classifier achieves

an F1 score of 0.980 on a validation set of 4,192 images. Here, the

F1 score metric is defined as

F1 =
TP

TP + (FP + FN)/2
, (1)

where TP, FP, FN denote the numbers of true positive, false

positive, and false-negative samples, respectively.

2.1.2. Abnormality classifier

The abnormality classifier separates abnormal CXRs from

normal ones. It takes as input a PA-view CXR and outputs the

probability that the image contains abnormal findings. Only

images whose abnormal probabilities are above 0.5 will go to

the lesion detector. We trained the abnormality classifier as an

EfficientNet-B6 (23) on a dataset of 38,065 PA-view CXRs. All

images that were labeled with “No finding” by the radiologists

were treated as negative samples, while the rest were considered

positive. This model was validated on another dataset of 9,611

images with an F1 score of 0.831. In this study, only the output

of the abnormality classifier will be compared to the radiology

reports to measure the performance of the whole system.

2.1.3. Lesion detector

The role of the lesion detector is to localize all findings

on an abnormal CXR with bounding boxes and, at the same

time, classify them into different types of lesions. That is, the

system can tell not only whether a CXR is abnormal but also

why it is and where the abnormalities come from. An example

output of the lesion detector is visualized in Figure 2 where

a bounding box of the class “Pulmonary fibrosis” is drawn

around the lesion. Out of the 22 local classes in the VinDr-

CXR dataset, we only trained the lesion detector on the 17

most prevalent ones as listed in Table 1. The training was

performed on 23,524 abnormal CXRs with an EfficientDet-

ED4 model (24). The performance of the lesion detector

was evaluated on a validation set of 4,470 images using the

Average Precision (AP) metric at the Intersection-over-Union

(IoU) threshold of 0.4 or shortly AP@0.4. This is a standard

metric for objection detection models in computer vision (25,

26). Table 1 reports the performance of the lesion detector

in terms of AP for each of the 17 classes with an average

AP (mAP) of 0.365. However, the model was not validated

on the Phu Tho General Hospital data. This is due to the

hardness in interpreting the lesion locations in a radiology

report.

2.2. Integration of AI models to PACS

As shown in Figure 2, the VinDr-CXR system is integrated

into the PACS of the hospital through the CXR adapter. This

is a web service that pulls all images from the PACS via the

DICOMweb protocol (27) and only passes CXRs to the AI

models of the VinDr-CXR. To check if a scan is a CXR, we
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FIGURE 4

Algorithm for matching an AI result with a radiology report.

rely on the MODALITY and the BODY_PART_EXAMINIED

attributes of the DICOM file. In particular, the AI models are

triggered only if the value of MODALITYis either CR, DR, or DX

and the value of BODY_PART_EXAMINIEDis either CHEST

or THORAX. These conditions were established by surveying the

imaging procedure at the Radiology Department of the Phu Tho

General Hospital. For deploying the VinDr-CXR at other clinical

sites, the CXR adapter might be slightly modified to catch all

CXRs from the PACS.

Extraction of radiology reports from HIS

The radiology reports have to be extracted from HIS

according to a procedure described in Figure 3. Each session

of examination and treatment is stored in a single Extensible

Markup Language (XML) file that can be exported from HIS.

A session includes all patient information from the check-

in time to the check-out time. The XML parser is used to

read all the reports within a session, each of which includes

the SERVICE_ID, REPORT_TIME, and DESCRIPTION

attributes. The CXR service filter only keeps the reports

whose SERVICE_ID matches a fixed value reserved for the

CXR imaging by the Vietnamese Ministry of Health. The

XML parser can also read the header of a session that

includes SESSION_ID, PATIENT_ID , CHECK_IN_TIME,

and CHECK_OUT_TIME. These attributes are shared among all

radiology reports within the session and will be used, in addition

to the REPORT_TIME, to match a radiology report with an AI

result of a CXR scan.

Frontiers inDigital Health 05 frontiersin.org

https://doi.org/10.3389/fdgth.2022.890759
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org


Nguyen et al. 10.3389/fdgth.2022.890759

2.3. Matching AI results with radiology
reports

After extracting the CXR radiology reports from HIS, we

match each of themwith an AI result obtained fromVinDr-CXR

via the algorithm illustrated in Figure 4. Note that an AI result

includes the ABNORMAL_STATUS(0/1) of a CXR study and is

associated with a PATIENT_ID and a STUDY_TIME, which

attributes are extracted from the DICOM file. Since HIS and

PACS are linked by the PATIENT_ID , the matching algorithm

uses this key to check whether an AI result and a radiology

report are of the same patient. Next, the STUDY_TIMEhas to be

between the CHECK_IN_TIME and the CHECK_OUT_TIME.

Finally, the REPORT_TIMEmust be within 24 h from the

STUDY_TIME, which is a regulated protocol of the hospital. If

all the conditions above are satisfied, the AI result and the CXR

radiology report are matched.

2.4. Comparing AI results to radiology
reports

The ABNORMAL_STATUSof an AI result is then compared

to theDESCRIPTIONof thematched radiology report, if any, to

measure the performance of VinDr-CXR in detecting abnormal

CXR scans. To that end, we propose a simple template-matching

rule to determine if a description is normal. In particular,

we observe that a CXR radiology report without any findings

always includes four paragraphs that describe the four fixed

anatomical regions of the thorax: chest wall, pleura, lung, and

mediastinum. The templates for normal descriptions of these

four regions are summarized in Table 2. A region is considered

normal if one of the corresponding templates exactly appears in

the DESCRIPTIONof a radiology report. A report is normal if

all the four regions are normal. Otherwise, it is abnormal.

3. Results

A set of 6,585 AI results was obtained by running the

VinDr-CXR on all DICOM images in the PACS of the Phu

Tho General Hospital throughout November and December of

2020. Meanwhile, another set of 6,687 CXR radiology reports

was extracted from the HIS during this period. Applying the

matching algorithm to these two sets resulted in 6,285 studies

of 5,989 patients with an AI result and a radiology report.

By matching the radiology reports of these studies with the

templates given in Table 2, we achieved a ground truth of

4,529 (72.1%) normal and 1,756 (27.9%) abnormal cases. The

confusion matrix of the VinDr-CXR abnormality classifier over

the total 6,285 studies is plotted in Figure 5. This corresponds

to an accuracy of 79.6%, a sensitivity of 68.6%, and specificity

of 83.9%. We follow (2) to compute the average F1 score on

TABLE 2 Templates for normal descriptions of the four anatomical

regions in a CXR radiology report.

Anatomical

region

Templates for normal descriptions

Chest wall
không th ầy hình b ầt thuòng xoung l ống

nguc

không th ầy hình tôn thuòng xuong l ống

nguc

Pleura

không th ầy hình tràn dich màng

phôi

không th ầy hình tràn dich, khí màng

phôi

khôg th ầy hình tràn khí, tràn dich màng

phôi

Lung nhu mô phôi không th ầy b ầt

thuòng

Mediastinum
hình tim v ầ trung th ầt không th ầy b ầt

thuòng

hình tim v ầ trung th ầt bình

thuòng

10,000 bootstrap samples drawn with replacement (21) from

the 6,285 studies. We also use the 2.5th and 97.5th percentiles

of the bootstrap distribution to establish the 95% confidence

interval (CI). The bootstrap distribution of F1 scores is shown

in Figure 6, which gives a mean F1 score of 0.653 (95% CI 0.635,

0.671).

4. Discussion

It can be seen that the F1 score of our AI system in

detecting abnormal CXRs significantly drops from 0.831 to 0.653

when shifting from the training settings to the deployment

phase in a clinical site. This might be caused by the shift in

the distribution of the CXR images or the additional clinical

information received by the radiologists in practice. There are

multiple factors that can contribute to the distribution shift

such as the varying abnormal/normal ratio between the training

set and the test set, the different disease distributions, and the

variety of scanners and protocols used at different institutions,

etc. For instance, as reported in Section 3, the fraction of

abnormal cases in our test set at the deployment site is 27.9%

which is significantly different from the similar quantity of 48.4%

in the training set. Additionally, our training data contains both

CR (Computed Radiography) and DX (Digital Radiography)

modalities collected from multiple sources, while all CXR scans

at the Phu Tho General Hospital are DX. Although the disease

distribution on the test set is not available, we observed an

interesting fact that many of the false negative cases were
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reported with rib/clavicle fractures. This type of errors is likely

due to the exceptionally small fraction of fracture lesions in the

training set: only 0.46% of the training examples were labeled

with rib/clavicle fractures. To have a better understanding of the

distribution shift and its effect on the behavior of the AI system, a

more thorough error analysis should be carried out by zooming

in all the radiology reports.

With an assumption that all the radiology reports at the

deployed site are perfectly accurate, the obtained F1 score

of 0.653 still exhibits a reasonable level of confidence when

deploying the VinDr-CXR in practice. To give a comparison,

according to Rajpukar et al. (2), the average performance of

4 radiologists in detecting pneumonia from CXR scans was

only 0.387 when measured in F1 score. Of course, there is still

room for improving the deploying performance of VinDr-CXR

at a particular institution. An obvious way is to fine-tune the

system with new data in a continual learning manner. Another

way is to increase the generalization ability of the system

across institutions by applying more robust data augmentation

techniques for medical images (28) during the training phase.

Putting the performance aside, there are still multiple issues

with deploying an AI system for radiology in clinical practice.

First, the adapter that helps connect the AI pipeline to the

hospital’s PACS must be able to correctly pick up all CXR scans

based on their DICOM tags. This task can be exceptionally

hard because values of the DICOM tags are not standardized

and often depend on the specific routines of the radiologists

and technologists at a particular institution. Second, the PA

Classifier, which validates the inputs of VinDr-CXR based on

image contents, might also be sensitive to distribution shift

and, thus, should be separately evaluated. Third, to protect

patient privacy, all DICOM files from a PACS server must be

anonymized before being sent to an AI server and all analysis

results received from the AI server will then be de-anonymized

at the PACS server via a lookup table.

One limitation of this study is that it only provides a coarse

evaluation of the VinDr-CXR system for classifying a CXR into

normal and abnormal categories. To validate the lesion detector

of the system, we need a more sophisticated interpretation of the

radiology reports that can extract a ground truth comparable to

the output of the AI model. Another shortcoming of this work

is that the reported clinical validation is for the AI system itself.

It is even more critical to assess the effect of such a system on

improving the quality of the radiologists’ diagnoses. Moreover,

an ideal AI-based CAD system should continuously learn from

the daily feedback of the doctors rather than staying stationary

like our VinDr-CXR. To maximize the benefit of an AI system,

a human-machine collaboration paradigm must be carefully

designed (29). Finally, the template-based matching algorithm

proposed in this paper for identifying a normal/abnormal report

only works for hospitals in Vietnam; transferring it to other

parts of the world will require further investigations. We plan

to address all of these drawbacks in our future research agenda.

FIGURE 5

Confusion matrix of the VinDr-CXR abnormality classifier.

FIGURE 6

Bootstrap distribution of F1 scores of the VinDr-CXR abnormality

classifier over 10,000 samples drawn from 6,285 studies.

5. Conclusion

We have discussed in this paper a mechanism for validating

the performance of the VinDr-CXR system in classifying

normal/abnormal chest radiographs at the Phu Tho General

Hospital during the last 2months of 2020. Once the AImodels of

the system were trained on an annotated dataset from different

sources, they were directly integrated into the PACS of the

hospital and never got retrained during the validation period.

The performance of the abnormality classifier was prospectively

measured by matching and then comparing the obtained AI

results with a set of radiology reports exported from the HIS.

Since the PACS and the HIS were linked only by patient IDs, we

proposed an algorithm tomatch anAI result of a study with CXR

radiology reports. We also adopted a simple template matching

rule to decide the abnormal status of a radiology report, which

served as a ground-truth reference. We obtained an average F1

score of 0.653 (95%CI 0.635, 0.671) for the abnormality classifier

over 10,000 resamples drawn from the 6,285 studies of 5,989.We
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believe this result has set a significant benchmark for deploying

AI systems for chest radiograph analysis in clinical practice.
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