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Abstract. Decadal sea-level variability masks longer-term
changes due to natural and anthropogenic drivers in short-
duration records and increases uncertainty in trend and ac-
celeration estimates. When making regional coastal man-
agement and adaptation decisions, it is important to under-
stand the drivers of these changes to account for periods
of reduced or enhanced sea-level change. The variance in
decadal sea-level trends about the global mean is quantified
and mapped around the global coastlines of the Atlantic, Pa-
cific, and Indian oceans from historical CMIP6 runs and a
high-resolution ocean model forced by reanalysis data. We
reconstruct coastal, sea-level trends via linear relationships
with climate mode and oceanographic indices. Using this ap-
proach, more than one-third of the variability in decadal sea-
level trends can be explained by climate indices at 24.6 % to
73.1 % of grid cells located within 25 km of a coast in the
Atlantic, Pacific, and Indian oceans. At 10.9 % of the world’s
coastline, climate variability explains over two-thirds of the
decadal sea-level trend. By investigating the steric, manomet-
ric, and gravitational components of sea-level trend indepen-
dently, it is apparent that much of the coastal ocean variabil-
ity is dominated by the manometric signal, the consequence
of the open-ocean steric signal propagating onto the conti-
nental shelf. Additionally, decadal variability in the gravita-
tional, rotational, and solid-Earth deformation (GRD) signal
should not be ignored in the total. There are locations such
as the Persian Gulf and African west coast where decadal
sea-level variability is historically small that are susceptible
to future changes in hydrology and/or ice mass changes that
drive intensified regional GRD sea-level change above the
global mean. The magnitude of variance explainable by cli-
mate modes quantified in this study indicates an enhanced
uncertainty in projections of short- to mid-term regional sea-
level trend.

1 Introduction

Sea-level variability at the coast is driven by a variety of
global- to local-scale factors. Understanding the drivers of
variability due to decadal-scale climate variability in histori-
cal and contemporary observations improves our understand-
ing of sea-level change and enhances our ability to predict
future, near-term sea-level change. By subtracting climate-
driven sea level from observations, a more consistent global
mean sea level can be obtained from altimetry (Nerem et al.,
2018) and tide gauge data (Frederikse et al., 2018). One
aim is to elucidate anthropogenically driven sea-level change
from climate variability (Hamlington et al., 2014, 2019).
When climate variability can be explained, by reducing both
the magnitude and auto-regressive nature of variability in
the signal, the linear trend and acceleration standard errors
can be reduced. This has been successfully applied glob-
ally (e.g. Hamlington et al., 2013; Nerem et al., 2018; Ham-
lington et al., 2020c) and regionally from climate variabil-
ity dominated by atmosphere–ocean interactions (e.g. Zhang
and Church, 2012; Pfeffer et al., 2018; Richter et al., 2020;
Hamlington et al., 2020b; Wang et al., 2021; Pfeffer et al.,
2022) and intrinsic, oceanic variability in eddy-rich regions
(Sérazin et al., 2016). Understanding the driving mechanisms
behind local, decadal sea-level change could lead to im-
proved short- to medium-term forecasts of coastal sea-level
change.

Regional sea level is projected to vary by 30 % from the
global mean according to climate model evaluations (IPCC,
2019). Spatial patterns in sea-level variability are driven by
intrinsic and climate variability as well as anthropogenic
forcing and their interactions, resulting in intensified sea-
level change by region (as demonstrated by climate mod-
els with historical forcing; Fasullo and Nerem, 2018). In
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particular, changes to ocean heat content and surface winds
drive changes in ocean circulation, in turn affecting the loca-
tion of fronts and mixed layer or thermocline depth, which
induce a sea-level change (e.g. Fasullo and Nerem, 2018;
Fasullo et al., 2020; Peyser et al., 2016; Richter et al.,
2020). Also, variations to the gravitational, rotational, and
deformational (GRD) equipotential redistribute the sea sur-
face, following anthropogenically forced mass redistribution
such as dam impoundment, groundwater extraction, or an-
thropogenically driven ice mass loss (Wada et al., 2017;
Meyssignac et al., 2017; Frederikse et al., 2020b). The re-
mainder of the regional variation we describe hereafter as
atmospheric and/or oceanic “internal” variability. Hereafter,
we will use the terms “intrinsic variability” and “climate vari-
ability” to describe and differentiate these sources of vari-
ability. By intrinsic variability we mean the oceanic vari-
ability that is not driven by atmospheric forcing but is in-
ternal. We use climate variability to refer to atmospheric–
oceanic variability intrinsic to the climate system, not driven
by anthropogenic forcing. Local sea-level trends greater than
10 mm yr−1 on 10-year timescales and over 1 mm yr−1 on
30-year timescales are observed in areas of the Pacific Ocean
driven by climate variability; climate variability may poten-
tially contribute centimetres of sea-level change over any
given 10-year period, which local planners and stakeholders
need to account for (Hamlington et al., 2020a). This climate
variability may affect the magnitude of regional sea-level
trends calculated over durations up to 50 years (Carson et al.,
2015, 2019). Sea-level variability related (linearly) to climate
indices shows larger correlation coefficients at coastal loca-
tions in tide gauge data than in open-ocean altimetry (Wang
et al., 2021). Statistically significant relationships between
the steric and manometric components of sea level and cli-
mate variability have been identified from models, reanaly-
ses, and geodetic observations (Pfeffer et al., 2018, 2022).
These works validate model and reanalyses data sets for sea-
level studies and identify regions of the global ocean with
explainable, climate-driven, inter-annual to decadal variabil-
ity, masking anthropogenically driven changes and modify-
ing coastal flood risk about the long-term trend on decadal
periods.

Decadal variability in global mean sea level is dominated
by the El Niño–Southern Oscillation (ENSO) and Pacific
Decadal Oscillation (PDO) and their evolution in time (Ham-
lington et al., 2013; Nerem et al., 2018; Hamlington et al.,
2020c). Because these signals are large and affect a large pro-
portion of the global ocean area (being equatorial–tropical),
they dominate the global signal. But other climate processes,
described by other major indices, of course also affect local
sea-level variability (Woodworth et al., 2019).

The Pacific Ocean decadal sea-level variability is dom-
inated by the ENSO and PDO processes (e.g. Zhang and
Church, 2012; Hamlington et al., 2019). Additionally, the
Southern Annular Mode (SAM) and Indian Ocean Dipole
(IOD) can also be related to sea-level variability in the Pa-

cific Ocean (e.g. Frankcombe et al., 2015). The IOD covaries
with ENSO on inter-annual timescales; via atmospheric tele-
connections the IOD affects equatorial wind anomalies, and
Pacific Ocean sea-level anomalies may transit through the In-
donesian throughflow. The relationship is weaker at decadal
timescales, but a significant correlation remains (Nidheesh
et al., 2019). The IOD dominates sea-level variability in the
Indian Ocean (Nidheesh et al., 2019). In the North Atlantic
Ocean and North Sea, variability can be related to the North
Atlantic Oscillation (NAO) and East Atlantic Pattern (e.g.
Frederikse et al., 2018; Kleinherenbrink et al., 2016). We ex-
tend these analyses by focusing only on coastal sea level, and
we remove the global mean sea level at each time step to in-
vestigate regional, spatial differences.

Although the spatial variability of regional, decadal-
scale sea-level trends is dominated by the steric component
(Richter et al., 2020), manometric sea-level changes domi-
nate variability at the coast (Penduff et al., 2019; Llovel et al.,
2018). When a steric-driven disturbance in the open-ocean
sea surface height nears a coast, the density-driven change
over a shallowing water column cannot fully match that in
the open ocean and a pressure gradient develops in the sea
surface. The geostrophic balance is maintained by redistri-
bution of mass onto the shelf such that sea-level change at
the coast exhibits a predominantly manometric signal (Lan-
derer et al., 2007; Yin et al., 2010; Bingham and Hughes,
2012; Penduff et al., 2019). We therefore also investigate the
components of sea-level variability at the coast.

Here we use a 53-year run of a high-resolution ocean
model to quantify and characterise decadal-scale sea-level
trend variability at the local, coastal scale (with the global
mean removed). A comparison is made with the CMIP6
historical run ensemble mean and spread. Climate model
runs will not, in general, mimic the timing of internal
atmosphere–ocean variability correctly but should capture
much of its magnitude in the ensemble spread. Observed
regional variability can be greater than coarse models sug-
gest (Meyssignac et al., 2017; Carson et al., 2019); hence,
we compare the high-resolution run with the CMIP6 ensem-
ble. These model runs are computationally expensive and we
discuss the potential to use the relationship between sea-level
variability and climate indices. We project climate mode in-
dices onto the leading principal components (PCs) of an em-
pirical orthogonal function (EOF) decomposition to recon-
struct decadal, coastal sea-level trends associated with cli-
mate variability. With our focus at the coast, the reconstruc-
tion is applied to satellite altimetry and tide gauge observa-
tions, and the variability of coastal sea-level trends is dis-
cussed.

2 Method

Although ENSO variability dominates the spatial pattern of
sea-level variability on decadal timescales, we wish to in-
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vestigate if particular climate processes dominate sea-level
trends, at the coast, over different regions, and for each com-
ponent of sea-level change.

Climate and high-resolution ocean model runs are used
to quantify the variability in decadal sea-level trends at the
coast from each component part. A reconstruction of coastal,
decadal sea-level trends using only standard climate mode in-
dices is attempted that can be easily replicated by projecting
climate mode indices onto PCs of decadal, coastal sea-level
trends. Variability of the coastal, decadal trends in sea-level
components (derived from the high-resolution ocean model
sea-level components plus GRD) is characterised by an EOF
analysis for each major ocean basin. The PCs of these sea-
level component modes are correlated against climate mode
indices to identify if a climate mode index covaries with any
PC (of each sea-level component and in each ocean basin).
For each sea-level PC in terms of diminishing variance ex-
plained (per component and basin), the climate index with
maximum correlation is projected onto a PC by a linear re-
gression until each climate index is used or the correlation is
not statistically significant. Thus, the decadal sea-level vari-
ability that can be associated with climate variability is re-
constructed by one climate index and regression coefficient
for each EOF–PC mode, with the sum over reconstructed
PCs giving the total sea-level variability.

Firstly, the magnitude of variance in regional sea level and
its trend are determined from ocean models. These variances
are calculated for total sea level and its component parts of
manometric (model ocean bottom pressure) and steric contri-
butions, plus the gravitation, rotation, and solid-Earth defor-
mation response (GRD) contribution from the deviation from
the global mean at each time step (refer to Gregory et al.,
2019, for terminology).

We use output from a high-resolution (nominally 1/12◦),
eddy-resolving ocean model (NEMO) run over 58 years at
monthly resolution from 1958–2015, in which the compo-
nent steric and manometric signals sum to the sea-level signal
(Marzocchi et al., 2015; Moat et al., 2016). We use the later
53 years of data, allowing for 5 years of spin-up. The global
mean sea level is removed at each time step, since we are pri-
marily interested in the regional variability about the mean.
The “zos” variable for sea level does not include atmospheric
pressure effects and is therefore not included in this assess-
ment. Thus, the processed sea level quantifies the direction
and variability of spatial patterns and intensification in sea
level caused by observed atmospheric forcing plus intrinsic
oceanic variability, excluding the inverse barometer effect.
It is acknowledged that this variability will include influ-
ence from anthropogenic sources because the high-resolution
model is forced by reanalysis atmospheric data rather than
natural forcing. The magnitude of variability is compared
against the ensemble mean and spread of variance for the
same time period from an ensemble of 43 historical forcing
CMIP6 models.

The observed absolute sea-level signal as observed by al-
timetry includes the GRD component that is spatially vary-
ing. The barystatic, global ocean mean volume change due to
solid-Earth deformation is ignored in this study because we
remove the global mean at each time step. We add only the
spatial geoid signal to the sea surface height (SSH) from the
models (with a global ocean mean of zero).

To quantify how much of the sea-level variability can be
described by a relationship with climate indices, where the
impact of sea-level change is highest – at the coast – we in-
vestigate reconstructing sea level from climate indices over
a decadal timescale. We investigated both low-pass-filtered
and rolling linear trends in time for each coastal grid cell time
series and found the strongest relationship in the latter (not
shown). We assume first-order auto-regressive (AR1) noise,
appropriate for monthly sea-level time series (e.g. Bos et al.,
2013; Dangendorf et al., 2014; Haigh et al., 2014), by a gen-
eralised least-squares regression that solves for the annual
and semi-annual periodics as well as the trend. We apply an
EOF analysis to the rolling decadal trends from the modelled
component parts and compare against decadal trends in key
climate indices.

It is acknowledged that there are limitations in using EOF
analysis and a linear regression to associate climate vari-
ability with sea-level variability. Of course, the EOF method
identifies the largest variance for its leading mode, and each
mode is orthogonal from that. Therefore, even when care is
taken to deseason and detrend the coastal, sea-level com-
ponent time series, variability from specific physical drivers
may be distributed into several EOF–PC modes. However, by
reducing the spatial dimensions using EOF analysis we limit
computational effort and redundancy in the analysis because
of spatial covariance and produce a small data set of EOF
patterns and loadings with just one set of regression coeffi-
cients each.

To focus on where the impact of sea-level change is high-
est and because the EOF analysis determines orthogonal
bases from the first PC with the largest variability, we only
apply the analysis to coastal regions. We define coastal by
distance to the nearest coastline, selecting those model grid
centres less than 25 km of distance from one of the low-
resolution coastlines in the global self-consistent, hierarchi-
cal, high-resolution geography (GSHHG) database (follow-
ing Penduff et al., 2019).

Our aim is to relate climate mode indices with the sea-
level variability EOFs. A multivariate linear regression anal-
ysis could be used. Linear regression analysis only finds the
analytical least-square error fit in the case of Gaussian data
(no auto-correlation in the time series) and with indepen-
dent explanatory variables. Some studies have reduced the
impact of multicollinearity of the explanatory variables by
low-pass and high-pass filtering correlated climate indices,
giving new indices that represent short- and long-timescale
processes (e.g. Zhang and Church, 2012; Wang et al., 2021).
Alternatively, the inflation of regression coefficients due to
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multicollinearity of the explanatory variables may be reduced
by the use of a penalty or regularisation term, i.e. a ridge re-
gression. A least absolute shrinkage and selection operator
(LASSO) regression approach has been successfully applied
to steric sea-level change (Pfeffer et al., 2018) and ocean
mass change (Pfeffer et al., 2022) associated with climate
variability on inter-annual and longer timescales. This ap-
proach relies on the user determining an appropriate penalty
term, typically by a cross-validation.

We take a simpler approach that does not have tunable pa-
rameters. For the reconstruction, we rank all leading EOFs
and retain those that describe at least 5 % of the sea-level
trend variability for each component of sea-level change. For
each leading PC in turn, a linear regression is applied to the
climate index with the highest correlation coefficient, pro-
vided the correlation is significant (by t test with the de-
grees of freedom reduced due to the auto-regressive nature
of the signal; Emery and Thomson, 2001). This approach
capitalises on the orthogonality of the sea-level trend PCs
and ensures each climate mode index is only used once and
only when significant. The reconstruction sums the climate
index multiplied by the regression coefficient for each cli-
mate index–PC pair until all climate modes are used and/or
the correlation is not significant against any PC. However, as
the EOF analysis may split the variability from a given phys-
ical process into more than one mode, it is likely that the
relationship between a single climate index and single PC
will underestimate the total variance caused by climate vari-
ability. Thus, the reconstructed climate-associated sea-level
trends produced should be thought of as a lower limit at each
location of the trend variance about the mean trend.

Reconstructed trends are compared against the variability
of running trends from the model, giving the variance ex-
plained by the climate index regression, calculated as the
percentage ratio of trend variance at each grid cell, of the
model-minus-reconstructed residual over the model rolling
trends. The variance explained by these reconstructions of
course varies by the adequacy of a simple linear model and
the number of leading principal component modes used in
the reconstruction.

To validate our method, an example period of satellite al-
timetry data from 2008–2018 is taken. We compare the re-
construction for the trend from 2008–2018 against observed
sea level from satellite altimetry. The reconstruction for run-
ning trends centred on 1968–2011 is compared against tide
gauge observations at arbitrary locations, demonstrating lo-
cations where the variance explained appears to be good. The
decadal trend variability from tide gauge observations and
the reduction in variability explained by all significant PCs
are determined for manometric, GRD, and steric sea-level
change combined and for each basin using the reconstructed
sea-level rolling trend at the nearest model grid cell to each
tide gauge location. The tide gauge relative sea level is cor-
rected for glacial isostatic adjustment (GIA), but we do not
correct for contemporary GRD-induced or other sources of

contemporary vertical land movement (VLM) because of the
limited number of tide gauges with co-located and bench-
marked GNSS sites, instead removing the mean trend from
tide gauge observed data. Rolling trends from observation
data are treated identically as from model data: a seasonal
signal is solved for within the regression design matrix (an
annual and a semi-annual periodic) and the noise is assumed
to have an AR(1) characteristic.

3 Data

3.1 High-resolution 58-year ocean model run: NEMO

The total sea-level signal is partitioned into steric and mano-
metric sea level from the NEMO ORCA0083-N006 model
run, details of which can be found in Marzocchi et al. (2015)
and Moat et al. (2016). The model is applied to a high-
resolution ORCA tripole grid (nominally 1/12◦) and is eddy-
resolving; it incorporates a sea-ice model and is forced by the
Drakkar Surface Forcing data set version 5.2 (Dussin et al.,
2016) from 1958 to 2015 inclusive. This data set derives
ocean model forcing variables from the ERA40 and ERA-
Interim atmospheric data sets and includes freshwater fluxes
(precipitation and snow). Freshwater runoff is added as sea-
sonal cycles and does not exhibit inter-annual changes. Be-
cause of deficiencies in the freshwater forcing, a moderate
relaxation of surface salinity to climatology is applied and a
freshwater budget restoration is applied at time steps when a
deficit is found (and only applied to areas with precipitation).

Steric sea level is calculated using the TEOS-10 equation
of state (TEOS-10, 2008) applied to temperature and salin-
ity modelled values at each model depth level. The total and
steric sea-level anomaly are affected by the Boussinesq ap-
proximation in this model setup (Greatbatch, 1994; Griffies
and Greatbatch, 2012). This effect and the global ocean mean
atmospheric pressure effect are removed by subtracting the
global mean of each sea-level anomaly at each time step.

The manometric sea-level component is taken to be equal
to the ocean bottom pressure anomaly, converted from pres-
sure to millimetre change in height.

The ocean model has been shown to match observed vari-
ability well (Marzocchi et al., 2015). We additionally check
that the linear trend from the last decade of the model run,
2005-2015, with GRD added matches the altimetry observa-
tion of the absolute sea-level trend (Supplement Fig. S1). In
this analysis, only coastal locations within 25 km of the low-
resolution GSHHG coastline are considered.

3.2 CMIP6 climate model historical runs

We ensure that sea-level trend variance given by the NEMO
model is appropriate for our aim by checking that the vari-
ance magnitude lies within the envelope of sea-level trend
variance from historically forced model runs from the 6th
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Climate Model Intercomparison Program (CMIP6; Eyring
et al., 2016).

Model run data were obtained via JASMIN (UK data
and storage facility, https://jasmin.ac.uk/users/access/, last
access: 22 August 2021) and may also be obtained from the
WCRP portal (ESGF, 2021). Historical forcing (esm-hist)
has been run in CMIP6 from 1850 to 2014 inclusive. Here
we take the “zos” variable sea surface height monthly means
from January 1958 until the end of the run in December 2014
(noting this is 1 year shorter than the high-resolution NEMO
run). The “zos” variable is interpolated onto a regular lat–
long 1/4◦ grid for each run and the global ocean mean is
removed from each time step of each model. Appendix A
lists the 43 CMIP6 model setups analysed in this study. In
this analysis, only coastal locations within 25 km of the low-
resolution GSHHG coastline are considered.

3.3 Climate mode and oceanographic indices

Major climate variability is represented by indices derived
from various atmospheric and oceanic observables, such as
air pressure at sea level, sea surface temperature, and surface
wind speed or its gradient. Here, we determine the correla-
tion of the principal component time series of rolling sea-
level trends with the rolling trends of six major climate in-
cludes: the Pacific Decadal Oscillation (PDO; NOAA-NCEI,
2020c), El Niño–Southern Oscillation (ENSO; Multivariate
ENSO Index, NOAA-NCEI, 2020a), North Atlantic Oscilla-
tion (NAO; NOAA-NCEI, 2020b), Arctic Oscillation (AO;
NOAA-CPC, 2020), Southern Annular Mode (SAM; Mar-
shall, 2020), and Indian Ocean Dipole (IOD; GCOS, 2020).

Additionally, the effect of the Atlantic Meridional Over-
turning Circulation (AMOC) is investigated. The AMOC in-
dex is calculated here from the NEMO model runs as an
anomaly at each time step. The index is computed as the
principal component of the low-pass-filtered (1-year running
mean) and zonally integrated meridional transport (Sv), and
then the rolling trend is calculated from this index.

It is acknowledged that these indices are not independent
of each other. However, the EOF pattern and principal com-
ponents of coastal sea-level change are orthogonal. There-
fore, only one climate index is associated with each PC and
not repeated in the reconstruction.

3.4 Absolute sea level: satellite altimetry

Absolute sea level is defined from the ESA SLCCI v2 multi-
mission gridded product on a 1/4◦ grid with the most up-
to-date corrections and processing available (Legeais et al.,
2018; ESA, 2018). The standard global mean trend GIA
correction is applied at each grid point (−0.21 mm yr−1 for
the ICE6G-VM_D GIA model, Peltier et al., 2015; Peltier,
2018). This global mean value represents the shift in geopo-
tential surface of the geoid (Tamisiea, 2011). Because we
are interested in the spatial distribution of sea-level trends,

the spatial redistribution of the geoid by GIA is also ap-
plied (Tamisiea, 2011) as a trend correction derived from the
spherical harmonic coefficients provided by Peltier (2018).
Contemporary GRD variability driven my mass redistribu-
tion affects the sea surface. Satellite altimetry observes spa-
tial changes to the geoid from a centre of mass and should be
corrected for the global mean volume change due to solid-
Earth deformation (Frederikse et al., 2017). We correct the
gridded satellite altimetry for solid-Earth deformation asso-
ciated with recent mass loading of the oceans following Fred-
erikse et al. (2020b) and using their published data (Fred-
erikse et al., 2020a).

3.5 Tide gauge observations

Tide gauge observations are obtained from the Permanent
Service for Mean Sea Level (Holgate et al., 2013) for revised
local reference (RLR) stations only. The relative sea level is
corrected for GIA (Peltier et al., 2015; Peltier, 2018) only,
and no account is made for contemporary GRD-induced or
other VLM. Because we are primarily interested in the tem-
poral variability of sea-level trends associated with climate
variability, in the figures we remove the time mean trend; the
linear trend correction does not affect the results. Non-linear
solid-Earth deformation from GRD and other sources such
as ground compaction and building load are not accounted
for and will be present in the tide gauge trend variability.
Monthly mean time series, omitting flagged data, are used
to determine rolling trends, and periods for which less than
50 % of data are missing in each rolling decade are omitted.

3.6 Gravitation, rotation, and solid-Earth deformation
changes

The ocean models do not include any GRD changes. Ob-
servations by their nature include GRD effects. The solid-
Earth deformation changes modify the basin shape and there-
fore global volume. For absolute sea level observed by satel-
lite altimetry the global ocean mean solid-Earth deforma-
tion from contemporary mass redistribution and global mean
glacial isostatic adjustment (GIA) effects are usually sub-
tracted as a correction. Altimetry observes regional redis-
tribution of the geoid when the anomalies are taken from a
mean sea surface. Relative sea level observed by tide gauges
includes solid-Earth deformation. To compare model data
with observations, we add variability from a sea-level fin-
gerprint method applied to comprehensive data sets of land
and cryospheric mass loading. The data set has been used
to estimate the GRD effect on global mean and basin mean
sea-level trends with the time-varying vertical land move-
ment used to correct tide gauge relative sea-level records
(Frederikse et al., 2020a, b). The GRD geoid fingerprints
include the effect of mass changes in glaciers as well as
the Greenland and Antarctic ice sheets, including uncharted
glaciers and peripheral glaciers, and from natural terres-
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trial water storage (TWS), dam retention (or reservoir im-
poundment), and groundwater depletion. Here, we determine
decadal rolling trends from the geoid variability of the sea-
level fingerprint since 1958 and ignore the barystatic (global
mean) component since we are interested in the spatial vari-
ability.

4 Results and discussion

4.1 Variance of decadal sea-level trend

Over the 58-year NEMO model run, coastal sea-level rolling
trends vary in time by a mean standard deviation of
3.6 mm yr−1, with some locations displaying a standard de-
viation in trends over 7.5 mm yr−1 (Fig. 1), which is signif-
icantly larger then the mean trend over the modelled period
of 2.2 mm yr−1.

The variance of total SSH in the NEMO model run gen-
erally sits within the spread of variance in the CMIP6 en-
semble. There is increased variance in the CMIP6 ensemble
mean compared with the NEMO model run in the Northern
Hemisphere, particularly in the Beaufort Strait, Hudson Bay,
and the North Sea into the Baltic Sea and to a lesser extent
in the Mediterranean Sea and Black Sea (comparing Fig. 1a
and b). It is well known that many coarse-resolution climate
models do not reproduce sea level in semi-enclosed seas well
because of resolution limits on fluxes with the ocean basins
(Adloff et al., 2018; Meyssignac et al., 2017). In contrast,
the NEMO model run displays a larger variance in sea-level
trends around the coast of Greenland, in the tropical western
Pacific and west coast of Australia, in the Caribbean Sea, and
around Chesapeake Bay. However, most of these differences
lie within the CMIP6 ensemble spread and are therefore not
significant.

This analysis confirms there is high variability in decadal
sea-level trend in the western tropical Pacific Ocean. On the
eastern side where the coast faces the open ocean, the signal
is dominated by steric changes, but through the Indonesian
throughflow and in the marginal seas, the signal becomes
manometric in nature (Fig. 2a, b). For most of the coastal lo-
cations, the variance in sea-level trend is dominated by mano-
metric sea-level change; in 48.2 % of coastal locations de-
fined from the NEMO grid the manometric sea-level change
shows the largest contribution to variance, in 32.3 % of loca-
tions steric sea level is dominant, and in 17.5 % of locations
the GRD effect is dominant.

Around the Greenland coast, in the vicinity of major ice
mass loss that is variable in time, there is a large variabil-
ity in decadal trends due to the GRD effect (Fig. 2c). The
GRD signal driven by glacier and ice sheet mass loss also
contributes more than one-quarter to the variability around
southern Alaska, Hudson Bay, the Canadian Arctic, Iceland,
and to a lesser extent around the Patagonian ice sheet. It is
noted that this analysis relates to absolute sea-level equiva-

lent, and VLM contributing to relative sea level is not con-
sidered. There is also a notable contribution from GRD in
areas around the major river basins or other hydrology im-
pacts (like groundwater abstraction or dam retention) where
inter-annual variability in TWS is large, for example around
the Amazon River basin, Niger River basin, and the Persian
Gulf.

Even though in many of those regions the variabil-
ity in the decadal trend around the global mean is small
(around 1 mm yr−1), where the dominant contributions are
GRD and/or local steric contributions from hydrology, future
changes may exacerbate the trend. For example, in the Per-
sian Gulf, decadal sea-level trends are dominantly affected
by GRD changes over direct oceanographic changes in addi-
tion to global mean sea-level rise. It is noted here that there is
a complex GRD signal from both hydrology and glacier mass
loss. On the south-eastern African coast, as in much of the
South Atlantic, where there are very few long-duration tide
gauge measurements, the trend variability is small (less than
1 mm yr−1) in both the CMIP6 ensemble mean and NEMO
model (Fig. 1a,b). Here, sea-level variability is strongly influ-
enced by GRD effects from the variability of hydrology, with
the Amazon, Niger, Congo, and Zambezi–Okavango basins
driving more than 40 % of sea-level trend variability in places
(Fig. 2c). Long-term anthropogenic or climate change im-
pacts on the hydrology in these locations are likely to inten-
sify the regional trend about the global mean.

4.2 Climate index reconstruction of sea-level trends

We reconstruct decadal running sea-level trends from climate
index trends by ocean basin for steric and manometric sea
level separately and then combine the reconstructions. When
compared with the NEMO model sea-level rolling trends at
each coastal grid point (from which the regression coeffi-
cients were derived), the reconstruction displays statistically
significant correlations (r > 0.32 for a two-sided t test at the
95 % confidence interval with an auto-correlation of 0.5 in
the rolling trends) along much of the global coastal loca-
tions (Fig. 3a). There is a notably poor correlation around
south-eastern Africa, where the interaction of the Benguela
and Agulhas currents as well as upwelling may interrupt
far-field climate-driven sea-level variability. The proportion
of sea-level trend variance reconstructed by climate vari-
ability through our approach is small around much of the
global coast (orange, grey, pink in Fig. 3). The reconstruc-
tion explains more than half of the decadal sea-level vari-
ance along the American continent’s west coast, in the trop-
ical Pacific Ocean, and in the Indonesian throughflow to
the western Australian coast and west coast of Asia (blue
in Fig. 3b). The primary mode explains more than half
of the decadal trend variance in the semi-enclosed seas of
the eastern Mediterranean, Black, and Baltic seas. Along
the traditionally under-sampled West African coastline be-
tween 10◦ N and the Mediterranean outflow at the Strait of
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Figure 1. Comparison of the variability in decadal sea-level trends between NEMO and an ensemble of CMIP6 model runs. The standard
deviation of decadal trends (mm yr−1) in sea surface height from the NEMO model (a), the ensemble mean EM of the CMIP6 model runs (b),
and the absolute difference between NEMO and CMIP6 EM (c), which may be compared against the CMIP6 ensemble spread: ES (d). The
SSH from the NEMO model and ensemble mean of CMIP6 model runs (a, b) include GRD.

Gibraltar as well as between 5 and 30◦ S, the reconstruc-
tion explains between one-third and one-half of variability
in decadal trends. The approach explains more than half of
decadal trend variance over 25.8 % of the global, non-polar
coastal ocean and with greater success in the Pacific Ocean
where the ENSO variability is dominant (Table 1). Table 1
presents the proportion of grid cells located in each basin
where the reconstruction explains more than one-third, one-
half, or two-thirds of the decadal sea-level trend variance (not
area-averaged). The column “SSH” refers to a reconstruction
using only total SSH EOFs, and the column “DSL+ steric”
refers to a reconstruction summed from the EOFs of all sea-
level components. For each major basin, the approach can
explain more than one-third of the decadal trend variance for
24.6 % to 73.1 % of coastal locations (Table 1).

When considering the proportion of variance explained for
a coastal location, the manometric sea-level signal becomes
important. The first principal component modes from mano-
metric and steric sea level are very similar to that from sea
surface height and have the highest correlation with the same
climate indices, except for the influence of AMOC in the At-
lantic Ocean (Supplement Table S1 and Figs. S5 and S11).
However, by adding the contribution from each component
separately there is a marginal improvement in the overall
variance explained by this approach (Table 1). Splitting the
variance into component parts allows the EOF analysis to
determine more specific spatial patterns for each component
part, whereas the total SSH is dominated by different physi-
cal processes in different areas (Fig. 2).

Oscillations in observed tide gauge decadal trends are ex-
plained well by the climate index reconstruction in some re-
gions, in particular across the tropical Pacific and the coast
of the Americas as well as on the Atlantic west coast (exam-
ples are given in Fig. 4). Where the majority of the signal is
manometric, for example the west coast of Australia and the
Gulf of Maine (Fig. 4c, e), coastally trapped waves propa-
gate along the continental slope and shelf. Where the conti-
nental shelf is narrow, the reconstructed sea level is predom-
inantly steric (Fig. 4b). In the tropical western Pacific, the
dominant ENSO steric signal directly impacts tropical west-
ern Pacific tide gauge sites on the oceanward (eastern) coast,
but the signal propagates through the Indonesian throughflow
and around the island as a manometric signal, so by Cebu the
signal is predominantly manometric (Fig. 4a). The tide gauge
data do not have contemporary VLM removed (except GIA),
nor the nodal tide or inverse barometer correction made. For
visualisation we simply remove the mean trend for the whole
period considered.

For locations with large-magnitude variability in the trend,
i.e. with a standard deviation larger than the global mean
trend of 3.5mmyr−1 (orange and yellow is Fig. 1a, b), typi-
cally more than half of that decadal signal can be attributed to
climate forcing and reconstructed from climate indices. For
10 % of the coastal locations in this study, over two-thirds
of the regional decadal sea-level trend about the global mean
can be quantified by a linear relationship with climate index
data (Table 1).
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Figure 2. Proportion of variance explained (%) by sea-level com-
ponents of the rolling decadal trends in sea surface height from the
NEMO model by steric sea level (a), manometric sea level (b), and
GRD, respectively (c). Figure 1a presents the magnitude of the vari-
ability (standard deviation).

4.3 Climate effect on recent coastal sea-level trends

The reconstructed sea-level variability due to primary cli-
mate modes can be compared against the spatially com-
prehensive satellite altimetry data, with the global mean
trend removed (to emphasise regional patterns in sea-level
change).

For a recent decade of observations, 2008–2018 inclu-
sive, the reconstruction of the sea-level trend anomaly along
the coast associated with climate indices (Fig. 5) captures
the dipole of the sea-level trend anomaly across the Pacific
Ocean and at least one-third of the decadal trend anomaly in
the Caribbean Sea and Black Sea, as well as the sign of the
trend anomaly in southern Greenland, the Baltic Sea, and the
north-western African coast. The reconstructed signal is not
as strong as observed. In some regions, such as the Gulf of
Mexico, the reconstructed trend associated with climate vari-
ability (Fig. 5b) displays the opposite sign to the observed
trend (Fig. 5a); in these locations in this period, the observed-
minus-reconstructed trends have a larger-magnitude trend
from the global mean. The histogram of trend anomalies for
this period are markedly more Gaussian when reconstructed

Figure 3. Comparison of decadal rolling sea-level trends from
the NEMO model plus GRD, and reconstruction using only cli-
mate indices: Pearson’s correlation coefficient (a) and variance ex-
plained (b; %). The results here sum the reconstructed decadal trend
from manometric sea level plus steric sea level by ocean basin. Tri-
angles denote the locations of tide gauge observations shown in
Fig. 4.

with climate-index-related variability removed than the unal-
tered observations.

Notably in all basins, by removing the reconstructed vari-
ance by climate indices, the mean (median) coastal sea-level
trend for 2008–2018 is increased by 0.7 (0.2) mm yr−1 glob-
ally (Table 2). It is noted that we expect climate variability
has affected the global mean sea level over the same pe-
riod, which we do not account for here, but we may conclude
that coastal sea levels have been suppressed by the phase of
climate variability in 2008–2018 compared with the entire
ocean mean.

4.4 Sources of decadal variability and caveats

Inter-annual sea-level variability can develop purely as a re-
sponse to non-linear interactions in oceanic intrinsic vari-
ability and can evolve from seasonal forcing as strongly
as from atmospheric forcing (Llovel et al., 2018). Oceanic
intrinsic variability exceeds the forced response to atmo-
spheric forcing at some length scales over several years in
high-resolution ensembles (Sérazin et al., 2015, 2016; Llovel
et al., 2018; Penduff et al., 2019). Thus, sea-level variability
is the aggregated response over integrating timescales of both
atmospheric forcing and intrinsic variability in the system.
It is acknowledged that the approach could be improved by
comparing the PCs with phase-lagged trends in the climate
indices and/or with other metrics describing the forcing.

Globally, the ENSO and PDO have been shown to dom-
inate the decadal-scale variability of coastal sea level over
other climate processes (e.g. Hamlington et al., 2013; Nerem
et al., 2018). Because the PDO or ENSO decadal variability
dominates the power in sea-level variability, the EOF bases
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Figure 4. Observed sea-level trends in tide gauge observed sea level (mm yr−1; grey solid lines, light grey shading presents 1σ trend error
estimates, triangles in Fig. 3) and the reconstructed decadal trends from all PCs for the appropriate basin for steric sea level (red dashed),
manometric plus GRD sea level (blue dashed), and the sum (black solid). Note that the time mean sea-level trend is removed from all tide
gauge observed data for visualisation.

on a global data set are forced to be orthogonal to that mode.
To investigate other drivers, we further mask the data into
three oceanic basins: the Atlantic, Pacific, and Indian oceans.
By focusing on each oceanic basin in turn, the dominant
mode(s) from each region can be identified (Table 3; Supple-
ment Table S1 and Figs. S4 to S18). Since we aim to recon-
struct decadal-scale sea-level trends, it is difficult to make di-
rect comparisons with previous studies of climate variability
and sea-level change. The dominant influence of ENSO and
PDO indices with Pacific and Indian Ocean sea level agrees
with other works (e.g. Zhang and Church, 2012; Hamlington
et al., 2019; Wang et al., 2021; Pfeffer et al., 2018, 2022). In
the North Atlantic Ocean, our approach finds a stronger rela-
tionship between sea-level variability and AMOC, followed
by the AO. Previous studies that include inter-annual vari-

ability find strong relationships with the NAO (Frederikse
et al., 2018). Studies that separate the sea-level components
have found that steric sea-level variability strongly relates to
the Atlantic Multidecadal Oscillation (AMO) (Pfeffer et al.,
2018), and our approach results in a similar relationship be-
tween manometric sea-level change and the AO as in Pfeffer
et al. (2022) (Supplement Fig. S12).

Generally, climate models display lower sea-level variabil-
ity than observed (Carson et al., 2015). In particular, the
CMIP5 models were found to simulate sea-level variabil-
ity comparable to observations but showed a bias in trends
(Meyssignac et al., 2017); other authors found that the long-
term memory, power-law character of sea level in CMIP5
models is too small, indicating the sea-level variability is
too short-lived (Becker et al., 2016). Here, the use of a high-
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Figure 5. Comparison of 2008–2018 trend anomaly (mm yr−1)
from satellite altimetry and the reconstruction. The observed
decadal trend in satellite altimetry with the global mean removed
(a) and the reconstructed decadal trend for each basin and com-
ponent combined (b), with a histogram (c) for all coastal grid cell
locations for observations from satellite altimetry (grey) and the al-
timetry minus the reconstruction (so-called “reduced” trends, red).

resolution model goes some way to minimise that influence,
but we caution that the resulting reconstructed sea-level vari-
ability and its trend should be thought of as a minimum rise
or fall in sea level expected with climate index evolution.

It is acknowledged that the EOF patterns and their PCs
developed here are somewhat model-dependent and because
of the linear approach taken may incorporate anthropogenic
as well as internal forcing patterns. Because of the multi-
collinearity in the explanatory variables (climate mode in-
dices) and auto-correlation in the variables, there are limita-
tions on any type of regression analysis that attempts to asso-
ciate climate variability with sea-level variability. The EOF
analysis may split the variability from a given physical pro-
cess into more than one mode, weakening the relationship
with any single climate mode index. Therefore, the recon-
structed climate-associated sea-level trends produced should
be thought of as lower limits at each location of the trend
variance about the mean trend. A multivariate approach with
regularisation could be applied instead.

Table 1. The proportion of coastal grid cells defined from the
NEMO grid with more than one-quarter (25 %), one-third (33 %),
one-half (50 %), two-thirds (67 %), and three-quarters (75 %) of
decadal trend variance explained by the reconstruction. The values
shown here are from assessment of the “coastal domain” and the
NEMO model runs. “SSH” refers to the reconstruction using EOF
and PC modes for the full SSH signal, and “DSL+ steric” refers to
the reconstruction by component for manometric dynamic sea level,
GRD, and steric sea level associated with climate indices separately
and then summed.

Coastal domain > Var. exp. SSH DSL+ steric

All basins one-quarter 58.9 54.9
one-third 48.2 44.5
one-half 29.3 25.8
two-thirds 7.2 12.3
three-quarters 1.8 5.7

Atlantic one-quarter 52.4 40.8
one-third 41.2 28.7
one-half 21.4 8.7
two-thirds 4.8 0.0
three-quarters 0.1 0.0

Pacific one-quarter 78.9 82.0
one-third 66.9 73.1
one-half 46.6 54.2
two-thirds 12.7 32.8
three-quarters 4.6 15.3

Indian one-quarter 24.4 29.9
one-third 19.6 24.6
one-half 8.7 9.1
two-thirds 0.3 0.0
three-quarters 0.0 0.0

Table 2. Statistics of the global–coastal sea-level trend from 2008–
2018 observed by satellite altimetry and when reduced by the recon-
structed sea level expected from the climate index reconstruction for
each basin (mm yr−1).

Statistic Coastal domain Obs. Reduced Diff.

SD Global 4.2 3.3 −1.0
Atlantic 2.8 3.0 0.2
Pacific 5.2 3.3 −1.9
Indian 4.6 3.7 −1.0

Mean Global 0.0 0.7 0.7
Atlantic 0.8 1.1 0.3
Pacific −0.1 0.6 0.7
Indian −3.0 −1.0 2.0

5 Conclusions

The current temporal duration of high-quality sea-level data
with good spatial coverage conflates with the typical auto-
correlated, integrated, long-memory timescale of variabil-
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Table 3. The linear trend coefficient between the decadal trend in the climate index and the first PC time series in each basin and for each
component of sea level.

Atlantic Pacific Indian
Component index beta index beta index beta

Steric PC1 AMOC −0.83 ENSO 1.60 ENSO −0.95
Manometric PC1 AMOC −1.01 ENSO 1.64 ENSO −1.24
GRD PC1 AMOC −0.67 AMOC −0.88 AMOC −0.84

ity in major atmosphere–ocean climate modes, as recently
shown for steric sea-level variability, particularly in the At-
lantic by Pfeffer et al. (2018) and for the open Pacific Ocean
by Hamlington et al. (2020a). Therefore, much of the current
linear trend in steric and manometric components of sea level
can be reconstructed from climate index data in some parts
of the global coast. This enables the possibility that observed
sea level and its components can be reduced for climate vari-
ability, as has been applied for the total sea-level signal at the
global scale (Nerem et al., 2018; Hamlington et al., 2020c),
spatial distribution in the Pacific Ocean (Hamlington et al.,
2020a, b), and globally for time series (Wang et al., 2021).

We present an analysis of the variance in local, short-term
(decadal) sea-level trends about the global mean around the
Atlantic, Pacific, and Indian Ocean coastlines. These data are
an indicative lower bound of uncertainty in regional short-
term trend deviations from global mean projections. The
standard deviation of decadal trend exceeds the global mean
of 3.5mmyr−1 along the eastern North Pacific, western trop-
ical Pacific, New Zealand, and western Australian coastlines
as well as the eastern Indian Ocean, parts of the Caribbean
Sea coast and western Atlantic coastline including the Green-
land coast, and many semi-enclosed seas.

For a recent decade of observations, from 2008–2018, the
global–coastal mean sea level (here defined within 25 km of
the coast and ignoring the Arctic and Antarctic coastlines)
has been suppressed by climate variance by 0.7 mm yr−1 in
the coastal mean. In particular, this increase is greatest in the
Indian Ocean basin (2.0 mm yr−1 greater).

More than half of the decadal sea-level trend can be ex-
plained by a linear regression with major climate index trends
at around 25 % of global coastal (within 25 km of the coast)
locations, rising to 54 % of grid cells around the Pacific
Ocean. The ENSO and PDO variability dominates here, and
the open-ocean variability observed by many previous stud-
ies extends to and around the coast, most notably in the
western tropical Pacific and along the coast of the Ameri-
cas. Our approach has no lag or lead time introduced and
explains less than one-third of the decadal variance in the
low-latitude eastern Pacific Ocean and in the mid-latitudes
of the western Pacific. In the Indian Ocean, our method is
most successful in the eastern basin, where the propagation
of ENSO-related sea-level disturbance dominates through
the Indonesian throughflow and therefore dominates the first

EOF mode, explaining more than 40 % of decadal variance
along the western Australia coast but less than 20 % else-
where. In the Atlantic Ocean our approach works well in the
Baltic, Black, and eastern Mediterranean seas and along the
west coast of North Africa (eastern tropical Atlantic Ocean),
with more than 50 % variance explained in places, but is less
informative on the north-eastern Atlantic margin. Notably,
this region of North Africa and other regions where the vari-
ance explained is lower but still statistically significant, such
as the Caribbean seas and Bay of Bengal, have a lack of
good-quality and long-duration tide gauge data by which to
evaluate the decadal-scale variability needed to make helpful
forecasts of sea-level trends over the mid-term. The domi-
nant influence of ENSO and PDO on sea-level change in the
Pacific and Indian Ocean and the influence of AO on Atlantic
Ocean manometric sea-level change match previous studies
(Zhang and Church, 2012; Hamlington et al., 2019; Wang
et al., 2021; Pfeffer et al., 2022). Our approach finds a strong
relationship between AMOC and decadal sea-level change in
all basins.

The variability of GRD in the total sea-level trend should
not be ignored over timescales of the order of 10 years
(Fig. 2). The variability in decadal-scale coastal sea-level
trends over much of the coastal ocean is dominated by mano-
metric and GRD sea-level components rather than steric sea
level. The coasts where steric sea-level trend variability dom-
inates the signal are mostly tropical or low-latitude towards
the west of ocean basins and at the oceanic extent of the con-
tinental shelf. Sea-level disturbances that originate as steric
in the open ocean propagate onto the continental shelf as a
mass signal at the local scale. Thus, sea-level trends in the
open ocean that can be associated with steric forcing need
to be propagated accordingly onto the shelf, i.e. using high-
resolution models, to adequately forecast variability at the
coast. Future anthropogenic or climate change influences on
hydrology- and ice-mass-change-driven GRD will dispropor-
tionately affect some regions that historically display low
decadal variance, such as the Amazon Basin, the west coast
of Africa from Niger, Congo, and Zambezi hydrology, and
the Persian Gulf.

Appendix A: CMIP6 models

The CMIP6 models used in this study are given in Table A1.
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Table A1. List of CMIP6 models used in this study.

Model name Model centre Resolution

ACCESS-CM2 CSIRO-ARCCSS –
ACCESS-ESM1-5 CSIRO –
BCC-CSM2 BCC MR
CAMS-CSM1-0 CAMS –
CanESM5 CCCma –
CAS-ESM2-0 CAS –
CESM2 NCAR –
CESM2-FV2 NCAR –
CESM2-WACCM NCAR –
CESM2-WACCM-FV2 NCAR –
CIESM THU –
CMCC-CM2 CMCC HR4
CMCC-CM2 CMCC SR5
E3SM-1-0 USDOE –
E3SM-1-1 USDOE –
E3SM-1-1-ECA USDOE –
EC-Earth3 EC-Earth-Consortium –
EC-Earth3-AerChem EC-Earth-Consortium –
EC-Earth3-Veg EC-Earth-Consortium –
EC-Earth3-Veg EC-Earth-Consortium LR
FGOALS-f3-L CAS –
FGOALS-g3 CAS –
FIO-ESM-2-0 FIO –
GFDL-CM4 GFDL –
GFDL-ESM4 GFDL –
GISS-E2-1-G NASA-GISS –
GISS-E2-1-G-CC NASA-GISS –
GISS-E2-1-H NASA-GISS –
INM-CM4-8 INM –
INM-CM5-0 INM –
IPSL-CM6A IPSL LR
KIOST-ESM KIOST –
MIROC6 MIROC –
MPI-ESM-1-2-HAM HAMMOZ-Consortium –
MPI-ESM1-2 MPI-M LR
MPI-ESM1-2 MPI-M DWD DKRZ HR
MRI-ESM2-0 MRI –
NESM3 NUIST –
NorCPM1 NCC –
NorESM2 NCC LM
NorESM2 NCC MM
SAM0-UNICON SNU –
TaiESM1 AST –

Data availability. The CMIP6 model run and NEMO model run
outputs are available to download from their original sources
(ESGF, 2021; https://www.jasmin.ac.uk, last access: 22 Au-
gust 2021). Additionally, CMIP6 model runs are available from
the WCRP data portal at https://esgf-index1.ceda.ac.uk/search/
cmip6-ceda/. Public archives of the NEMO ORCA0083-N006
model run are found at http://gws-access.ceda.ac.uk/public/nemo/
runs/ORCA0083-N06/means/ (last access: 23 October 2019) (Cow-
ard, 2016). The NEMO ocean model code and its documenta-
tion are available from https://www.nemo-ocean.eu. We use SSH
data from satellite altimetry from the ESA SLCCI v2 project
(ESA, 2018), GRD data provided by Frederikse (Frederikse et al.,

2020a), and climate mode indices as cited in the text. The data
produced in this analysis and used to create the figures and
tables are available to download from Zenodo with the DOI
https://doi.org/10.5281/zenodo.5849268 (Royston et al., 2022) at
https://zenodo.org/record/5849268#.YeFtDGjP2Uk.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/os-18-1093-2022-supplement.

Author contributions. All authors contributed to devising the study.
RJB processed NEMO and CMIP6 model data, and SR undertook
the remaining data processing, data analysis, and lead paper writing.
All authors contributed to interpretation of the results and reviewing
the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors are very grateful to the three
anonymous reviewers for their comments and constructive criti-
cisms of the discussion paper. The authors were all supported by
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 694188: the GlobalMass project (https://globalmass.
eu, last access: 20 July 2022). Jonathan L. Bamber was additionally
supported through a Leverhulme Trust Fellowship (RF-2016-718)
and a Royal Society Wolfson Research Merit Award. We would like
to thank Richard Westaway (University of Bristol) for project man-
agement and editing of a previous version of the paper for language
and publication quality review. The authors are grateful for the open
availability of observational and derived data sets, as referenced in
the text and the “Data availability” section.

Financial support. This research has been supported by Horizon
2020 (GlobalMass (grant no. 694188)), the Leverhulme Trust (grant
no. RF-2016-718), and a Royal Society Wolfson Research Merit
Award.

Review statement. This paper was edited by Ismael Hernández-
Carrasco and reviewed by three anonymous referees.

References

Adloff, F., Jordà, G., Somot, S., Sevault, F., Arsouze, T.,
Meyssignac, B., Li, L., and Serge, P.: Improving sea level sim-
ulation in Mediterranean regional climate models, Clim. Dy-

Ocean Sci., 18, 1093–1107, 2022 https://doi.org/10.5194/os-18-1093-2022

https://www.jasmin.ac.uk
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/
http://gws-access.ceda.ac.uk/public/nemo/runs/ORCA0083-N06/means/
http://gws-access.ceda.ac.uk/public/nemo/runs/ORCA0083-N06/means/
https://www.nemo-ocean.eu
https://doi.org/10.5281/zenodo.5849268
https://zenodo.org/record/5849268#.YeFtDGjP2Uk
https://doi.org/10.5194/os-18-1093-2022-supplement
https://globalmass.eu
https://globalmass.eu


S. Royston et al.: Decadal climate variability in coastal sea-level trends 1105

nam., 51, 1167–1178, https://doi.org/10.1007/s00382-017-3842-
3, 2018.

Becker, M., Karpytchev, M., Marcos, M., Jevrejeva, S., and
Lennartz-Sassinek, S.: Do climate models reproduce complexity
of observed sea level changes?, Geophys. Res. Lett., 43, 5176–
5184, https://doi.org/10.1002/2016GL068971, 2016.

Bingham, R. J. and Hughes, C. W.: Local diagnostics to es-
timate density-induced sea level variations over topography
and along coastlines, J. Geophys. Res.-Ocean., 117, C01013,
https://doi.org/10.1029/2011JC007276, 2012.

Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and
Bastos, L.: Fast error analysis of continuous GNSS ob-
servations with missing data, J. Geodesy, 87, 351–360,
https://doi.org/10.1007/s00190-012-0605-0, 2013.

Carson, M., Köhl, A., and Stammer, D.: The Impact of Regional
Multidecadal and Century-Scale Internal Climate Variability on
Sea Level Trends in CMIP5 Models, J. Clim., 28, 853–861,
https://doi.org/10.1175/JCLI-D-14-00359.1, 2015.

Carson, M., Lyu, K., Richter, K., Becker, M., Domingues, C. M.,
Han, W., and Zanna, L.: Climate Model Uncertainty and Trend
Detection in Regional Sea Level Projections: A Review, Surv.
Geophys., 40, 1631–1653, https://doi.org/10.1007/s10712-019-
09559-3, 2019.

Coward, A. C.: Archive data from run 6 of the NEMO 1/12◦

global ocean model, NCAS British Atmospheric Data Cen-
tre [data set], https://gws-access.ceda.ac.uk/public/nemo/runs/
ORCA0083-N06/means/ (last access: 23 October 2019), 2016.

Dangendorf, S., Rybski, D., Mudersbach, C., Müller, A., Kauf-
mann, E., Zorita, E., and Jensen, J.: Evidence for long-term
memory in sea level, Geophys. Res. Lett., 41, 5530–5537,
https://doi.org/10.1002/2014GL060538, 2014.

Dussin, R., Barnier, B., and Brodeau, L.: The making of Drakkar
forcing set DFS5, Tech. rep., LGGE, DRAKKAR/MyOcean Re-
port 01-04-16, 2016.

Emery, W. J. and Thomson, R. E.: Data Analysis Meth-
ods in Physical Oceanography, Elsevier Science, Elsevier,
https://doi.org/10.1016/C2010-0-66362-0, 2001.

ESA: Time series of gridded Sea Level Anomalies, CCI Open
Data Portal [data set], https://doi.org/10.5270/esa-sea_level_cci-
MSLA-1993_2015-v_2.0-201612, 2018.

ESGF: WCRP Coupled Model Intercomparison Project (Phase 6)
data portal, https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/,
last access: 22 August 2021.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fasullo, J. T. and Nerem, R. S.: Altimeter-era emergence of the
patterns of forced sea-level rise in climate models and implica-
tions for the future, P. Natl. Acad. Sci. USA, 115, 12944–12949,
https://doi.org/10.1073/pnas.1813233115, 2018.

Fasullo, J. T., Gent, P. R., and Nerem, R. S.: Forced Patterns of
Sea Level Rise in the Community Earth System Model Large
Ensemble From 1920 to 2100, J. Geophys. Res.-Ocean., 125,
e2019JC016030, https://doi.org/10.1029/2019JC016030, 2020.

Frankcombe, L. M., McGregor, S., and England, M. H.: Robust-
ness of the modes of Indo-Pacific sea level variability, Clim. Dy-

nam., 45, 1281–1298, https://doi.org/10.1007/s00382-014-2377-
0, 2015.

Frederikse, T., Riva, R. E. M., and King, M. A.: Ocean Bottom De-
formation Due To Present-Day Mass Redistribution and Its Im-
pact on Sea Level Observations, Geophys. Res. Lett., 44, 12306–
12314, https://doi.org/10.1002/2017GL075419, 2017.

Frederikse, T., Jevrejeva, S., Riva, R. E. M., and Dangendorf, S.:
A Consistent Sea-Level Reconstruction and Its Budget on Basin
and Global Scales over 1958–2014, J. Clim., 31, 1267–1280,
https://doi.org/10.1175/JCLI-D-17-0502.1, 2018.

Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D.,
Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng,
L., and Wu, Y.-H.: The causes of sea-level rise since 1900, Zen-
odo [data set], https://doi.org/10.5281/zenodo.3862995, 2020a.

Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D.,
Humphrye, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng,
L., and Wu, Y.-H.: The causes of sea-level rise since 1900, Na-
ture, 54, 393–397, https://doi.org/10.1038/s41586-020-2591-3,
2020b.

GCOS: GCOS Dipole Mode Index (DMI), NOAA [data set],
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/, last access: 2
November 2020.

Greatbatch, R. J.: A note on the representation of steric sea level in
models that conserve volume rather than mass, J. Geophys. Res.,
99, 12 767–12 771, 1994.

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church,
J. A., Fukumori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozan-
net, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., and
van de Wal, R. S. W.: Concepts and Terminology for Sea Level:
Mean, Variability and Change, Both Local and Global, Surv.
Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-
09525-z, 2019.

Griffies, S. M. and Greatbatch, R. J.: Physical processes
that impact the evolution of global mean sea level
in ocean climate models, Ocean Modell., 51, 37–72,
https://doi.org/10.1016/j.ocemod.2012.04.003, 2012.

Haigh, I. D., Wahl, T., Rohling, E. J., Price, R. M., Pattiaratchi,
C. B., Calafat, F. M., and Dangendorf, S.: Timescales for detect-
ing a significant acceleration in sea level rise, Nat. Commun., 5,
3635, https://doi.org/10.1038/ncomms4635, 2014.

Hamlington, B. D., Leben, R. R., Strassburg, M. W., Nerem, R. S.,
and Kim, K.-Y.: Contribution of the Pacific Decadal Oscillation
to global mean sea level trends, Geophys. Res. Lett., 40, 5171–
5175, https://doi.org/10.1002/grl.50950, 2013.

Hamlington, B. D., Strassburg, M. W., Leben, R. R., Han, W.,
Nerem, R. S., and K-Y., K.: Uncovering the anthropogenic sea-
level rise signal in the Pacific Ocean, Nat. Clim. Change, 4, 782–
785, https://doi.org/10.1038/nclimate2307, 2014.

Hamlington, B. D., Fasullo, J. T., Nerem, R. S., Kim, K.-Y., and
Landerer, F. W.: Uncovering the Pattern of Forced Sea Level Rise
in the Satellite Altimeter Record, Geophys. Res. Lett., 46, 4844–
4853, https://doi.org/10.1029/2018GL081386, 2019.

Hamlington, B. D., Frederikse, T., Thompson, P., Willis, J.,
Nerem, R., and Fasullo, J.: Past, Present and Future Pa-
cific Sea Level-Change, Earth’s Future, 8, 2020EF001839,
https://doi.org/10.1029/2020EF001839, 2020a.

Hamlington, B. D., Frederikse, T., Nerem, R. S., Fasullo,
J. T., and Adhikari, S.: Investigating the Acceleration
of Regional Sea Level Rise During the Satellite Al-

https://doi.org/10.5194/os-18-1093-2022 Ocean Sci., 18, 1093–1107, 2022

https://doi.org/10.1007/s00382-017-3842-3
https://doi.org/10.1007/s00382-017-3842-3
https://doi.org/10.1002/2016GL068971
https://doi.org/10.1029/2011JC007276
https://doi.org/10.1007/s00190-012-0605-0
https://doi.org/10.1175/JCLI-D-14-00359.1
https://doi.org/10.1007/s10712-019-09559-3
https://doi.org/10.1007/s10712-019-09559-3
https://gws-access.ceda.ac.uk/public/nemo/runs/ORCA0083-N06/means/
https://gws-access.ceda.ac.uk/public/nemo/runs/ORCA0083-N06/means/
https://doi.org/10.1002/2014GL060538
https://doi.org/10.1016/C2010-0-66362-0
https://doi.org/10.5270/esa-sea_level_cci-MSLA-1993_2015-v_2.0-201612
https://doi.org/10.5270/esa-sea_level_cci-MSLA-1993_2015-v_2.0-201612
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1073/pnas.1813233115
https://doi.org/10.1029/2019JC016030
https://doi.org/10.1007/s00382-014-2377-0
https://doi.org/10.1007/s00382-014-2377-0
https://doi.org/10.1002/2017GL075419
https://doi.org/10.1175/JCLI-D-17-0502.1
https://doi.org/10.5281/zenodo.3862995
https://doi.org/10.1038/s41586-020-2591-3
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://doi.org/10.1007/s10712-019-09525-z
https://doi.org/10.1007/s10712-019-09525-z
https://doi.org/10.1016/j.ocemod.2012.04.003
https://doi.org/10.1038/ncomms4635
https://doi.org/10.1002/grl.50950
https://doi.org/10.1038/nclimate2307
https://doi.org/10.1029/2018GL081386
https://doi.org/10.1029/2020EF001839


1106 S. Royston et al.: Decadal climate variability in coastal sea-level trends

timeter Era, Geophys. Res. Lett., 47, e2019GL086528,
https://doi.org/10.1029/2019GL086528, 2020b.

Hamlington, B. D., Piecuch, C. G., Reager, J. T., Chandan-
purkar, H., Frederikse, T., Nerem, R. S., Fasullo, J. T.,
and Cheon, S.-H.: Origin of interannual variability in global
mean sea level, P. Natl. Acad. Sci. USA, 117, 13983–13990,
https://doi.org/10.1073/pnas.1922190117, 2020c.

Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J.,
Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M.,
Jevrejeva, S., and Pugh, J.: New Data Systems and Products at the
Permanent Service for Mean Sea Level, J. Coast. Res., 29, 493–
504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.

IPCC: IPCC Special Report on the Ocean and Cryosphere in
a Changing Climate, edited by: Po¨rtner, H.-O., Roberts, D.
C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska,
E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Pet-
zold, J., Rama, B., and Weyer, N. M., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 755 pp.,
https://doi.org/10.1017/9781009157964, 2019.

Kleinherenbrink, M., Riva, R., and Sun, Y.: Sub-basin-scale sea
level budgets from satellite altimetry, Argo floats and satellite
gravimetry: a case study in the North Atlantic Ocean, Ocean Sci.,
12, 1179–1203, https://doi.org/10.5194/os-12-1179-2016, 2016.

Landerer, F. W., Jungclaus, J. H., and Marotzke, J.: Regional
Dynamic and Steric Sea Level Change in Response to
the IPCC-A1B Scenario, J. Phys. Oceanogr., 37, 296–312,
https://doi.org/10.1175/JPO3013.1, 2007.

Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen,
J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M.
J., Andersen, O. B., Rudenko, S., Cipollini, P., Quartly, G. D.,
Passaro, M., Cazenave, A., and Benveniste, J.: An improved
and homogeneous altimeter sea level record from the ESA Cli-
mate Change Initiative, Earth Syst. Sci. Data, 10, 281–301,
https://doi.org/10.5194/essd-10-281-2018, 2018.

Llovel, W., Penduff, T., Meyssignac, B., Molines, J.-M., Terray,
L., Bessières, L., and Barnier, B.: Contributions of Atmospheric
Forcing and Chaotic Ocean Variability to Regional Sea Level
Trends Over 1993–2015, Geophys. Res. Lett., 45, 13405–13413,
https://doi.org/10.1029/2018GL080838, 2018.

Marshall, G. J.: An observation-based Southern Hemisphere An-
nular Mode Index, British Antarctic Survey [data set], https:
//legacy.bas.ac.uk/met/gjma/sam.html, last access: 31 August
2020.

Marzocchi, A.-M., Hirschi, J. J., Holliday, N. P., Cun-
ningham, S. A., Blaker, A. T., and Coward, A. C.:
The North Atlantic subpolar circulation in an eddy-
resolving global ocean model, J. Mar. Syst., 142, 126–143,
https://doi.org/10.1016/j.jmarsys.2014.10.007, 2015.

Meyssignac, B., Slangen, A. B. A., Melet, A., Church, J. A., Fet-
tweis, X., Marzeion, B., Agosta, C., Ligtenberg, S. R. M., Spada,
G., Richter, K., Palmer, M. D., Roberts, C. D., and Champollion,
N.: Evaluating Model Simulations of Twentieth-Century Sea-
Level Rise, Part II: Regional Sea-Level Changes, J. Clim., 30,
8565–8593, https://doi.org/10.1175/JCLI-D-17-0112.1, 2017.

Moat, B. I., Josey, S. A., Sinha, B., Blaker, A. T., Smeed, D. A., Mc-
Carthy, G. D., Johns, W. E., Hirschi, J. J.-M., Frajka-Williams,
E., Rayner, D., Duchez, A., and Coward, A. C.: Major varia-
tions in subtropical North Atlantic heat transport at short (5 day)

timescales and their causes, J. Geophys. Res.-Ocean., 121, 3237–
3249, https://doi.org/10.1002/2016JC011660, 2016.

Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamling-
ton, B. D., Masters, D., and Mitchum, G. T.: Climate-
change – driven accelerated sea-level rise detected in the
altimeter era, P. Natl. Acad. Sci. USA, 115, 2022–2025,
https://doi.org/10.1073/pnas.1717312115, 2018.

Nidheesh, A., Lengaigne, M., and Vialard, J.: Natural decadal sea-
level variability in the Indian Ocean: lessons from CMIP models,
Clim. Dynam., 53, 5653–5673, https://doi.org/10.1007/s00382-
019-04885-z, 2019.

NOAA-CPC: NOAA-CPC Arctic Oscillation Index (AO), NOAA
[data set], https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/daily_ao_index/ao_index.html, last access: 2 November
2020.

NOAA-NCEI: NOAA-ESRL PSL Multivariate ENSO Index (MEI),
NOAA [data set], https://www.psl.noaa.gov/enso/mei.old/, last
access: 31 August 2020a.

NOAA-NCEI: NCEI North Atlantic Oscillation (NAO) index,
NOAA [data set], https://www.ncdc.noaa.gov/teleconnections/
nao/, last access: 31 August 2020b.

NOAA-NCEI: NCEI Pacific Decadal Oscillation (PDO)index,
NOAA [data set], https://www.ncdc.noaa.gov/teleconnections/
pdo/, last access 27 February 2020c.

Peltier, W. R.: Stokes coefficients for the ICE-6G_C/D VM5a
GIA forward model, https://www.atmosp.physics.utoronto.ca/
~peltier/data.php, last access: 23 July 2018.

Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy
constrains ice age terminal deglaciation: The global ICE-6G_C
(VM5a) model, J. Geophys. Res.-Sol. Ear., 120, 450–487,
https://doi.org/10.1002/2014JB011176, 2015.

Penduff, T., Llovel, W., Close, S., Garcia-Gomez, I., and Ler-
oux, S.: Processing Choices Affect Ocean Mass Estimates
From GRACE, J. Geophys. Res.-Ocean., 124, 1029–1044,
https://doi.org/10.1029/2018JC014341, 2019.

Peyser, C. E., Yin, J., Landerer, F. W., and Cole, J. E.:
Pacific sea level rise patterns and global surface tem-
perature variability, Geophys. Res. Lett., 43, 8662–8669,
https://doi.org/10.1002/2016GL069401, 2016.

Pfeffer, J., Tregoning, P., Purcell, A., and Sambridge, M.: Mul-
titechnique Assessment of the Interannual to Multidecadal
Variability in Steric Sea Levels: A Comparative Analysis
of Climate Mode Fingerprints, J. Clim., 31, 7583–7597,
https://doi.org/10.1175/JCLI-D-17-0679.1, 2018.

Pfeffer, J., Cazenave, A., and Barnoud, A.: Analysis of the in-
terannual variability in satellite gravity solutions: detection
of climate modes fingerprints in water mass displacements
across continents and oceans, Clim. Dynam., 58, 1065–1084,
https://doi.org/10.1007/s00382-021-05953-z, 2022.

Richter, K., Meyssignac, B., Slangen, A. B. A., Melet, A.,
Church, J. A., Fettweis, X., Marzeion, B., Agosta, C.,
Ligtenberg, S. R. M., Spada, G., Palmer, M. D., Roberts,
C. D., and Champollion, N.: Detecting a forced signal in
satellite-era sea-level change, Environ. Res. Lett., 15, 094079,
https://doi.org/10.1088/1748-9326/ab986e, 2020.

Royston, S., Bingham, R. J., and, Bamber, J. L.: Attributing decadal
climate variability in coastal sea-level trends, Zenodo [data set],
https://doi.org/10.5281/zenodo.5849268, 2022.

Ocean Sci., 18, 1093–1107, 2022 https://doi.org/10.5194/os-18-1093-2022

https://doi.org/10.1029/2019GL086528
https://doi.org/10.1073/pnas.1922190117
https://doi.org/10.2112/JCOASTRES-D-12-00175.1
https://doi.org/10.1017/9781009157964
https://doi.org/10.5194/os-12-1179-2016
https://doi.org/10.1175/JPO3013.1
https://doi.org/10.5194/essd-10-281-2018
https://doi.org/10.1029/2018GL080838
https://legacy.bas.ac.uk/met/gjma/sam.html
https://legacy.bas.ac.uk/met/gjma/sam.html
https://doi.org/10.1016/j.jmarsys.2014.10.007
https://doi.org/10.1175/JCLI-D-17-0112.1
https://doi.org/10.1002/2016JC011660
https://doi.org/10.1073/pnas.1717312115
https://doi.org/10.1007/s00382-019-04885-z
https://doi.org/10.1007/s00382-019-04885-z
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao_index.html
https://www.psl.noaa.gov/enso/mei.old/
https://www.ncdc.noaa.gov/teleconnections/nao/
https://www.ncdc.noaa.gov/teleconnections/nao/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.atmosp.physics.utoronto.ca/~peltier/data.php
https://www.atmosp.physics.utoronto.ca/~peltier/data.php
https://doi.org/10.1002/2014JB011176
https://doi.org/10.1029/2018JC014341
https://doi.org/10.1002/2016GL069401
https://doi.org/10.1175/JCLI-D-17-0679.1
https://doi.org/10.1007/s00382-021-05953-z
https://doi.org/10.1088/1748-9326/ab986e
https://doi.org/10.5281/zenodo.5849268


S. Royston et al.: Decadal climate variability in coastal sea-level trends 1107

Sérazin, G., Penduff, T., Grégorio, S., Barnier, B., Molines, J.-M.,
and Terray, L.: Intrinsic Variability of Sea Level from Global
Ocean Simulations: Spatiotemporal Scales, J. Clim., 28, 4279–
4292, https://doi.org/10.1175/JCLI-D-14-00554.1, 2015.

Sérazin, G., Meyssignac, B., Penduff, T., Terray, L., Barnier,
B., and Molines, J.-M.: Quantifying uncertainties on re-
gional sea level change induced by multidecadal intrin-
sic oceanic variability, Geophys. Res. Lett., 43, 8151–8159,
https://doi.org/10.1002/2016GL069273, 2016.

Tamisiea, M. E.: Ongoing glacial isostatic contributions to obser-
vations of sea level change, Geophys. J. Int., 186, 1036–1044,
https://doi.org/10.1111/j.1365-246X.2011.05116.x, 2011.

TEOS-10: Release on the IAPWS Formulation 2008 for the Ther-
modynamic Properties of Seawater, IAPWS, Tech. Rep., R13-08,
http://www.teos-10.org (last access: 16 April 2019), 2008.

Wada, Y., Reager, J., Chao, B., Wang, J., Lo, M.-H., Song, C., Li,
Y., and Gardner, A. S.: Recent Changes in Land Water Storage
and its Contribution to Sea Level Variations, Surv. Geophys., 38,
131–152, https://doi.org/10.1007/s10712-016-9399-6, 2017.

Wang, J., Church, J. A., and Zhang, X.: Reconciling global mean
and regional sea level change in projections and observations,
Nat. Commun., 12, 990, https://doi.org/10.1038/s41467-021-
21265-6, 2021.

Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann,
G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M.,
Monserrat, S., and Merrifield, M. A.: Forcing Factors Affecting
Sea Level Changes at the Coast, Surv. Geophys., 40, 1351–1397,
https://doi.org/10.1007/s10712-019-09531-1, 2019.

Yin, J., Griffies, S. M., and Stouffer, R. J.: Spatial Variability of
Sea Level Rise in Twenty-First Century Projections, J. Clim., 23,
4585–4607, https://doi.org/10.1175/2010JCLI3533.1, 2010.

Zhang, X. and Church, J. A.: Sea level trends, interannual and
decadal variability in the Pacific Ocean, Geophys. Res. Lett., 39,
l21701, https://doi.org/10.1029/2012GL053240, 2012.

https://doi.org/10.5194/os-18-1093-2022 Ocean Sci., 18, 1093–1107, 2022

https://doi.org/10.1175/JCLI-D-14-00554.1
https://doi.org/10.1002/2016GL069273
https://doi.org/10.1111/j.1365-246X.2011.05116.x
http://www.teos-10.org
https://doi.org/10.1007/s10712-016-9399-6
https://doi.org/10.1038/s41467-021-21265-6
https://doi.org/10.1038/s41467-021-21265-6
https://doi.org/10.1007/s10712-019-09531-1
https://doi.org/10.1175/2010JCLI3533.1
https://doi.org/10.1029/2012GL053240

	Abstract
	Introduction
	Method
	Data
	High-resolution 58-year ocean model run: NEMO
	CMIP6 climate model historical runs
	Climate mode and oceanographic indices
	Absolute sea level: satellite altimetry
	Tide gauge observations
	Gravitation, rotation, and solid-Earth deformation changes

	Results and discussion
	Variance of decadal sea-level trend
	Climate index reconstruction of sea-level trends
	Climate effect on recent coastal sea-level trends
	Sources of decadal variability and caveats

	Conclusions
	Appendix A: CMIP6 models
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

