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Multiple sclerosis (MS) is an autoimmune disease that causes lesions in the

central nervous system of humans due to demyelinating axons. Magnetic

resonance imaging (MRI) is widely used for monitoring and measuring MS

lesions. Automated methods for MS lesion segmentation have usually been

performed on individual MRI scans. Recently, tracking lesion activity for

quantifying and monitoring MS disease progression, especially detecting new

lesions, has become an important biomarker. In this study, a unique pipeline

with a deep neural network that combines U-Net, attention gate, and residual

learning is proposed to perform better new MS lesion segmentation using

baseline and follow-up 3D FLAIR MR images. The proposed network has a

similar architecture to U-Net and is formed from residual units which facilitate

the training of deep networks. Networks with fewer parameters are designed

with better performance through the skip connections of U-Net and residual

units, which facilitate information propagation without degradation. Attention

gates also learn to focus on salient features of the target structures of various

sizes and shapes. The MSSEG-2 dataset was used for training and testing

the proposed pipeline, and the results were compared with those of other

proposed pipelines of the challenge and experts who participated in the same

challenge. According to the results over the testing set, the lesion-wise F1 and

dice scores were obtained as a mean of 48 and 44.30%. For the no-lesion

cases, the number of tested and volume of tested lesions were obtained as

a mean of 0.148 and 1.488, respectively. The proposed pipeline outperformed

22 proposed pipelines and ranked 8th in the challenge.

KEYWORDS

deep residual learning, U-Net, attention gate, convolutional neural networks,multiple

sclerosis (MS), MS lesion activity segmentation, lesion activity, MS new lesions
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1. Introduction

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelinating

axons in the central nervous system, resulting in white matter (WM) lesions (Steinman,

1996; Calabresi, 2004). Magnetic resonance imaging (MRI) is widely utilized for various

purposes, such as disease diagnosis, patient follow-up, and therapy monitoring. In
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clinical practice, MRI data can be used to diagnose and assess

MS lesions, which helps physicians better understand the natural

history of MS (Lladó et al., 2012; Combès et al., 2021). Fluid

Attenuated Inversion Recovery (FLAIR) is an MRI technique

that provides images in which WM lesions emerge as high-

intensity areas, allowing for tracking of the disease progression

(Rovira et al., 2015). In particular, this technique facilitates

lesion segmentation to acquire quantitative features such as the

number and volume of lesions (Roy et al., 2018). Since manual

segmentation of such lesions is prone to high interobserver

variability and time-consuming processes (Egger et al., 2017;

Commowick et al., 2018), accurate automated segmentation

methods are required to perform this process (Ma et al., 2022).

The emergence of new lesions or the expansion of existing

lesions is referred to as lesion activity (McFarland et al., 1992).

The most important biomarker for monitoring inflammatory

changes and disease progression in MS is to track lesion activity

between two longitudinal MR images (Patti et al., 2015; Combès

et al., 2021). Recently, the delineation of new MS lesions on

T2/FLAIR by comparing two time-points MRI data has gained

attraction. Determination of new lesions has become even more

important than identifying the total number and volume of

lesions as it allows clinicians to determine whether a given

anti-inflammatory disease modifying drug (DMD) is effective

for the patient (Moraal et al., 2010). However, detection and

delineation of new lesions appearing at the second-time point

are particularly challenging and intra- and inter-rater variability

are unavoidable due to small and subtle new lesions (McKinley

et al., 2020). Therefore, automating the detection of these new

lesions will be a significant improvement in assessing the disease

activity of a patient.

Recently, deep learning methods, especially those relying

on convolutional neural networks (CNNs) (LeCun et al., 2015),

have improved the performance of brain lesion segmentation

tasks (Akkus et al., 2017); such as brain tumor segmentation

(Havaei et al., 2017), brain extraction (Kleesiek et al., 2016), and

MS lesion segmentation (Roy et al., 2018; Aslani et al., 2019;

Zhang et al., 2019). Most of these methods rely on encoder-

decoder networks, taking MRI data as an input and generating

a segmentation output for each pixel (Danelakis et al., 2018).

Many CNN-based methods and their variations have also been

proposed with different input strategies, such as multi-scale

(Brosch et al., 2016), multi-branch (Aslani et al., 2019), and

cascaded (Valverde et al., 2017) approaches. However, these

together with most of the classical methods perform lesion

segmentation on a single MRI data. For determining MS lesion

activity, classical image processing approaches have been usually

preferred such as image differences, intensity-based approaches,

and deformation fields (Ganiler et al., 2014; Lesjak et al., 2016;

Salem et al., 2018; Köhler et al., 2019). However, some of

these approaches have high variability and inconsistency as

they use two different segmentation outputs obtained from the

baseline and follow-up images to produce the lesion activity

(Krüger et al., 2020). To perform better lesion activity

segmentation, deep learning approaches relying on CNNs are

essential which take these two images as input; however,

these methods have been so far limited for the MS lesion

activity segmentation. Salem et al. (2020) who used a classical

approach in their previous study proposed the first CNN-

based longitudinal approach for detecting new T2-w lesions in

brain MRI. In their study, intensity- and deformation- based

features from two time-points data were incorporated into the

proposed network and trained within an end-to-end procedure.

Gessert et al. (2020b) have proposed a CNN-based method

using two FLAIR images acquired at two different times to

detect lesion activity. They used two-path architectures with

attention-guided interactions to process two time-points of

MRI data. Furthermore, they extended their work to full 4D

deep learning using a history of MRI volumes and proposed

a 3D ResNet-based multi-encoder-decoder network in which

temporal aggregation was performed by convolutional gated

recurrent units (convGRUs) for lesion activity segmentation

(Gessert et al., 2020a). However, the dataset of these studies

consists of MR images from the same scanner, which decreases

the generalizability of these methods toward the intensity and

texture characteristics variations, which can be inherited if the

data is obtained from different scanners. Thus, there is a need for

new deep learning approaches to cope with variations problems

that may arise through the use of data frommultiple scanners as

well.

The patch-based and image-based approaches are generally

used in CNN-based medical image segmentation (Aslani

et al., 2019). Image-based segmentation approaches exploit the

global structure information when processing the entire image;

however, the patch-based approaches ignore this information

due to the small patch sizes. In image-based segmentation,

the 3D MRI data is processed either using slice-based or 3D

segmentation methods (Brosch et al., 2016; Tseng et al., 2017).

In slice-based image segmentation, each 3D MRI is converted

into 2D slices along the x, y, and z axes, and then used as an

input for deep learning models. After, these processed slices are

aggregated to reconstruct a 3D binary output segmentation. In

the 3D segmentation, meaningful information from the original

3D images is extracted with 3D kernels in a CNN. However,

applying traditional 3D segmentation with a large number of

parameters to a small dataset is prone to a high risk of overfitting

issues which is a common issue in medical image analysis

(Brosch et al., 2016). To address this overfitting issue, several

approaches have been proposed such as defining three 2D

kernels for each of the three plane orientations around the voxel

(Liu et al., 2017; Tetteh et al., 2020); however, these approaches

include more parameters for each plane when compared to the

slice-based approach (Aslani et al., 2019).

Training deeper neural networks are challenging due to

problems such as degradation problem. To solve these issues, He

et al. (2016a,b) presented a deeper residual learning framework
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that uses identity mapping to ease the network training phase.

Ronneberger et al. (2015) modified and extended the fully

convolutional network (FCN) architecture (Long et al., 2015) to

build the U-Net architecture which works with fewer training

images and combines feature maps from multiple levels to

enhance the segmentation accuracy. U-Net achieves promising

results in medical image segmentation by combining low-level

features with high-level semantic features. Combinations of U-

Net and residual learning were also used for different image

segmentation problems, such as road extraction using remote

sensing data (Zhang et al., 2018). In addition, the attention gate

(AG) model is proposed for automatically learning to focus on

more features related to the target structures of various sizes and

shapes (Oktay et al., 2018). AG uses high-level features from

skip connections and low-level features from an upsampling

operation to emphasize important features. This allows the

network to focus on the small and subtle lesions appearing in

the target MR images.

In this study, an automated segmentation pipeline with

a fully convolutional neural network was used to detect

and segment the new lesions observed in follow-up images.

This study uses images from “Multiple sclerosis new lesions

segmentation challenge (MSSEG-2)” 1 which consists of 3D

FLAIR images acquired from different centers and scanners

(1.5T and 3T). Residual units and attention gates are

incorporated into the U-Net architecture for the new MS lesion

activity task. The slice-based approach was preferred as the

input strategy due to the above-mentioned advantages. Slices

extracted from these pairs of MR scans were combined by

stacking corresponding baseline and follow-up slices into the

input channel dimension and then utilized as input values for

the proposed model. This study has two major contributions to

MRI base lesion activity monitoring. First, it is shown that an

encoder-decoder-based architecture, namely U-Net, provided

acceptable results in detecting and segmenting the lesion

activity. Second, it is demonstrated that using a whole-brain

slice approach with the U-Net architecture including residual

blocks and modified attention gates significantly improves the

segmentation of lesion activity on MRI data acquired from

different scanners.

2. Materials and methods

2.1. Data, preprocessing, and preparation

In this study, a total of 100 patients’ MRI data that was

associated with MS disease provided by the MSSEG-2 challenge
2 was utilized. The voxel size of each MRI data in this dataset

varies from 0.5 × 0.5 × 0.5 mm3 to 1.2 × 1.2 × 1.2 mm3. The

dataset was divided into two groups for training and testing. 40

1 Challenge website: https://portal.fli-iam.irisa.fr/msseg-2/

2 Challenge Data: https://portal.fli-iam.irisa.fr/msseg-2/data/

image pairs were used for the training and the remaining were

used for testing. For each patient, raw 3D T2/FLAIR MRI pairs

were obtained from 15 different MRI scanners at 1.5T and 3T. A

rigid registration was applied to these images to bring them into

a middle point in which the ground truth data was calculated

by the challenge organizers. Thereafter, a consensus delineated

ground truth data for the follow-up images were formed by a

majority voting among the four experts and validated by a senior

expert neuroradiologist.

Data preprocessing is a crucial step for the segmentation

task in medical image processing since the raw MRIs may have

irrelevant information like non-brain tissues and skulls. Thus,

brain extraction followed by N4 bias field correction (Tustison

et al., 2010) was performed on these raw 3D images using

the Anima MS longitudinal preprocessing script 3. Intensity

normalization was performed on each 3D MRI scan using the

99th percentile and Kernel Density Estimate (KDE) with the

Gaussian kernel similar to one described by Reinhold et al.

(2019) and Zhang and Oguz (2020). Then, early fusion was

performed on the baseline and follow-up images to produce

2-channel input data allowing the proposed model to obtain

temporal features fromMRI sequences.

The resulting 3D MRI data consists of orthogonal plane

orientations which yield three views. From this data, the axial,

sagittal, and coronal views along the x, y, and z axes were

obtained as 2D slices. Since each generated 2D slice has a

different size that depends on the orientation, zero padding was

applied to obtain a 512 x 512 slice size for all orientations by

centering the brain without affecting the original voxel size. As

discussed in detail by Hashemi (2019), zero padding does not

deform the patterns in the image and does not affect the network

weights during the backpropagation. To restrict excessively

unbalanced data and ignore non-informative samples, the slices

which have at least one pixel delineated as a new lesion on the

follow-up MR images were chosen to create a training subset.

As a result, a total of 2,637 2D slices for each time point were

derived to be used for training and validation sets. Afterward,

the baseline and follow-up images were stacked to generate a 2-

channel feature map for each plane orientation. Finally, all 2D

stacked slices extracted from all three planes were aggregated

to generate a single training input, which allowed to increase

training samples and use the contextual information in all

directions. Figure 1 shows the raw and preprocessed input data

for the two time points dataset with the delineated ground truth

data.

2.2. Model architecture

2.2.1. U-Net

U-Net, an encoder-decoder network with skip connections,

has shown competitive results in the medical field (Ronneberger

3 Anima scripts: RRID SCR_017072 https://anima.irisa.fr/
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FIGURE 1

The raw, preprocessed, and delineated mask slices including two-time points for the new MS lesions segmentation task.

et al., 2015). This network concatenates features from different

levels to enhance segmentation performance. It consists of

encoding, bridge, and decoding paths. In the encoding path, the

feature map from each layer is downsampled by halving the size

to encode the input image into the feature representations. As

for the decoding path, the corresponding encoding path which

has high-resolution features (semantically low) is combined with

the upsampling of the feature maps produced from the lower

dimension to better learn representations with the following

convolutions. The bridge connects these paths as a transition

block. Each block in each layer has two sets of 3 x 3 convolutional

layers with a Rectified Linear Unit (ReLU) activation for both

downsampling and upsampling operations. The final layer of the

U-Net utilizes a 1 x 1 convolution with a sigmoid activation to

predict each pixel value ranging from 0 to 1 (Ronneberger et al.,

2015). The standard blocks in the U-Net architecture can be

replaced with residual units to enhance the model performance.

2.2.2. Residual learning

Adding more layers to build a deeper neural network could

enhance the performance of networks; however, increasing the

depth of the network may slow down the training process,

perhaps resulting in a degradation problem (He et al., 2016a).

Deep residual learning uses several residual blocks together in

which an identity mapping is created to handle the performance

problem, and also address the degradation problem (He et al.,

2016a). The residual unit is comprised of two 3 x 3 convolutional

blocks, each with Batch Normalization (BN), a ReLU activation,

and a convolutional layer, as well as an identity mapping that

combines the input and output of the residual unit. Figure 2

shows the residual unit including identity mapping within the

proposed model. Each residual unit is formulated according to

He et al. (2016b) as the following:

yl = h(xl)+ F(xl,Wl) (1)

xl+1 = f (yl) (2)

where xl and xl+1 are the input and output of the l-th unit

while F, f, and h indicate the residual function, activation

function, and identity mapping, respectively. He et al. (2016b)

also recommended a full pre-activation as demonstrated in

Figure 2. In this study, a full pre-activation residual unit was

used to construct and design the deep residual attention gate

U-Net.

2.2.3. Attention gate

Attention gates help the models to focus on learning the

salient features beneficial for specific tasks while avoiding
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FIGURE 2

A residual unit with identity mapping. xl and xl+1 are the input and output of the l-th unit, respectively.

unnecessary regions in an input image (Oktay et al., 2018).

These are used during concatenating skip connection and

upsampling to focus more features related to different sizes

and shapes on the target structure. Contextual information

(gating) obtained at coarser scales is used to achieve feature

selectivity in AGs. Figure 3 shows the overview of the attention

gate mechanism.

2.2.4. Deep residual attention gate U-Net

In this study, the combination of U-Net, deep residual

learning, and attention gate was proposed for the new MS

lesion segmentation task. In this combination, the residual

unit will facilitate the network training. Information will be

able to propagate without degradation thanks to the skip

connections within a residual unit and between low and

high levels of the network. Thus, deep neural networks are

built with fewer parameters while still achieving a competitive

segmentation performance. As such, the standard blocks were

replaced with residual blocks in the proposed model. AGs,

modified by adding BN and a ReLU activation for both input

features before convolutional operations, were added between

the corresponding encoding part and the upsampling of features

maps produced from the lower level. Thus, allowing the model

to learn to focus on salient features of various shapes and sizes.

Figure 3 demonstrates the details of the designed network with

the input data formed by the axial, sagittal, and coronal views

extracted from the baseline and follow-up 3D MRI for the new

MS lesion segmentation.

2.3. Implementation details

The training set comprised 3D FLAIR images of 40 patients

and only 29 had new lesions in their follow-up images. These

29 MR images were divided into the training and validation

sets (24 patients for training and 5 patients for validation).

To prepare input data, each 3D image was divided into its

axial, sagittal, and coronal views. Two-channel input feature

data was created using each corresponding 2D slice from both

time points as discussed previously. Keras (version=2.4)4 and

TensorFlow (version 2.4)5 libraries were used for the model

development in Python language (version 3.7)6 (Chollet, 2015;

Abadi et al., 2016). The Google Colaboratory, having a Tesla

K80 GPU, was used for the training procedure (Bisong, 2019).

The proposed model was trained by using the Adam optimizer

(Kingma and Ba, 2014), an initial learning rate of 1e-4 (adjusting

with patience=10 and factor=0.1 during the training), and a

batch size of 8 over 200 epochs, respectively. The validation

dice score was also monitored to choose the best model, and

model weights were saved based on the best validation dice score

during the training. Early stopping (patience=50) was exploited

to prevent overfitting as well. Hashemi et al. (2022) used the sum

of dice loss with a 1.5 coefficient and binary cross entropy loss

as a custom loss function for MS lesion segmentation. Similarly,

in this study, a hybrid loss function consisting of binary focal

loss and dice loss [dice loss + (1 × binary focal loss)] was

employed in order to handle unbalanced labeled data between

lesion and background since lesion pixels constitute a minor

portion of the whole image. The total loss function is defined

as follows:

Lt = (1−
2 gt pr + 1

gt + pr + 1
)+ (1× (−gtα(1− pr)γ log(pr)

−(1− gt)αprγ log(1− pr))) (3)

where gt denotes the ground truth, and pr indicates prediction.

0.25 and 2.0 default values were used for the parameters of α and

γ , respectively.

Keras data generator was used for performing real-time

data augmentation such as vertical flipping, horizontal flipping,

4 https://keras.io/

5 https://www.tensorflow.org/

6 https://www.python.org/

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.912000
https://keras.io/
https://www.tensorflow.org/
https://www.python.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sarica and Seker 10.3389/fnins.2022.912000

FIGURE 3

The architecture of the proposed model combines U-Net, residual learning, attention gate, and a slice-based approach. In AG adapted from

Oktay et al. (2018), xl is the input features, α is the attention coe�cients used to scale the xl , and g collected from a coarser scale is the gating

signal which provides contextual information.

random rotation, and shift range to increase the number of

training samples. Figure 4 shows the proposed pipeline for

new lesion segmentation of MS activity. First, 3D MRIs were

converted into their plane orientations along the x, y, and z

axes. Then, 2D slices of two-time points were fused together

to create a single input training data for the proposed model.

Predicted 2D slices based on the axial, sagittal, and coronal views

were converted into the 3D binary segmentation output, and

then the final output segmentation mask was generated by using

the majority voting among 3D binary outputs obtained from

each view.

To compare components of the designed network, a

testing subset was created from the MSSEG-2 test dataset

provided by the challenge organizers. This subset comprised

MRI data of 7 patients by considering the different scanners

and new lesion loads. Satisfactory results with the MSSEG-

2 dataset could not be obtained by the implementation

of the original U-Net. Therefore, this implementation was

modified with transpose upsampling instead of a simple

upsampling operation, and batch normalization to make the

neural network more stable. A hybrid loss function, the

summation of binary focal and dice losses, was used for

all models.

2.4. Metrics

2.4.1. Dice similarity coe�cient

The segmentation of new lesions was considered one of

the two most important evaluation criteria for the challenge.

This indicates how many new lesions are precisely overlapped

in the ground truth which is also known as the Dice score

(Commowick et al., 2018). In other words, the Dice Similarity

Coefficient (DSC) is used to measure the similarity of the

evaluated segmentation and the ground truth. It is formulated

as follows:

DSC =
2TP

2TP + FP + FN
(4)

where TP, FP, and FN denote the true positive, false positive, and

false negative pixels/voxels, respectively.

2.4.2. F1 score

Another important evaluation criterion was the detection

of new lesions. This shows the number of new lesions that are

correctly detected or not without considering the precision of

their contours. Lesion sensitivity, which is the proportion of

the detected lesions in the ground truth, and lesion positive
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FIGURE 4

The proposed pipeline of new MS lesions segmentation using a slice-based approach including the majority voting for the final 3D

segmentation output using the predicted 2D axial, sagittal, and coronal slices.

predictive, which is the proportion of TP lesions in the automatic

segmentation, were used to compute the F1 score. Lesion

sensitivity (S) and lesion positive predictive (P) can be calculated

with the following equations (Commowick et al., 2018):

S =
TPG

M
(5)

P =
TPA

N
(6)

where M and N denote the number of lesions in the

ground truth and the automatic segmentation, respectively.

TPG indicates the number of lesions correctly detected by the

automatic segmentation among the number of lesions in the

ground truth. TPA denotes the number of lesions correctly

detected by the ground truth among the number of lesions in

the automatic segmentation. Hereafter, these two metrics can be

formulated to calculate the F1 score with the following equation.

F1 =
2SP

S+ P
(7)

2.4.3. Metrics for no new lesions

Patients with MS may not have new lesions for their follow-

up images. This is usual in clinical cases, and this challenge

has also similar cases in both training and test data sets. For

example, the testing set is comprised of 28 patients with no new

lesions and 32 patients with at least one or more new lesions.

The number and volume of new lesions were used as evaluation

metrics as well. The volume of new lesions was calculated by

multiplying the number of voxels in the segmentation with the

voxel volume. A value of zero is the optimal value for these

metrics.

2.4.4. Other overlap and surface metrics

Overlap metrics consider the voxel-based overlap of the

segmentation output (A) and manual annotation mask (G)

while surface metric computes the average symmetric surface

distance. The surface metric considers contours obtained from

the segmentation output and manual annotation mask. As

described in Commowick et al. (2018), the MSSEG-2 challenge

provides a report on the test data set including some of these

measures, such as:

• Positive Predictive Value (PPV):

PPV =
A ∩ G

A
(8)

• Sensitivity (Se):

Se =
A ∩ G

G
(9)

• Specificity (Sp):

Sp =
B− A ∩ G

B− G
(10)

where B reveals the entire image.

• Mean Surface Distance (S):

S =

∑
i∈AS

d(xi,GS)+
∑

j∈GS
d(xj,AS)

NA + NG
(11)

where d indicates the minimal Euclidean distance of a point

of one surface to the other surface. NA and NG reveal the

number of points of each surface, respectively.

2.5. 3D binary image reconstruction

The slices from each view were used to reconstruct the final

3D binary segmentation output. The 3D binary segmentation
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TABLE 1 Prediction results of evaluating the challenge test data set published on the challenge website.

Methods F1 Score Dice score Number of tested lesions Volume of tested lesions (mm3)

Expert 1 0.712 0.631 0.036 1.453

Expert 3 0.636 0.598 0.000 0.000

Expert 2 0.607 0.536 0.107 3.981

Mediaire-B∗ 0.541 0.437 0.536 29.235

Empenn 0.532 0.424 0.286 4.258

Mediaire-A 0.525 0.432 0.429 15.908

Expert 4 0.524 0.461 0.036 0.623

LaBRI-IQDA 0.517 0.500 1.143 38.486

SNAC 0.514 0.485 0.321 5.726

MedICL 0.500 0.507 0.536 12.713

LaBRI-D&E 0.498 0.472 1.964 177.131

ITU (Ours) 0.480 0.443 0.148 1.488

New Brain 0.477 0.451 0.786 12.371

LYLE 0.441 0.409 0.036 0.470

SCAN 0.433 0.403 0.071 5.373

Neuropoly-2 0.410 0.409 0.107 0.498

SCA-withPriors 0.216 0.224 2.464 302.121

IBBM+ 0.143 0.155 3.786 123.309

Bold and italic values are the highest and the second-best scores among other proposed methods excluding the experts, respectively. Dice and F1 Score are expected to be a high numerical

value while the Number of and Volume of Lesions are expected to be a low numerical value. The Number of and Volume of Lesions metrics are calculated for no new lesion cases.

The source data can be accessed at https://doi.org/10.5281/zenodo.5775523. ∗ and + indicate the first and last ranks among the participants, respectively. This table is ordered

according to the highest to the lowest based on the F1 score.

was produced by using the 2D predicted slices from each

plane orientation. Then, a majority voting was applied to

these 3D segmentation outputs to generate the final 3D binary

segmentation as shown in Figure 4.

3. Results

TheMSSEG-2 challenge aims to segment and detect newMS

lesions by comparing the baseline and the follow-up 3D FLAIR

images of a patient. Twenty four teams with a total number

of 30 pipelines participated in this challenge. Deep learning

approaches, most of them relying on the U-Net architecture,

were proposed by most of the participants, while only one of the

teams used a conventional statistical method and the subtraction

between two MR images (Commowick et al., 2021). Table 1

shows the average quantitative metric results of some of the

methods presented in the challenge, including the results of the

experts7.

Four metrics were used to evaluate the proposed pipelines

for new MS lesion segmentation and detection. The test data set

consists of MR images of 60 patients and 32 of them were used

7 Quantitative metrics for all proposed pipeline are available at https://

doi.org/10.5281/zenodo.5775523

for the calculation of the F1 and dice scores due to possessing

new lesions at their follow-up images. The remaining patients’

data were used for the calculation of the number of tested lesions

and volume of tested lesions. According to the challenge results,

our proposed pipeline was ranked 8th for F1 and dice scores

among the proposed methods. The proposed pipeline produced

a mean score of 48% for the F1 score and a mean score of

44.30% for the dice score. For the no-lesion cases, our pipeline

was ranked in 5th and 4th places with a mean score of 0.148

and 1.488, respectively for the number of tested and volume of

tested lesions. Also, the highest F1 and dice scores including the

expert raters were amean score of 71.20 and 63.10% respectively,

which belonged to expert 1. As for the number of tested and

volume of tested lesions, the highest score was 0 which belonged

to expert 3. On the other hand, the highest F1 and dice scores

for the automated methods belonged to teams Mediaire-B and

MedICL with a mean score of 54.10 and 50.70%, respectively.

The highest score for the number of tested lesions and volume of

tested lesions belonged to team LYLE with a mean score of 0.036

and 0.498, respectively. The lowest F1 and dice scores, belonging

to the team IBBM, had a mean score of 14.30 and 15.50%,

respectively. Figure 5 shows the segmentation performance of

the proposed model, consensus, and experts on a slice of an axial

view of four patients. As seen in the figure, the proposed model

had competitive performance compared to the segmentation

output of experts.
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FIGURE 5

The best and worst performances of the proposed model compared to the consensus and each expert segmentation for F1 and dice scores. A

slice of axial view from patients 6 and 2 for the F1 score and patients 60 and 53 for the dice score is presented.

The challenge also provides additional metrics discussed

in Section 2.4.4 for a complete evaluation although these

metrics were not considered for the ranking. The results

obtained from some of the proposed methods and experts for

additional metrics are given in Table 2. Accordingly, the results

of our pipeline with respect to sensitivity, specificity, PPV, and

surface distance were a mean score of 0.364, 1.000, 0.675, and

8.548, respectively. Our pipeline had competitive performance

TABLE 2 Prediction results of evaluating the challenge test data set

published on the challenge website for other useful metrics.

Methods Sensitivity Specificity PPV Surface distance

Expert 1 0.650 1.000 0.707 5.907

Mediaire-B 0.616 1.000 0.394 8.803

Expert 3 0.589 1.000 0.760 5.990

Expert 2 0.526 1.000 0.813 4.543

MedICL 0.514 1.000 0.556 9.194

Expert 4 0.407 1.000 0.801 7.885

Proposed model 0.364 1.000 0.675 8.548

LYLE 0.344 1.000 0.703 7.210

SCAN 0.340 1.000 0.678 8.521

IBBM 0.170 1.000 0.242 24.102

Bold and italic values are the highest and the second-best scores among some of the

proposed methods and the experts, respectively. Sensitivity, Specificity, and PPV are

expected to be a high numerical value while Surface Distance is expected to be a

low numerical value. The source data can be accessed at https://doi.org/10.5281/

zenodo.5775523. This table is ordered according to the highest to the lowest based on

the sensitivity score.

compared to experts and other proposed pipelines in some of

thesemetrics. For example, the highest PPV score among experts

and proposedmethods were amean of 0.813 and 0.703 for expert

1 and the team LYLE, respectively. Also, the highest score for

surface distance belonged to expert 2 and the team LYLE with a

mean score of 4.543 and 7.210.

Finally, comparisons between U-Net, U-Net with AGs, U-

Net with RUs, U-Net with RUs, and AGs (two types) were

realized for the new MS lesion segmentation. The results of U-

Net, U-Net + AGs, U-Net + RUs, and U-Net + RUs + AGs are

presented in Table 3. As seen in this table, the proposed model

achieved the highest dice and F1 scores, a mean score of 58.70

and 61.10%, respectively. U-Net + RUs achieved the highest PPV

score, a mean score of 62.40%. Furthermore, this network had

fewer training parameters and performed better compared to the

U-Net architecture.

TABLE 3 The evaluation results of the proposed method with di�erent

components using a subset of the MSSEG-2 test dataset.

Methods Dice score F1 Score PPV Total parameters

U-Net + RUs + AGs 0.587 0.611 0.567 4,934,613

U-Net + RUs 0.551 0.441 0.624 4,722,897

U-Net + AGs 0.505 0.592 0.609 7,947,109

U-Net 0.558 0.490 0.467 7,771,585

Bold values indicate the highest scores in the columns of dice, F1 score, and PPV while

the lowest value in the column of total parameters. This table is ordered according to the

highest to the lowest based on the dice score.
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FIGURE 6

Analysis of di�erences in detection and segmentation by using F1 and dice scores for each expert and each team that participated in the

challenge, respectively.

4. Discussions

In this study, a deep learning model was developed to

handle the problem of identifying new MS lesions using the

baseline and the follow-up 3D FLAIR MR images. Activity

segmentation particularly for new lesions is a more challenging

task compared to lesion segmentation in a single-time MR

scan due to small lesion loads. MS lesion segmentation using

traditional and deep learning approaches has usually been

studied in a single MRI scan in recent years. However, deep

learning approaches for MS lesion activity using the baseline

and follow-up MR images still remain limited. In most of these

studies, the researchers have been using their own datasets

making it difficult to compare and reproduce their results with

the proposed pipeline. Thus, in this study, comparisons were

performed on the automatedmethods proposed in the challenge.

Moreover, comparisons were performed among components

used for building the designed network as well. The proposed

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.912000
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Sarica and Seker 10.3389/fnins.2022.912000

FIGURE 7

Analysis of the number and volume of lesions detection for each expert and each team that participated in the challenge (The data of volume of

tested lesions was scaled by log10).

network, which combines the strengths of U-Net, residual

units, and attention gates, has outperformed other methods

comprising different combinations of components in terms of

dice and F1 scores.

A whole-brain slice-based approach was used as patch-based

CNNs lack spatial information about MS lesions due to the

patch size limitation (Aslani et al., 2019). The results indicated

that the proposed pipeline with this approach had a competitive

performance formostmeasures compared to the other pipelines,

as given in Table 1. Segmentation performance of new MS

lesions improved significantly when baseline and follow-up

MRI scans were stacked in the input channel dimension. Thus,

baseline and follow-up scans for each patient were stacked as

a two-channel input for the proposed pipeline. Furthermore,

attention gates modified with BN and ReLU allowed the model

to focus on small and subtle new lesions.
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Figure 6 presents the analysis of differences in detection

and segmentation for F1 and dice scores for each expert and

each team that participated in the challenge, respectively. The

red box highlighted the team performance of this study for

these two metrics. According to F1 and dice scores, proposed

methods could not reach the expert level; however, some

methods were able to outperform experts which revealed varying

scores in different patients 8. Based on this observation, it

was concluded that detection and segmentation of MS new

lesions in longitudinal studies is a difficult task even for

experts. Therefore, an external reviewer may be needed while

analyzing the new lesions with automated methods for the

lesion activity.

The evaluation metrics for no new lesions are indicated in

Figure 7. The number of connected components in automatic

segmentation was used to find the number of lesions detected.

Also, the volume of lesions detection (mm3) was used to

evaluate the segmentation performance of both automated

and expert delineation outputs. As seen in Figure 7 and

Table 1, the proposed pipeline outperformed compared to some

of the other proposed methods. The dotted red rectangle

highlights the proposed pipeline within this study. Accordingly,

some of the proposed methods, including ours, outperformed

some experts.

Instead of using a 3D segmentation approach requiring

more computational power and learning parameters, the

proposed method and the slice-based approach were used

together for detecting and segmenting new lesions on the follow-

up images. While the appearance of new lesions is of primary

interest for the challenge, enlarged or disappearance of MS

lesions could be also studied. Different MRI modalities such as

T1-and T2-weighted can also be incorporated into the given task

to extract more features related to the size or location of new

MS lesions even though the FLAIR images reveal lesions as more

intense. To achieve a robust automated model for the given task,

large datasets from different scanners are needed; however, it is

difficult to obtain such datasets.

5. Conclusion

In this study, an automated pipeline for new MS lesion

segmentation using the baseline and follow-up 3D FLAIR MRI

has been designed with a deep learning-based network that

fuses the strengths of U-Net, residual learning, and AG. For

more accurate segmentation of new MS lesions, this network

architecture was designed as a deep encoder-decoder network

to enhance the U-Net by replacing plain blocks with residual

blocks and adding attention gates. These residual blocks replaced

8 Evaluation results and analysis slides at https://files.inria.fr/empenn/

msseg-2/Challenge_Day_MSSEG2_Results_2021.pdf

with the plain blocks facilitate the training. Skip connections

within both residual units and U-Net facilitates the propagation

of information in both forward and backward phases during

the training procedure. AGs integrated into the proposed model

emphasize important features propagated over skip connections.

A hybrid loss function was introduced as the addition of dice

loss and 1 × binary focal loss. The input data for the proposed

method was prepared by converting 3D scans into their plane

orientations of axial, sagittal, and coronal views which yielded

2D slices. Baseline and follow-up slices were stacked to create

a two-channel feature mapping for each plane orientation.

Then, all slices extracted from all three planes were grouped

into a single input to increase training samples and to use

the contextual information in all directions. The predicted 2D

slices for each view were aggregated using a majority voting

to generate the final 3D binary output. Although new MS

lesion segmentation and detection pose a difficult problem

due to small lesion sizes, the proposed method has achieved

comparable segmentation performance compared to the experts

and top-ranked automated methods in the challenge. Finding

the appropriate data sets and using the existing ones as publicly

available will reduce the gap for the data required in these studies

and the lack of which is frequently discussed, and will allow

different studies to be carried out. This study provides clues

about the recent techniques regarding the MS lesion activity

segmentation that can be used as a guide for future studies in

this field.
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