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Abstract 
Surface electromyography signals are routinely used for designing prosthetic control systems. The concept of synergy 

estimation for muscle control interpretation is being explored extensively. Synergies estimated for a single active degree of 

freedom (DOF) are found to be uncorrelated and provide better results when used for single movement classification; however, 

an increase of simultaneously active DOFs leads to complex limb movements and multiple DOF detection becomes a challenge. 

Synergy estimation is a non-convex optimization technique, this paper proposes the use of regularized non-negative matrix 

factorization for the estimation of synergistic weights during complex movements. The use of regularization constraint makes 

the overall problem bounded and provide smoothness by avoiding overfitting. The proposed technique showed better accuracy 

when tested for activation of multiple DOF simultaneously at a significantly lower computational time, i.e., by 34%. 
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Introduction 
Myoelectric control refers to the translation of surface 

electromyography (sEMG) signals as a stimulus for assistive 

device control. It presents countless possibilities in neuro-

rehabilitation and human-machine interface applications [1]. 

Currently, there are three active sEMG strategies in the research 

community, namely, pattern recognition (PR) based systems [2-

4], synergy based systems [5-8], and a hybrid system based on 

the merger of the two [9,10]. A generalized block-diagram 

based comparison for all the three categories is presented in fig. 

(1). PR has been extensively explored in the past two decades 

for sEMG and provides better results in terms of percentage 

accuracy and online data analysis [11]. However, despite its 

advances regarding accuracy level when multiple positions or 

multiple force levels are involved, there is a considerable 

decrease in the performance of PR based classifiers [4]. To 

address this shortcoming, robust classifier requires an extensive 

workload in the training phase [1]. This limitation bounds PR 

based classifiers from commercial use leaving the stage open 

for conventional state machine-based systems. Alternatively, 

research and understanding of synergistic muscle activation in 

the past decade has led many to believe that synergy-based 

models are more viable solution for commercial use [1,8,9]. 

The sEMG is a composition of time-varying motor unit action 

potentials transmitted to the spinal cord via nerves [1,12]. The 

control signals from the spinal cord are translated into a group 

of time-varying muscle signals through a set of time-invariant 

discrete weights (referred to as synergies) [11,13,14]. The 

investigation by Santello et al., suggests that there exists a 

strong correlation among different gripping postures of the 

hand [15]. Two synergies (i.e., the first two principal 

components) provide information about almost 80% of all 

gripping postures. Thus, an effective estimation of these 

synergies holds the key to simultaneous and proportional 

control. 

Hahne et al., utilize the concept of co-adaptation of human as 

well as time-invariant synergies by providing visual feedback 

in the “close-loop system” [16]. The study activates two DOFs 

(for the upper arm) simultaneously and estimates the effect of 

visual feedback for estimation of movements using a linear 

regressor. The study provides a proof of concept with very 

encouraging results, but the adopted methodology is very time 

consuming (i.e., an average delay of 400 msec to 1 sec), 

whereas the nominal duration should be around 120 msec at 

maximum [17]. Lin et al., propose the use of Non-negative 

Matrix Factorization (NMF) with sparseness constraint for the 

extraction of bases information for multiple DOF control [18]. 

One of the main constraints for NMF based time-invariant 

synergy estimation is the extraction of sequential bases using a 

single DOF. Thus, training with each single active DOF is a 

compulsion that can later be extended to multiple DOFs. Lin et 

al., claim that the maximization of sparseness constraint with 

NMF obtaining optimal bases and single DOF calibration is not 

a necessity anymore. The retrieved results are compared with 

classic NMF as well as regression-based synergy systems. 

However, it is a known fact that sparseness-based solutions are 

not unique and the extraction of a convergent solution is not 

guaranteed [19]. Therefore, the synergies estimated can affect 

the discrimination of tasks and thus, performance. 

Figure 1 sEMG: surface electromyography; PR: pattern 

recognition; BSS: blind source separation; the figure 
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presents a generalized comparison of three methodologies; 

namely, PR Model, Synergy Model and Hybrid Model. 

In addition to PR and synergy-based systems, there also exist 

some hybrid models that provide a blend of both. The paper 

proposed by Zhang et al., formulate a combination of PR and 

synergy estimation-based system for the classification of active 

DOFs, one dedicated for each finger [10]. The variance 

accounted for (VAF) test results in the selection of 11 synergies 

for classification purposes. The high dimensionality and 

dedication of one DOF classifier for each finger (a total of five 

classifiers), as well as two synergy estimators dedicated for 

each classifier makes the complete process computationally 

exhaustive. Rasool et al., propose the use of probabilistic 

independent component analysis (pICA) for synergy estimation 

with preliminary results cross verified by applying a linear 

discriminant analysis classifier [9]. The work is tested for both 

online and offline analysis. Current paper is inspired by 

Rasool’s paper and the results of the proposed work are 

compared with his work for offline processing using the same 

dataset. 

Synergies estimated for single DOF are found to be 

uncorrelated and leads to better hand posture identification 

results [20]. However, complex limb movements involve the 

activation of multiple DOFs simultaneously. Decoding sEMG 

for complex tasks is therefore a challenge and a topic for active 

research. This paper advocates the use of an efficient synergy 

model for identification of hand postures based on single and 

double DOF activation. The results are based on offline 

analysis. The proposed work recommends the use of 

regularized NMF to obtain optimal synergy weights. The 

estimated synergy weights are then employed by Kalman filter 

as a system model. A preliminary study of the proposed model 

for the detection of single DOF achieving an accuracy of 97.6 

to 99.5% was presented earlier in a conference paper [20]. 

The rest of the paper is organized as follows. The paper initially 

addresses experimental setup, the mathematical model is 

explained in detail in the next section; correlating the central 

nervous system (CNS) as a stochastic process, followed by 

synergy estimation technique. Experimental setup is described 

in the later part followed up by results and discussion. The 

conclusion is presented at the end of the paper. 

Figure 2: The detail of the sEMG formation. 

Figure 3 The given diagram provides a detail of the sEMG 

formation, i.e., the control signals 𝜑𝑗(𝑡) in the form of impulses

are issued from the brain. At the spinal cord, multiplicative 

noise 𝜉𝑗(𝑡) is introduced. The spinal cord signals form a

superimposed combination of the control signals and weights 

as presented by the equation 𝜙𝑖(𝑡) = ∑ 𝜑𝑗(𝑡)𝜉𝑗(𝑡)𝑗   . When

transmitting the signal to the appropriate muscle the neuro-

muscular system adds weights 𝐶𝑘,𝑖. A convoluted and noisy

version of the weighted control commands is observed by the 

kth muscle, i.e. sEMG, 𝑥𝑘(𝑡)

Experimental Setup 
The sEMG data were collected from 12 healthy participants 

after approval by the ethical review committee and written 

informed consent of the participants was obtained. Each 

participant performed two sets of movements, the first set 

comprised of activation of only a single DOF at one time, i.e., 

movements involving wrist flexion and extension, wrist 

supination and pronation, and hand opening and closing. The 

second set consisted of eighteen movements in total involving 

simultaneous activation of two DOFs combining the above-

mentioned movements. In our data recording, each movement 

was performed for 5 sec with a rest of 5 sec between such 

movements. A total of 8 sEMG electrode sets were placed in a 

symmetrical manner around the forearm. sEMG data were 

recorded using AgCl electrodes with Noraxon TeleMyo Direct 

Wireless Transmission System, which had inbuilt filtering of 

10-500 Hz. The data was digitized using NI-USB 6009

acquisition unit with a sampling frequency of 2000 samples per

second. For a detailed description of the experimental setup

refer to the paper [9].

Mathematical Model 
This mathematical model is built on the premise that after 

planning voluntary movements in the CNS, appropriate 

commands (referred to as the control signals 𝜙𝑗(𝑡)) are issued

to relevant skeletal muscles through motor neurons via the 

spinal cord and peripheral nervous system. On receiving these 

neural commands, the skeletal muscles get activated to 

accomplish the task. These activations are modulated by 

changing the number of recruited motor units (and thus muscle 

fibers) and their firing rate [21]. The control signals transmitted 

from the spinal cord are modeled as (𝑡) =
[𝜙1(𝑡), 𝜙2(𝑡), … , 𝜙𝐽(𝑡))]𝑇 , where J is the total number of

active DOF for the current task. A visual description of the flow 

of information in the CNS from the motor cortex to the targeted 

muscle; is presented in fig. 2. It is important to note that the 

noise in the CNS (i.e. 𝜉𝑗(𝑡)) is multiplicative by nature, not

additive and is directly proportional to the control signal (𝜑𝑗(𝑡))

issued for the 𝑗𝑡ℎ DOF by the CNS [22].The signal received at 

the 𝑘𝑡ℎ muscle,𝑥𝑘(𝑡), is the sum of product of the control

signals (𝜑𝑗(𝑡)), multiplicative noise 𝜉𝑗(𝑡) and weights assigned

(𝐶𝑘,𝑖, as a result of cross-talk between the 𝑘𝑡ℎ and 𝑖𝑡ℎ muscle):

𝑥𝑘(𝑡) = ∑ 𝐶𝑘,𝑖 ∑ 𝜑𝑗(𝑡)𝜉𝑗(𝑡)

𝑗𝑖

,  (1) 

𝑦𝑙(𝑡) = ℎ𝑙,𝑘(𝑡) ∗ 𝑥𝑘(𝑡) + 𝑒(𝑡),  (2) 
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where ℎ𝑙,𝑘(𝑡) is the transfer function of the medium between

the 𝑙𝑡ℎ electrode and 𝑘𝑡ℎ muscle (i.e., skin, fat, and non-

contractile tissue), ‘∗’ represents convolution and 𝑦𝑙(𝑡) is the

recorded sEMG signal while 𝑒(𝑡) represents the environmental 

artifacts and noise. The signal recorded through sEMG 

electrodes is a convoluted sum of muscle signals with the 

additive noise of the environment. 

In the matrix form it can be expressed as: 

  𝑿(𝑡) = 𝒁𝜙(𝑡)                                                                   (3) 

Where 𝑿(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝐾(𝑡))]𝑇, bold face capital

letters represent matrices while small letters are representing 

vectors. 𝒁 ∈ ℝ[𝐾×𝐽] represents the internal synergy weight 

matrix added by the neuro-muscular system and indicates the 

extent to which the 𝑘𝑡ℎ muscle is participating in the activation 

of the 𝑗𝑡ℎ DOF. The complete system multiplier model is 

represented by 𝑺 = 𝑯𝒁, a product of internal synergy matrix 

‘𝒁’ with external filtering effects of skin and electrode ‘𝑯’. An 

estimation of the synergy matrix ‘𝑺’ using the recorded sEMG 

provides a link to the neural control commands. Synergy 

estimation problem transforms into a blind source separation 

problem defined as: 

𝒀(𝑡) = 𝑯𝒁 𝜙(𝑡) + 𝑬(𝑡) 
 = 𝑺𝜙(𝑡) + 𝑬(𝑡)  (4) 

where, sEMG signal is represented as 𝒀(𝑡) =
[𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝐾(𝑡))]𝑇; and synergy matrix, 𝑺 ∈ ℝ[𝐿×𝐽] and

𝑬 ∈ ℝ[𝐿×1]. 

State Space Model for the CNS 
The CNS can be modeled as a noisy dynamic system using 

state-space formulation. The complete system can be 

represented as a dynamic system followed up by measurement 

model. State-space formulation allows the employment of 

optimal Bayesian filtering for the estimation of the unknown 

state of the system, i.e., command signals transmitted from the 

spinal cord. The state-space model translated the state variable, 

𝑥𝑡 (control signals, 𝜙(𝑡)) to the state observer (sEMG signal),

given as  

 𝑥𝑡 = 𝑥𝑡−1 + 𝑛1,𝑡 ,  (5) 

 𝑦𝑡 = 𝑠𝑥𝑡−1 + 𝑛2,𝑡,  (6) 

where 𝑥𝑡−1 represent the system state at time 𝑡 − 1, 𝑦𝑡 is the

output of the system, i.e., the sEMG. Whereas 𝑛1,𝑡 and

𝑛2,𝑡 represents process and measurement white Gaussian noise

with zero mean and known co-variance matrices Q and R, 

respectively. 

The system's dynamic model captures the temporal behavior of 

the evolution of control signals or the system state 𝑥𝑡 and is

modeled using the random walk process. The observation or the 

measurement model maps the system state to the system outputs 

𝑦𝑡, i.e., voltage levels recorded using the sEMG electrodes. The

measurement model is defined using the muscle synergies, i.e., 

𝑠𝜖𝑺 which relates the system state 𝑥𝑡 to the system output 𝑦𝑡.

Estimation of Muscle Synergies 
The recorded sEMG signals 𝒀(𝑡) is a composition of the control 

signals distributed from spinal cord (𝜙(𝑡)), and weights 

introduced by the neuro-muscular system of the body (𝑺), both 

are unknown quantities and formulates to be a blind source 

separation problem. As an exact solution does not exist in such 

a case; therefore, approximation methods are adopted where the 

objective is to minimize the estimated error, 𝑬(𝑡), by 

decomposing the sEMG matrix into control signals and 

synergistic weights, as: 

   𝑬 = 𝒀(𝑡) − 𝑺𝜙(𝑡)                                                  (7) 

An estimation of muscle synergy matrix (S) makes the state-

space model completely defined. In the proposed paper synergy 

matrix ‘𝑆’ is estimated for various hand movements followed 

by employment of Kalman filter to track the control commands, 

issued by the spinal cord. A detailed explanation of the 

proposed methodology is given in (Fig. 3). 

Figure 4: The proposed model in two stages. 

Figure 5 The figure describes the proposed model in two stages. 

Stage one is referred to as Calibration Mode where task specific 

synergies are estimated using regularized NMF. The second 

stage namely, Tracking mode, employees Kalman filter for the 

tracking of the associated task using the sEMG signals. As we 

are taking 8 channel sEMG recording; thus, we have RMS 

values of [𝑁 × 8], where N is the length of MAI interval and 'r' 

is the rank of the state observer matrix. 

Blind source separation algorithms employed in the past 

generally belong to two main categories, i.e., independent 

component analysis (ICA) [9,23,24] and NMF [18,25,26]. One 

of the major drawbacks of ICA or any of its variants is the 

requirement of independence of the source channels, something 

which is hard to establish for biological systems; thus, other 

decomposition algorithms that do not require independence pre-

assumptions are explored. One decomposition of interest is 

NMF [5,6,14,16,18,26]. NMF decomposes the provided 

observer matrix into two matrices with the property that all 

three matrices are non-negative. Both the decomposition 

matrices, i.e., Synergy weights and control signals are 

unknown, so the overall problem is non-convex. Finding a 

global minimum for non-convex problems can be very 

challenging. There exist a few algorithms to implement the 

concept of NMF. Kim et al., adopted the alternating least square 

(ALS) method to address the problem of non-convexity [27]. 

ALS is a two-way optimization method that caters to the non-

convexity by employing an iterative methodology, it is a block 

coordinate descent technique. To attain an optimal solution 
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ALS requires the sub-problems to have a unique solution. 

However, the property does not hold as the sub-problems are 

convex but not strictly convex [28]. Therefore, to attain optimal 

decomposition using the ALS method this paper recommends 

the use of optimization constraints, making the problem overall 

a bounded optimization function. The penalty function can be 

based on  𝑙1 − 𝑛𝑜𝑟𝑚 known as Sparsity constraint and 𝑙2 −
𝑛𝑜𝑟𝑚, the Euclidean distance [29]. For the selection of the 

correct regularization constraint, the model in question must be 

considered. For bio-signals, the sEMG matrix cannot always be 

considered sparse; however, the control signals can always be 

assumed to be uncorrelated. Therefore, in order to provide a 

better solution and faster convergence using the ALS algorithm, 

this paper proposes the use of standard Tikhonov (𝑙2 − 𝑛𝑜𝑟𝑚)

constraint. The use of  𝑙2 − 𝑛𝑜𝑟𝑚 as penalty function will

impose boundness as well as smoothness on the solution [30]; 

this approach is referred to as regularized NMF. To the best of 

our knowledge, regularized NMF has not been utilized for bio-

signal applications in literature so far. 

Regularized NMF algorithm 
Five main nerves carry signals from the spinal cord to the 

human arm, different synergistic combinations of these nerves 

are involved in activation of different DOFs [31]. The 

information carried by the combination of nerves is decoded 

and transmitted to the group of muscle fibers, which is, later, 

picked up by the sEMG electrode. To attain maximum 

information, P number of electrodes are placed on the arm in a 

circular arrangement, targeting different muscles; the resulting 

sEMG signals matrix (Y) thus obtained has a dimension [L × 

P]. To achieve maximum information addressing different 

muscles of the arm, the number of electrode channels are 

always kept more than the number of nerve-channels involved, 

i.e., P > 5; therefore, the sEMG observer matrix has a greater

dimensionality than the rank (r) of the matrix. To obtain a

synergy matrix that has rank 'r ' with low error, the ALS low-

rank algorithm proposed by [17] is incorporated in a modified

manner to satisfy the regularized NMF penalty as well as fulfill

bio-signals estimation requirements. Let the estimated low rank

sEMG signals matrix be �̂� ∈ 𝑌𝑟(𝑌𝑟 ⊂ {𝑌 ∈  ℝ[𝐿×𝑃]: 𝑟𝑎𝑛𝑘(𝑌) =

𝑟𝑎𝑛𝑘(𝑌𝑟) = 𝑟}), that is defined as (eq. 8).

�̂�

= ||𝑌 − 𝑆𝜙(𝑡)||𝑌∈𝑌𝑟

𝑎𝑟𝑔𝑚𝑖𝑛
2  (8) 

For the implementation of 𝑙2 − 𝑛𝑜𝑟𝑚, two regularization

coefficients and two regularization matrices are incorporated, 

i.e., 𝛼𝑆 and 𝛼𝜙, and 𝐿𝑆 and 𝐿𝜙 for synergy and control signals,

respectively. The use of regularization parameters enforces

maximum uncorrelatedness of the synergies and the control

signals. While 𝐿𝑆 and 𝐿𝜙, are used to enforce application

dependent characteristics, in the proposed case the

regularization matrices are initialized as the trace elements, i.e.,

𝐿𝑆 = 𝑡𝑟𝑎𝑐𝑒{𝑆𝑇𝐸𝑆} and 𝐿𝜙 = 𝑡𝑟𝑎𝑐𝑒{𝜙(𝑡)𝑇𝐸𝜙(𝑡)} [30]. The

use of regularization coefficients and regularization matrices

together provides a good fit leading to an optimum mean square

error.

�̂� = ||𝒀 − 𝑺𝜙(𝑡)||
𝑌∈𝑌𝑟

𝑎𝑟𝑔𝑚𝑖𝑛

2

2

+ 𝛼𝑆||𝑺𝐿𝑆||
2

2

+ 𝛼𝑆 ||𝐿𝜙𝜙(𝑡)||
2

2

 (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑆𝑙,𝑗 , 𝜙𝑗,𝑙(𝑡) ≥ 0; 𝑙 = 1, … , 𝐿 &𝑗 = 1, … , 𝐽

For computational efficiency and convergence, the 

regularization terms  𝛼𝑆 and 𝛼𝜙 are defined as decreasing

exponentials, i.e., 𝛼𝑆
𝑚 = 𝛼𝜙

𝑚 = 𝛽𝛼𝑚−1; 0 < 𝛽 < 1 and 𝛼 =

𝜎𝑟𝑒𝑠𝑡 𝑟𝑒𝑔𝑖𝑜𝑛
2 ; where ′𝑚′ is the iteration number and 𝜎𝑟𝑒𝑠𝑡 𝑟𝑒𝑔𝑖𝑜𝑛

2  is 

the variance when the hand is at rest. 

Results 

To implement the proposed model, the rest (inactive) regions of 

the muscles were separated from active regions using an 

adaptive Teager Kaiser energy operator-based algorithm as 

proposed in previous work [3], which marked muscle's 

activation region, i.e., onset and offset points. Each detected 

pair of onset offset corresponded to one repetition of a 

movement. RMS was calculated for each repetition using a 

sliding window of size, ‘𝑇𝑎’ with an overlap between two

consecutive windows of length, ‘𝑇𝑜𝑙’. After extensive analysis

based on the accuracy of correct movement detection and time 

required to process the sEMG data, the duration of ‘𝑇𝑎’ was

fixed to 100 ms and ‘𝑇𝑜𝑙’ to 25 ms. Further discussion is

presented in the discussion section. To estimate the rank 

correctly, the number of synergies was iteratively varied from 

1 to 6, the VAF test was performed on the data of all the 

participants. The basic VAF formulation is provided in eq. (10). 

There exist different VAF based selection algorithms in the 

literature [33,34]; this paper utilizes a slight variation of the 

procedure followed by [33]. Fig. 4 provides VAF verses a few 

synergy curve tests conducted with two randomly selected 

repetitions of each movement from each participant's database. 

From (fig. 4) it is observed that the most optimal rank is 

between 2 to 4 synergies, as the knee curve resides in this 

region. When the number of synergies is less than or equal to 2, 

we observe a very low VAF indicating loss of information. 

While maximum accuracy is reached for 4 synergies and there 

is no significant improvement in VAF by increasing synergies 

further; a clear sign that 4 synergies are providing sufficient 

information catering all target movements. Therefore, further 

analyses will be carried out for 3rd and 4th rank synergy 

matrices only. 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑌 − �̂�)

𝑣𝑎𝑟(𝑌)
)

× 100%  (10) 

Figure 6 The result of Variance Accounted For (VAF) for rank 

estimation is presented. VAF percentage vs. the number of 

synergies are plotted. Each color dot represents average VAF 

for all 18 movements targeting single as well as double active 

DOFs for all 12 participants. The minimum and maximum VAF 

values are highlighted with a black straight line. It is evident 

that four synergies were able to explain more than 90% of the 

variance in the data as well as the results are more concentrated 

towards the average value. 

For a fair comparison the proposed methodology is compared 

with other variants of NMF family as well as other synergy 

models, i.e., classic NMF(P) [35], ALS based NMF [36], Sparse 
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NMF (SNMF) [18,37], pICA, and a hybrid model comprised of 

pICA and LDA [9]. All the experiments were performed using 

the Matlab 2016a version on a Core i-7 (2.4 GHz) processor. A 

detail of the computational cost is discussed at the end of this 

section. 

Figure 7 Variance Accounted For (VAF) for rank 

estimation.  

Efficient human-machine interface systems are more accurate 

for multi-functional operations and should have a fast response. 

It is a common observation that when an analysis window is 

large, better task discrimination results are achieved [6,9,25]. 

However, longer the size of the analysis window, the greater is 

the computational time and slower the response. Hence, there is 

always a compromise between the length of the analysis 

window and the accuracy performance. To choose an 

acceptable window length without compromising on the 

performance of the algorithm we provide a comparison on the 

bases of percentage accuracy and computational delay defined 

as 𝐷 =
1

2
𝑇𝑎  +

1

2
𝑇𝑜𝑙  + 𝑇𝑝𝑟𝑜𝑐 [17]. According to the study

conducted by Farell et al., for fast prehensor a speed of 36.7 

cm/sec is observed while for slower processors it is 10.2 cm/sec 

resulting in a delay range of 138 msec to 172 msec. However, 

after extensive study and controller accuracy performance test, 

Farell et al., concluded that an optimal delay range for a 

controller was observed between 100-120 msec [17]. The 

Hybrid model leads to maximum latency both for 1 and 2 DOF 

(Fig. (5)). When probed in-depth, it is observed that the higher 

computational time is due to the use of PR based classifier 

where the Hudgin's parameter calculation followed by LDA 

increases the processing time by 43.2 msec, leading to a total 

delay of 116 msec for 1 DOF that increases to 292 msec for 2 

DOF. We also estimated the computational time of the pICA 

for the given model. The pICA synergy tracking time is almost 

as low as that of NMF; however, the window length as per the 

recommendation of [9] makes the overall delay more 

pronounced. For a fair comparison in our earlier paper [20], the 

analysis window size for the Hybrid model was decreased to 

100 msec for 1 DOF. With the decrease in the window lengths, 

the temporal resolution decreases to a limit that it deteriorates 

the performance of the algorithm. Therefore, in this paper, the 

Hybrid model and pICA are implemented as per the 

recommended settings. 

Figure 8 (a) a comparison of processing time of different 

algorithms for synergy estimation using NMF (b) the 

computational delay analysis for different techniques. 

Figure 9 (a) Provides a comparison of processing time of 

different algorithms for synergy estimation using NMF and its 

variants as well as probabilistic ICA while the bars at the 

rightmost presents Hybrid model (in case of 1 and 2 DOF 

results). (b) provides the computational delay analysis for 

different techniques using formula 𝐷 =
1

2
𝑇𝑎  +

1

2
𝑇𝑜𝑙  + 𝑇𝑝𝑟𝑜𝑐.

Discussion 
The database comprises of the twelve healthy participants 

performing eighteen different movements. The result of the 

VAF test performed on two randomly selected trials of all 

eighteen movements (i.e., 1 and 2-DOF) from all twelve 

participants is represented in fig. 4. For the proposed algorithm 

two different synergies matrices with rank, r = 3 and r = 4 are 

compared based on processing time (𝑇𝑝𝑟𝑜𝑐) as well as total

computational cost (D) with other techniques available in the 

literature (as discussed in the previous section). Fig. 5a 

demonstrates that for single active DOF minimum processing 

time is consumed by 3rd order regularized NMF and 4th order 

SNMF (i.e., 20 msec each). While the second-fastest performer 

is 4th order regularized NMF with a processing time of 27 msec. 

When the number of simultaneous active DOF is increased, the 

3rd order regularized NMF is still the fastest among all the 

algorithms (26 msec) but the SNMF performance deteriorates 

reaching a 56 msec processing time. On the other hand, 4th 

order R-NMF provides better processing time for both 1 and 2 

DOFs, i.e., 27 msec and 38 msec, respectively. Based on the 

comparison of computational time as well as the average VAF 

score (i.e. an improvement by 7%), this paper recommends the 

use of the 4th order synergy matrix, i.e., r = 4. 

Fig. 5b presents the total computational delay (D) for various 

synergy as well as hybrid algorithms. The synergy group 

comprises of several variants of NMF as well as pICA, whereas 

the hybrid approach used pICA followed by LDA based 

classifier. The computational delay is based on the analysis and 

overlap window lengths, as well as the processing time. For the 

comparison with NMF based approaches, this paper uses 𝑇𝑎 =
 100 𝑚𝑠𝑒𝑐 while 𝑇𝑜𝑙 =  25 𝑚𝑠𝑒𝑐; whereas for comparison

with pICA and Hybrid approach recommended values are 

followed [35], i.e., 𝑇𝑎  =  𝑇𝑜𝑙 =  250 𝑚𝑠ec.
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Figure 10 A comparison for movement discrimination 

accuracy for R-NMF. 

Figure 11 A comparison for movement discrimination accuracy 

for R-NMF is presented with different sizes of the analysis 

window length (𝑇𝑎) and length of overlap between two

consecutive windows (𝑇𝑜𝑙).

Fig. 6 provides an insight into the performance of 4th order 

regularized NMF when multiple DOF are activated 

simultaneously. The algorithm is compared for different values 

of analysis window size, ‘𝑇𝑎’, and the size of the overlap

between two consecutive analysis windows, ‘𝑇𝑜𝑙’. It is observed

that the analysis window provides the best performance with 

75 𝑚𝑠𝑒𝑐 ≤ 𝑇𝑎 ≤ 150 𝑚𝑠𝑒𝑐. As far as the size of overlap is

concerned, better performance is observed for 𝑇𝑜𝑙 =  50 𝑚𝑠𝑒𝑐;

however, for the desired range of ‘𝑇𝑎’ the best choice is to keep

𝑇𝑜𝑙 =  25 𝑚𝑠𝑒𝑐.

Figure 12 NMF: non-negative matrix factorization; ALS: 

alternating least-square; ICA: independent component 

analysis; Accuracy rates (bars) with deviation from the 

mean (error bars). 

Fig. 7 presents movement discrimination accuracy of different 

algorithms for single as well as multiple active DOF. The ALS 

based NMF algorithm, although being fast as compared to the 

classic NMF algorithm, suffers from the complexity of sub-

problems; therefore, it is the least performer when it comes to 

synergy estimation and respective task discrimination. The 

addition of penalty functions such as sparseness and 

regularization constraint to ALS improves the results 

considerably. In the case of a single active DOF constrained 

ALS improves the performance by 4 to 5%; however, it is 

observed that in the case of 2 DOF the sparseness constraint is 

not able to discriminate multiple active DOF simultaneously. 

Whereas the regularization constraint handles the problem 

easily and provides considerably better results. In terms of 

accuracy for the case of multiple active DOF, the proposed 

model is the second-best to the Hybrid model, but when 

considering both the computational cost as well as the 

discrimination performance, regularized NMF outperforms all 

other options. 

Conclusion 
Synergistic weight estimation plays a vital role in the field of 

neurorehabilitation, where diagnosis of the neural muscular 

activation of different limbs is an emerging area as well as in 

the field of assistive devices control. To the best of the authors 

information regularized NMF has not been previously used for 

bio-signal decomposition. This paper investigates the use of 

regularization penalty function for the improvement of muscle 

synergies. The imposition of regularization constraint with the 

ALS algorithm helps in attaining optimal and fast solutions for 

the NMF-based system, resulting in minimum time and better 

task discrimination. The proposed algorithm provides almost 

identical results as those of the Hybrid model for multiple active 

DOF but with quite low complexity in terms of computational 

cost. Among the NMF family, the proposed methodology 

performs the best in terms of computation analysis as well as 

accuracy performance. Furthermore, the proposed method does 

not require isolated triggering of individual DOFs. The authors 

are looking forward to use the proposed algorithm for 

estimation of muscle synergies in amputees and stroke patients 

for better diagnosis of the neural muscular changes and future 

applications. In future the author aims to perform targets 

assessment test for online evaluation. 
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