
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Jibiao Li,
Georgia Institute of Technology,
United States

REVIEWED BY

XuQiang Nie,
Zunyi Medical University, China
Xinran Ma,
East China Normal University, China
Maria Felice Brizzi,
University of Turin, Italy
Adam Isaac,
Foot and Ankle Specialists of the Mid-
Atlantic (FASMA), LLC, United States
Mh Busra Fauzi, Centre for Tissue
Engineering and Regenerative
Medicine (CTERM), Malaysia

*CORRESPONDENCE

Yong Chen
tj.y.chen@vip.163.com

SPECIALTY SECTION

This article was submitted to
Diabetes: Molecular Mechanisms,
a section of the journal
Frontiers in Endocrinology

RECEIVED 22 March 2022
ACCEPTED 01 July 2022

PUBLISHED 27 July 2022

CITATION

Deng H and Chen Y (2022) The role
of adipose-derived stem cells-derived
extracellular vesicles in the
treatment of diabetic foot
ulcer: Trends and prospects.
Front. Endocrinol. 13:902130.
doi: 10.3389/fendo.2022.902130

COPYRIGHT

© 2022 Deng and Chen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 27 July 2022

DOI 10.3389/fendo.2022.902130
The role of adipose-derived
stem cells-derived extracellular
vesicles in the treatment of
diabetic foot ulcer: Trends
and prospects

Hongyan Deng1,2 and Yong Chen1,2,3*

1Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science &
Technology, Wuhan, China, 2Laboratory of Endocrinology, Tongji Hospital, Huazhong University of
Science & Technology, Wuhan, China, 3Branch of National Clinical Research Center for Metabolic
Diseases, Hubei, China
Diabetic foot ulcer(DFU) is one of themost severe chronic complications of type 2

diabetes mellitus, which is mainly caused by peripheral vascular occlusion with

various degrees of infection. Treatment of DFU is difficult, and ulcer formation in

lower limbs and deep-tissue necrosis might lead to disability or even death. Insulin

resistance is themajormechanismof type 2diabetesmellitus development, largely

caused by adipose tissue dysfunction. However, adipose tissue was recently

identified as an important endocrine organ that secretes bio-active factors, such

as adipokines and extracellular vesicles(EVs). And adipose tissue-derived stem cells

(ADSCs) are abundant in adipose tissue and have become a hot topic in the tissue

engineering field. In particular, EVs derived from ADSCs contain abundant

biomarkers and mediators. These EVs exert significant effects on distant cells and

organs, contributing tometabolic homeostasis. In this review, we aim to elaborate

on the mechanisms of diabetic non-healing wound development and the role of

ADSCs-EVs in wound repair, which might provide a new therapy for treating DFU.
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Introduction

Recently, the incidence of diabetes mellitus (DM) worldwide

has been steadily increasing because of the growing prevalence of

sedentary lifestyles and energy-dense, western dietary change

(1). According to the latest report, in 2021, about 537 million

adults (aged 20–79 years) worldwide suffered from DM, which

means that one in ten people have diabetes, and the number is

projected to rise to 11.3% (643 million) by 2030 and to 12.2%

(783 million) by 2045 (2). Excluding the risk of death associated

with the COVID-19 pandemic, an estimated 6.7 million adults

died from diabetes or its complications in 2021, which means

that approximately one life was lost every 5 seconds (2).

Moreover, diabetic complications, including diabetic foot, are

one of the important factors affecting the quality of life of patients

with diabetes. Persistent exposure to hyperglycemia means that

diabetic foot ulcer (DFU) is mainly caused by peripheral blood

vessel disruption and neurological disorders of the lower limb of

different degrees in patients with diabetes, which eventually leads to

lesions and ulceration in the feet (3). Diabetic foot is the leading

cause of hospitalization and is characterized by long hospitalization

time, difficult treatment, and expensive medical expenses (4, 5). The

risk of developing foot ulcers in patients with diabetes is up to 25%

(6) and it has been estimated that a diabetic amputation takes place

every 30 seconds around the world (7). Moreover, the cost of

treating patients with DFU is four times that of treating patients

with non-DFU diabetes (8).

The extremely complex pathological process of the diabetic

foot means that routine therapy, such as blood glucose control,

surgical vascular bypass, interventional operation, and

amputation have certain limitations (9, 10). Scientists have

been working to find better treatments. Surprisingly, studies

have found that when skin tissue is damaged, new adipocytes

will be stimulated to develop and differentiate (11), which

indicates the potential of adipose tissue in skin repair. In

recent years, adipose tissue (AT) has been revealed as an

important endocrine and paracrine organ, which can secrete a

wide range of adipokines and extracellular vesicles (EVs) (12–

14). And adipose tissue-derived stem cells(ADSCs) are easy to be

separated from AT, which are multipotent, self-renewing cells

with multidirectional differentiation potential (15–17).

Particularly, EVs derived from adipose tissue-derived stem

cells(ADSCs-EVs) can uniquely mediate specific target cells

through their bio-active cargos such as microRNAs (18). The

research about ADSCs-EVs has been surging dramatically in the

past 5years, mainly in tissue repair field (19, 20).

This review aims to shed new light on the therapeutic

potential of ADSCs-EVs for curing diabetes-induced lower

limb ulceration. The identification of the underlying

mechanisms by which ADSCs-EVs modulate impaired diabetic

wound healing might provide a new strategy for cell-free therapy

of diabetic foot ulcers.
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The mechanisms of diabetic non-
healing wound development

Traditionally, acute wound repair is triggered immediately

once tissue integrity is disrupted. It is a complex and coordinated

process that proceeds through four partly overlapping phases,

including hemostasis, inflammation, cellular proliferation, and

tissue remodeling, eventually closing the wound (21). Different

cells and factors are involved in different stages of wound healing.

However, that ability for wound healing in patients with diabetes

is impaired and is affected by many factors (Figure 1).

Chronic diabetic wounds are initially acute wounds;

however, the repair process is interrupted and stagnates at

different stages, resulting in delayed healing or chronicity.

Currently, the widely accepted viewpoint on the mechanism of

DFU is the three-factor theory: diabetic neuropathy, peripheral

artery disease, and local infection, in which external minor

trauma can act as the inducer to promote the formation and

development of ulcers (22).

Diabetic neuropathy presents as a variety of manifestations,

affecting sensory, motor, and autonomic nerves (23). Autonomic

neuropathy affects 16.7% to 34.3% of patients with diabetes (24).

Sometimes it is combined with lesions and becomes a serious

complication threatening the lower extremities. It can result in

secondary ulcers, infections, and gangrene, requiring

amputation or leading to Charcot arthropathy (25). Sensory

neuropathy can cause sensory disturbances or painful

neuropathy (26). The loss of neurotrophic function can cause

muscle atrophy leading to claw toe, crus, foot prolapse, gait

change, and gastrocnemius atrophy. Autonomic neuropathy

causes changes such as no sweat, dry skin, no hair, and

arteriovenous short-circuit and opening (27). Neuropathy can

also cause changes to the shape of the feet, known as foot

deformities (28). Amputation can also lead to secondary foot

deformities, and foot deformities are prone to secondary

pressure injuries.

The impaired angiogenesis of diabetes mellitus are caused by

both macroangiopathy and microangiopathy (29). For

peripheral vascular disease in patients with diabetes, many

patients do not have obvious symptoms of diabetes, and severe

ischemia of the lower limbs is often the first manifestation of

diabetes. Peripheral vascular disease increases the incidence of

end-point events in patients with diabetes much more than in

patients without diabetes (30, 31).

People with diabetes are more likely to develop any type of

infection than people without diabetes (32). Diabetic foot

infections are usually caused by trauma and are a major cause

of lower extremity risk. They are associated with ulcers and can

often lead to amputation. The immunological causes of diabetic

podiatry infection comprise abnormal host reactions, including

abnormal neutrophil function, abnormal macrophage function,

and abnormal bacterial lethality (33, 34). All these factors
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involves together ultimately causing the impairment of

inflammatory cells function (35).

Calluses, blisters, cuts, burns, and inlaid toenails can all lead

to DFUs (36). Patients may not be aware of these minor lesions

because of peripheral neuropathy; therefore, ulcers might

develop and expand before they are detected.
Overview of extracellular vesicles

According to The International Society for Extracellular

Vesicles (ISEV), “extracellular vesicle” (EV) has been defined

as the generic term as “particles naturally released from the cell

that are delimited by a lipid bilayer and cannot replicate,

i.e.they do not contain a functional nucleus” (37). Generally,

almost all cell types are capable of secreting EVs, and they can

be detected in a variety of body fluids, including blood, saliva,

semen, lymph fluid, breast milk, urine, amniotic fluid, and

cerebrospinal fluid (38). EVs from serum have been

investigated as a promising disease biomarker (39).Recently,

EVs were identified as intercellular communicators, delivering

bioactive cargos, such as proteins, lipids, nucleic acids (DNA,

mRNA, microRNAs (miRNAs), and long noncoding RNAs

(lncRNAs)) and multi-molecular complexes, further mediating

cell-to-cell communication and regulating metabolism and

homeostasis (40–44). As heterogeneous cell-derived vesicles,

EVs can be roughly divided into exosomes, microvesicles

(MVs), and apoptotic bodies according to differences in their
Frontiers in Endocrinology 03
size and biogenesis (45) (Figure 2). Unlike the production

pathway of MVs and apoptotic bodies, exosomes uniquely are

created from multivesicular endosomes (MVEs), undergoing

inward budding of endosomes and exocytosis, and eventually

forming particles with diameter from 40 nm to 160 nm (46).

Exosomes(EXOs) are defined by enrichment of specific

proteins located on the surface including tetraspanins (CD81,

CD63, and CD9) and tumor susceptibility gene 101(TSG101)

(47). In contrast, MVs are large vesicles of about 100–1000 nm

in diameter, secreting from outward budding of the cell plasma

membrane (48–50). As for apoptotic bodies, ranging from 100

to 5000 nm in diameter, they are produced from dying cells

through apoptosis or programmed cell death and are released

into extracellular space from the plasma membrane (51–53).

Recent technological advances have resulted in the emergence

of a var ie ty of EVs iso la t ion methods , inc luding

ultracentrifugation, sucrose-gradient centrifugation,

immunoaffini ty bead cap ture , and s i ze -exc lus ion

chromatography (54). These isolation approaches can be

roughly divided into three general categories: density, affinity,

and size, according to the principle of their separation

mechanisms (55).

However, the recent guideline recommends to using

operational terms for EV subtypes that refer to some physical

characteristics of EVs, such as size (“small EVs” (sEVs) and

“medium/large EVs” (m/lEVs), or biochemical composition

such as CD63+/CD81+EVs; or descriptions of conditions or

cell of origin like apoptotic bodies. To avoid confusion, we use
FIGURE 1

The mechanisms of diabetic non-healing wound development. Diabetic foot ulcers are caused by a number of factors that ultimately lead to
chronic wound. These factors include persistent hyperglycaemia, diabetic neuropathy, peripheral artery disease, and local infection, which cause
the impairment of angiogenesis and inflammatory cell function. Figure created using BioRender (https://biorender.com/).
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the term EVs to replace terms such as exosome and microvesicle

in this review.

EVs are vesicle structures with double lipid membranes,

which have good stability and can protect internal biomolecules

from various enzymes in body fluids, thereby maintaining their

integrity and biological activity. However, the integrity and

biological activity of the extracted exosomes may also be

affected by factors such as storage medium, storage

temperature and time. At present, the most common storage

method is cryopreservation, but cryopreservation may lead to

changes in the shape and physical properties of exosomes, and

may also lead to the formation and aggregation of multilamellar

vesicles, changes in biological properties, content and marker

composition. Storage at –80°C is recognized as the most suitable

storage environment. Although storage at 4°C can easily lead to

the loss of proteins and nucleic acids in exosomes, it can avoid

the destruction of vesicles caused by the freeze-thaw process.

Compared with 4°C, -70°C and fresh samples, exosomal protein

and RNA concentrations were significantly reduced in room

temperature storage. Studies have shown that -20°C or lower

temperature is a preferable long-term storage condition for

exosomes (56). Several reports have shown that acidic pH can

reduce the degradation of exosome-related proteins, and that

more exosomes can be isolated after conditioned medium or

urine with pH adjusted to below 7 for 30 min at room

temperature (57).
Frontiers in Endocrinology 04
Introduction to adipose tissue-
derived stem cells-derived
extracellular vesicles

Recently, adipose tissue was identified as a primary source of

circulating exosomal microRNAs. Adipose-tissue-specific

knockout of the miRNA-processing enzyme Dicer (AdicerKO)

caused the level of circulating exosomal miRNAs to decrease

four-fold (58, 59). As is known to us all, adipocyte hypertrophy

is associated with an increased risk for the development of type 2

diabetes (60). It has also been considered to increase the

production and release of EVs, which are characterized as the

expression of perilipin A (61, 62). Adipose tissue contains

abundant stem cells, called adipose tissue-derived stem cells

(ADSCs), which are reported to have great potential in wound

repair and tissue regeneration. ADSCs-EVs play an important

role in this process. ADSCs can secrete a much higher amount of

EVs compared to other cell types. EVs derived from different cell

types vary in their size and contents. Generally, ADSCs-EVs are

mainly distributed into large extracellular vesicles (lEVs) and

small extracellular vesicles (sEVs), differing in lipid composition.

LEVs are high in phosphatidylserine, while sEVs are high in

cholesterol (63).Because EVs have properties similar to parental

cells, so ADSCs-EVs contain high content of lipids and lipid

droplet-binding proteins such as ATGL and PLIN1 (64).As for
FIGURE 2

The biogenesis and content of extracellular vesicles(EVs). There are 3 subtypes of EVs, including exosomes, microvesicles (MVs), and apoptotic
bodies. Exosomes are generated from the fusion of multivesicular bodies (MVBs) with the plasma membrane, ranging from 40-160nm while
MVs are directly produced from the outward budding of the plasma membrane with a diameter of 100-1000nm. Apoptotic bodies are released
from the blebbing of dying cells and the diameter is about 100 to 5000 nm. EVs contain proteins, lipids, nucleic acids (DNA, mRNA, siRNA,
microRNA, and long noncoding RNAs), and multi-molecular complexes. EVs, extracellular vesicles; MVs, microvesicles; MVBs, multivesicular
bodies. Figure created using BioRender (https://biorender.com/).
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function, ADSCs-EVs have been described, primarily as

regulators of inflammation and systemic insulin resistance

previously (65–68). Recently, a proteomic analysis of

extracellular vesicles derived from pig ADSCs revealed the

proteins enriched in ADSCs-EVs mainly participated in

extracellular matrix remodeling, blood coagulation,

inflammation, and angiogenesis (69). Another study found

that BMSC-EVs mainly promote cell proliferation and

viability, while ADSCs-EVs demonstrated a major effect on

endothelial cell migration and angiogenesis (70).

Acting as carriers, ADSCs-EVs, transfer many messages,

such as miRNAs, circular RNAs (circRNAs), lncRNAs, and

other materials to promote wound repair. Next, we will mainly

focus on the mechanism by which ADSCs-EVs promote

wound closure.
The effects of ADSCs-EVs on DFU in
experimental models

Several biochemical pathways coordinate skin integrity

restoration, in which inflammation is an essential step.

Increasing evidence shows that exosomes derived from human

ADSCs had significant anti-inflammatory functions in vitro

wound healing models, thus accelerating wound closure (71).

ADSCs secreted exosomes to induce the polarization of

macrophages to the M2 phenotype by exosome-carried

activated STAT3, thus reducing the ability of macrophages to

stimulate the inflammatory response (72). Moreover, ADSCs-

EVs expressing a high level of nuclear factor erythroid 2-related

factor 2 (Nrf2) decreased the levels of inflammatory cytokines

such as IL-1, IL-6, and TNF-a, thus reducing the inflammatory

response in the wounds (73).

The proliferative phase serves as the crucial stage of wound

healing and mainly involves the proliferation of blood vessels,

fibroblasts, and keratinocytes (74). More and more studies have

uncovered that ADSCs- EVs are not only able to inhibit cell

apoptosis, but also can enhance cell proliferation and

angiogenesis. ADSCs - EVs overexpressing nuclear factor

erythroid 2-related factor 2 (Nrf2) could advance wound

healing by preventing cell senescence and improving

vascularization (73). ADSCs- EVs treatment not only

significantly suppressed cell apoptosis but also promoted

HaCaT cell (a human keratinocyte cell line) proliferation and

migration through the Wnt/b-catenin pathway (75).

Additionally, the activation of the Wnt/b-catenin signaling

pathway plays a profound part in the proliferative phase, the

most important event of wound healing (75). Except for that,

exosomes fromADSCs can also activate the phosphatidylinositol-

4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)

signaling pathway, thus promoting fibroblasts cell proliferation

and collagen production (76). Moreover, ADSCs- EVs also serve

multiple essential roles in promoting vascular endothelial cells
Frontiers in Endocrinology 05
proliferation and migration to accelerate angiogenesis (77). And

ADSCs- EVs might also significantly increase skin flaps recovery

and capillary density partially through releasing IL-6, therefore

repairing ischemia-reperfusion injury (78). Furthermore, ADSCs-

EVs can also promote wound healing in some pathological

conditions such as hypoxia and high glucose except in normal

physiological states. In a mouse model of fat grafting, exosomes

derived from human ADSCs under hypoxia conditions enhanced

neovascularization partially through the vascular endothelial

growth factor (VEGF)/VEGF receptor pathway (79). In

addition, human ADSCs-EVs could enhance the cell

proliferation, migration, and tube formation of the advanced

glycation end product (AGE)-treated human umbilical vein

endothelial cells (HUVECs) by activating the PI3K-AKT-

mechanistic target of rapamycin (mTOR)-hypoxia-inducing

factor alpha (HIF-1a) signaling pathway to motivate repair and

angiogenesis of diabetic wound healing (80).

Scarring formation is part of the tissue remodeling period of

diabetic foot skin damage and the final stage of overall wound

healing. Recent research has demonstrated that ADSCs-EVs

promote the formation of scarless wounds by preventing

fibroblasts differentiate into myofibroblasts. Additionally,

ADSCs- EVs also elevated the ratio of matrix metalloproteinase

3 (MMP3) to tissue inhibitor of matrix metalloproteinases-1

(TIMP1) via the extracellular regulated kinase (ERK)/mitogen

activated protein kinase (MAPK) pathway, thereby remodeling

the extracellular matrix (ECM) but also mitigating scar formation

(81). However, in a diabetic murine incisional wound model,

ADSCs-EVs caused excessive collagen deposition during the

wound-healing phase at later stages (82), which would lead to

the formation of hypertrophic scar and is detrimental to wound

healing (83). Here, we describe the mechanism of ADSCs-EVs

regulating wound healing (Figure 3).
ADSCs-EVs -MicroRNAs mediate
wound healing

More importantly, microRNAs are enriched in ADSCs-EVs

and exosomal microRNAs could reinforce the acceleration of

wound healing. ADSCs-EVs contains abundant microRNAs,

including microRNA-19b, miR-21, miRNA-31, miRNA-125a,

miR-210, miR-486-5p, miR-423-5p, and miR-126-3p (Table 1).

miR-19b derived from ADSCs-EVs mediates the

transforming growth factor beta (TGF-b) pathway by targeting

CCL1 (encoding C-C motif chemokine ligand 1) (84). In

addition, incubation with ADSCs or their derived exosomes

could prevent the increased HaCaT cell apoptosis rate,and

meanwhile, an in vivo mouse model of skin damage further

confirmed that miR-19b could significantly promote the process

of the healing of cutaneous damage (84). High levels of miR-21

were found in exosomes derived from ADSCs and could elevate

the HaCaT cells cell migration and proliferation by enhancing
frontiersin.org
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MMP-9 and depressing TIMP-2 levels via the PI3K/AKT

pathway (85). At the same time, this study also showed that

overexpression of miR-21 could suppress TGF-b1 expression and
excess TGF-b1 had a negative feedback influence on miR-21 (85).

For instance, a study found that MVs were able to increase the

migration and tube formation of HUVECs. Moreover, miR-31

could promote cell migration and tube formation of HUVECs by

targeting the antiangiogenic gene HIF1, thus contributing to the

proangiogenic effect (86). miR-125a is also enriched in exosomes

secreted from human ADSCs and can be absorbed into vascular

endothelial cells through exosomes, thus enhancing angiogenesis

(87). Additionally, miR-125a directly represses its downstream

target gene DLL4, encoding delta-like 4, an angiogenic inhibitor,

thus promoting endothelial tip cell specification and modulating
Frontiers in Endocrinology 06
endothelial cell angiogenesis (87). Another study revealed that

miR-125a-3p from human ADSCs -EVs promoted wound

healing and angiogenesis by inhibiting PTEN (encoding

phosphatase and tensin homolog (88). In addition, miR-210

released from ADSCs -derived MVs, which was overexpressed

under hypoxia, promoted HUVEC proliferation and migration

by directly targeting RUNX3 (encoding RUNX family

transcription factor 3) in vivo and in vitro (89). Another study

showed that miR-486-5p secreted from ADSCs-EVs promotes

angiogenesis and expedites the healing progression of cutaneous

wounds by inhibiting the expression of SP5 (encoding Sp5

transcription factor) (90). And exosomal miR-423-5p derived

from human- ADSCs can be transferred into HUVECs and

promote angiogenesis by targeting (suppressor of fused
FIGURE 3

The main mechanism of ADSCs-EVs on DFU in experimental models. ADSCs-EVs can reduce inflammatory cytokines, prevent cell senescence,
increase capillary density, promote fibroblasts proliferation and collagen secretion via Wnt/b-catenin and PI3K/AKT signaling pathway to
accelerate wound closure. ADSCs-EVs also can enhance the endothelial cells proliferation, migration, and tube formation through the PI3K-
AKT-mTOR-HIF-1a axis to motivate angiogenesis. Under hypoxia conditions, ADSCs-EVs enhanced neovascularization partially through VEGF/
VEGF-R pathway. ADSCs-EVs elevate the ratio of MMP3 to TIMP1 to remodel the extracellular matrix (ECM) and prevent fibroblasts differentiate
into myofibroblasts in the early stage and cause excess collagen deposition in the late stage. ADSCs-EVs, adipose tissue-derived stem cells-
derived extracellular vesicles; DFU, diabetic foot ulcer; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; AKT, protein kinase B; mTOR,
mechanistic target of rapamycin; HIF-1a, hypoxia-inducing factor alpha; VEGF, vascular endothelial growth factor; VEGF-R, vascular endothelial
growth factor receptor; MMP3, matrix metalloproteinase 3; TIMP1, tissue inhibitor of matrix metalloproteinases-1; ECM, extracellular matrix.
Figure created using BioRender (https://biorender.com/).
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homolog)Sufu (91). Recent studies have demonstrated that there

are 199 upregulated miRNAs and 93 downregulated miRNAs in

ADSCs-EVs compared to the ADSCs group, stimulating dermal

fibroblast proliferation and migration to promote skin

regeneration (98). For instance, ADSCs-derived exosomal miR-

126-3p not only promoted fibroblasts proliferation andmigration

but also stimulated angiogenesis by targeting Pik3r2 (encoding

phosphoinositide-3-kinase regulatory subunit 2), thus

accelerating collagen deposition, new vessel formation, and

wound healing in the rats model (92). Another research also

found that reduced miR-126 in serum-EVs impaired the

angiogenic potential of endothelial cells (99).
ADSCs-EVs -circRNAs mediate
wound healing

Recent studies have provided strong evidence that circRNAs

play a key role in regulating wound repair microenvironments

(100) (Table 1). A recent study reported that in a high glucose

pathological environment, angiogenesis is inhibited, while

mmu_circ_0000250 could enhance angiogenesis in a model of

angiogenesis in vitro (93). Overexpression of mmu_circ_0000250

suppressed miR-128-3p expression, thereby increasing the

expression level of SIRT1 (encoding sirtuin 1), which has anti-

inflammatory and antioxidant features (101, 102). Moreover, in a

DFU mouse model, consistent with previous results, exosomes
Frontiers in Endocrinology 07
containing abundant mmu_circ_0000250 could largely

accelerate the process of wound healing (93). Another study

identified that circ-Gcap14 was upregulated in hypoxic

preconditioned ADSCs (94). The study confirmed that circ-

Gcap14 could act as a microRNA sponge to absorb miR-18a-

5p, resulting in the upregulation of HIF-1a and subsequent

VEGF expression elevation, thereby promoting angiopoiesis

and wound healing (94).
ADSCs-EVs - lncRNAs mediate
wound healing

Many studies reported ADSCs-EVs to comprise varieties of

lncRNAs, including H19, Linc00511, and lncRNA MALAT1

(Table 1). LncRNA H19 functions as a molecular sponge for

miR-19b directly targeting SOX9 (encoding SRY-box

transcription factor 9), so ADSCs-EVs with an overabundance

of H19 suppressed miR-19b levels leading to SOX9 upregulation,

which activated the Wnt/b-catenin signaling pathway. And this

activation could promote the cell proliferation, migration, and

invasion of human skin fibroblast and accelerate wound healing

of skin tissues (95). Linc00511-overexpressing ADSCs-EVs

upregulated Twist1 expression by repressing Twist1-

ubiquitination and degradation via inhibition of progestin and

adipoQ receptor family member 3 (PAQR3) in endothelial

progenitor cells (96). ADSCs could also secrete exosomes
TABLE 1 The functions of ADSCs-derived EVs in diabetic foot ulcers.

Non-coding
RNAs

Target Functions Reference

miR-19b CCL1 Activate TGF-b pathway, inhibit inflammation, and reduce the apoptosis of cells (84)

miR-21 TGF-b1 Elevate HaCaT cells migration and proliferation by enhancing the MMP-9 and depressing TIMP-2 expression via PI3K/
AKT pathway

(85)

miR-31 HIF-1 Promote cell migration and tube formation of HUVECs (86)

miR-125a DLL4 Transfer to vascular endothelial cells and promote endothelial tip cell specification to stimulate angiogenesis (87)

miR-125a-3p PTEN Promote the viability, migration, and angiogenesis of HUVECs (88)

miR-210 RUNX3 Promote HUVECs cell proliferation, migration, and invasion (89)

miR-486-5p Sp5 Facilitate fibroblasts proliferation, migration, and HMECs angiogenesis (90)

miR-423-5p Sufu Promote angiogenesis (91)

miR-126-3p PIK3R2 Promote proliferation and migration of fibroblasts and angiogenesis of HUVECs (92)

mmu_circ_0000250 miR-128-
3p

Promote SIRT1 expression and enhance angiogenesis (93)

circ-Gcap14 miR-18a-
5p

Upregulate HIF-1a and VEGF expression elevation and angiogenesis (94)

LncRNA H19 miR-19b Upregulate SOX9 to activate the Wnt/b-catenin signaling pathway and promote human skin fibroblast cell proliferation,
migration and invasion

(95)

Linc00511 PAQR3 Upregulate Twist1 and EPCs proliferation, migration, and angiogenesis (96)

LncRNA MALAT1 miR-124 Activate Wnt/b-catenin pathway, thereby promoting cutaneous wound healing (97)
fro
miR/miRNA, microRNA; CCL1, C-C motif chemokine ligand 1; TGF-b, transforming growth factor beta; TGF-b1, transforming growth factor beta1; MMP-9, matrix metalloproteinase 9;
TIMP-2, tissue inhibitor of matrix metalloproteinases-2; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; AKT, protein kinase B; HIF-1, hypoxia-inducing factor alpha; DLL4, delta-
like 4; PTEN, phosphatase and tensin homolog; RUNX3, RUNX family transcription factor 3; Sp5, Sp5 transcription factor; Sufu, suppressor of fused homolog; PIK3R2, phosphoinositide-3-
kinase regulatory subunit 2; circ-, circRNA; SIRT1, sirtuin 1; VEGF, vascular endothelial growth factor; SOX9, SRY-box transcription factor 9; PAQR3, progestin and adipoQ receptor
family member 3; MALAT1, metastasis-associated lung adenocarcinoma transcript 1.
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containing lncRNA MALAT1 (metastasis-associated lung

adenocarcinoma transcript 1), which are capable of promoting

human dermal fibroblast migration and accelerating wound

healing (103). Furthermore, the subsequent study found that

ADSCs- EVs containing MALAT1 could target miR-124 and

activate Wnt/b-catenin pathway, thereby promoting cutaneous

wound healing (97).
ADSCs-EVs loaded with other molecules
mediate wound healing

Studies have shown that MSC-EVs mainly act via their

encapsulated miRNAs; however, other studies have shown that

EVs can act independently of miRNAs. For example, a previous

study showed that miR-205 could modulate AKT activation,

thereby increasing keratinocyte migration and facilitating

cutaneous wound repair (104). However, interestingly, later

research reconfirmed the capacity of ADSCs -EVs to accelerate

cell proliferation and migration, but surprisingly, this effect of

ADSCs -EVs on wound healing was independent of miR-205

activity (105). Furthermore, the study also found that knockdown

of miR-205 inhibited AKT phosphorylation in fibroblasts and

keratinocytes, and administration of ADSCs-EVs reversed the

effect caused by miR-205 knockdown, meanwhile, an in vivo

animal experiment proved that ADSCs-EVs promoted skin

wound closure in a manner independent of miR-205 activity

(105). Additionally, many other compositions like proteins also

play a great role in curing DFU. Another study showed that

ADSCs- EVs contain angiopoietin like 1 (ANGPTL1),

thrombopoietin, and milk fat globule EGF and factor V/VIII

domain containing (MFGE8), which have angiogenic effects

(106). A recent study has found that ADSCs -EVs are

particularly rich in pro-angiogenic genes and NRG1(neuregulin

1), and ADSCs -EVs can promote angiogenesis and prevent

muscle inflammation cells infiltration via NRG1-mediated

signals under ischemia/reperfusion condition (107). EVs

derived from endothelial cells were reported to inhibit vascular

smooth muscle cell apoptosis and increase recruitment to

neovessels via carried PDGF-BB (108).
The potential clinical application
of ADSCs-EVs

In conclusion, ADSCs -EVs have great potential to cure

diabetic wounds, representing a novel potential therapy to treat

chronic wounds. In the current view, existing treatments for

DFU mainly include glycemic control, nutritional support, drug

therapy, pressure offloading, vascular reconstruction, surgical

debridement, and stem cell therapy (109). However, these
Frontiers in Endocrinology 08
available therapeutic methods and options are very limited and

none of the above are adequately powered to cure diabetic foot.

Thus, scientists have attempted to develop an ideal therapy by

applying ADSCs -EVs to cure DFU, mainly including ADSCs-

EVs injection therapy, EVs -loaded alginate hydrogel, and EVs -

loaded wound dressings.
ADSCs- EVs injection therapy

A recent study has applied ADSCs- EVs to wounds through

topical injection and intravenous injection and interestingly

found that when given intravenous injection treatment, the

wound healed faster compared to local injection (83). On the

one hand, the different results caused by two injection ways may

lie in partial loss of exosomes during the local injection. On the

other hand, when exosomes are injected directly into the wound,

they unavoidably further impact the wound, thereby disrupting

the healing process (83). Another research has illustrated that a

combination intravenous administration of human ADSCs and

human ADSCs- EVs could significantly enhance cutaneous

regeneration, collagen deposition, and angiogenesis in a mouse

cutaneous wound healing model for the first time (110). In

addition, for local application, human ADSCs- EVs offered

additional benefits for wound healing over human ADSCs (110).
EVs -loaded alginate hydrogel

EVs are commonly administered by injection, which is

reported to undergo a fairly rapid systemic clearance thus

impacting their function (111). However, the capability of

diabetic wound repair and tissue restoration is impaired,

which means a relatively prolonged healing time. More

recently, hydrogels have been extensively applied in the tissue

engineering and regenerative medicine fields due to their diverse

characteristics, including supporting the incorporation of

therapeutic cells (112). Studies indicated that EVs can be

delivered using hydrogels, which enhanced their angiogenic

activities and facilitated wound healing (113, 114). Chitosan-

based hydrogels loaded with EVs have been heavily exploited to

restore vascularization and also promote the wound healing

process (115). In addition, multifunctional hydrogels have been

developed. One type of multifunctional hydrogel is called FHE

hydrogel (F127/OHA-EPL), consisting of Pluronic F127 (F127),

oxidative hyaluronic acid (OHA), and ϵ-poly-L-lysine (EPL).

Recent studies have found that an FHE@exosomes (FHE@exo)

hydrogel significantly promoted the proliferation, migration,

and tube formation ability of HUVECs. Meanwhile, the FHE@

exo hydrogel significantly accelerated angiogenesis, re-

epithelization, and collagen deposition and enhanced diabetic
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wound healing with less scar tissue (116). Apart from FHE

hydrogel, alginate-based hydrogels have received great attention

because of their high biocompatibility and capacity for sustained

release of their carried bioactive molecules (117–119). The

application of ADSCs- EVs incorporated into alginate

hydrogels significantly promotes active wound closure,

reepithelization, collagen deposition, and angiogenesis in

cutaneous full-thickness wounds in a rat model (120). Chitin

nanofiber hydrogel obtained from squid cartilage has also

received attention because it can largely simulate the natural

ECM, promote cell inoculation, and absorb the wound exudate

from the wound (121). Another study showed that an ADSCs-

loaded b-Chitin nanofiber hydrogel could significantly promote

vessel formation and collagen deposition via the TGFb/SMAD

family member 3 (smad3) pathway, thus promoting the wound

healing process (122).
EVs -loaded wound dressing

Recently, regenerative wound dressings have become a

trending topic in the tissue repair field, because they are

biodegradable and will eventually integrate with the wound

after serving as a substrate for tissue to form (123). One kind

of EVs -loaded oxygen releasing antioxidant wound dressing,

OxOBand, contributed to faster re-epithelialization, improved

angiogenesis, and enhanced collagen synthesis, ultimately

accelerating wound repair and tissue regeneration in an in vivo

diabetic wound model. OxOBand consists of antioxidant

polyurethane, which releases oxygen persistently and can be

supplemented with ADSCs-EXOs (123).

Importantly, these dressings have the potential to prevent

infection and ulceration, improve wound healing with increased

collagen deposition, and promote re-epithelialization, Thus,

OxOBand is a remarkable new therapy to enhance diabetic

wound healing and might provide a promising therapeutic

strategy to treat diabetic ulcers (123).

Human acellular amniotic membrane (hAAM), which is

readily available and inexpensive, has been reported to have

significant potential as a scaffold dressing to promote would

repair (124–126). A recent study proved that a combination of

hAAM and ADSCs- EVs enhanced wound repair by mediating

inflammation, promoting angiogenesis, and advancing the

synthesis of the ECM. The hAAM- EVs scaffold dressing is a

novel non-invasive approach to delivering exosomes rather than

a kind of wound dressing (127). The FEP scaffold was

constructed using F127, grafting polyethylenimine and

a ldehyde pu l lu lan , which compr i se s an adhes ive

thermosensitive multifunctional dressing with a long-term

exosome-release property. FEP scaffolds loaded with human

ADSCs-exosomes (FEP@exo) synergistically accelerated fast

and scarless healing by stimulating angiogenesis and
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enhancing cell proliferation and re-epithelialization. In

addition, FEP@exo exerted better effects than the exosome

solution alone, indicating great power in wound healing (128).

A recent study has proposed a scaffold named dipose-derived

stem cells (ADSCs) loaded gelatin-sericin (GS) coated with

laminin (GSL) cryogels, which has an effect on more

vascularization and could improve healing in compromised

chronic wounds (129). Meanwhile, an asymmetric wettable

dressing with a composite of exosomes and si lver

nanoparticles (CTS-SF/SA/Ag-Exo dressing) was fabricated to

solve the repair of infected wounds, possessing multifunctional

properties including broad-spectrum antimicrobial activity,

promoting wound healing, retaining moisture and maintaining

electrolyte balance (130).
Discussion and conclusion

EVs contain abundant content such as non-coding RNAs,

proteins, and lipids. Apart from non-coding RNAs carried by

EVs, there are some non-coding RNAs that exist in free form or

binding form to the protein particles in circulation. Most of the

endogenous circulating miRNA molecules do not exist in free

form, but often exist in particles formed with proteins, so the

endogenous circulating RNA molecules have good RNase

degradation resistance and high stability. But non-coding

RNAs in EVs show remarkable stability and more durable

activity, and have good RNase degradation resistance. And a

higher expression of the EV-derived miRNA pool is likely to

result from a shell-like protective activity exerted by the EVs on

miRNAs in plasma (131). More importantly, among the EV

bioactive cargoes, non-coding RNAs in EVs are an important

component of gene regulation, eliciting either decay or

translational repression of target mRNAs while free non-

coding RNAs do not have it (132). EVs secreted by ADSC

contain a variety of proliferation-promoting miRNA, lncRNA,

cytokines and active peptide substances, and are wrapped by

lipid bilayer membrane, so it is difficult to be decomposed and

more easily transferred to target cells to play functions. As is

known to us all, there are three different kinds of fat depots, their

functions are different. However,there is no literature on the

therapeutic effect of brown fat, beige fat, and white adipose-

derived EVs on diabetic foot ulcer so far. So our review only

focuses on general ADSCs, just want to see the all ADSCs-EVs

influence on DFU, but the specific mechanism needs more

investigation. ADSCs -EVs can promote tissue regeneration

and repair by regulating cell proliferation and apoptosis, and

participate in the regulation of angiogenesis, immune regulation,

and ECM remodeling. Remarkably, many pre-clinical data

suppor t the v i ew tha t ADSCs -EVs therapy has

immunomodulatory and reparative properties which accelerate

diabetic wound healing; therefore, they are expected to be a
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novel and better treatment for DFU. In sum, adipose-derived

stem cells (ADSCs) represent an ideal resource for stem cell-

based regenerative medicine, which are characterized by

accessibility, multipotency, self-renewal potential, immune-

privilege, and high proliferative rate. ADSCs possess great

power, especially in potentially curing diabetic foot ulcers.

Considerable researches indicate that ADSCs -EVs can

promote tissue regeneration and repair by regulating cell

proliferation and apoptosis, and participating in the regulation

of angiogenesis, immune regulation, and extracellular

matrix remodeling.

ADSCs-EVs have great potential, but there are also many

obstacles. First of all, the preparation of ADSCs-EVs is time-

consuming and complicated. Additionally, the extraction quantity

of EVs is small and the efficiency is low. Moreover, existing

extraction schemes still cannot meet the clinical standards and

needs (133). Therefore, a safe and efficient approach needs to be

further developed to obtain a great deal of EVs. And lack of suitable

storage and transport methods to ensure the stability of EVs is

another headwind to deal with. EVs are generally stored at -80°C,

but this temperature is not suitable for the processing or

transportation of EVs. More importantly, long-term storage of

exosomes at -80°C will lead to its morphology alterations,

decreased biological activity, and RNA degradation (134). Current

studies on adipose stem cell-derived exosomes are mainly short-

term studies or small sample studies, lacking long-term clinical

studies (135, 136). Nevertheless, the pathway of preclinical

experimental models to clinical application is so long and hard,

because the challenges will be numerous. Still, if we can figure out

the detailed mechanism of ADSCs -EVs in promoting wound

healing, the forward road will be easier.
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