
A modular software framework for the design and
implementation of ptychography algorithms:
Supplementary Material
Francesco Guzzi1, 2, George Kourousias1, Fulvio Billè1, Roberto Pugliese1, Alessandra
Gianoncelli1, and Sergio Carrato2

1Elettra Sincrotrone Trieste, Basovizza, Italy
2University of Trieste, Trieste, Italy
*francesco.guzzi@elettra.eu

ABSTRACT

In the following text we will expand the results and discussion section of the main text, providing addition reconstructions for
different datasets (optical, soft X-ray and synthetic). We also describe in some detail the pre-processing and post-processing
required for some reconstructions. We also describe the behaviour of the position refinement technique while using different
error signals.

SciComPty simulator
Reconstructions apart, SciComPty offers a simple method to perform virtual experiments. To simulate a ptychography dataset,
one can implement the general transmission model of Eq. 3 in the main text, and assign particular values to its geometrical/setup
parameters. In the case of a far-field setup1, by fixing the detector pixel size δd , the corresponding pixel size at the sample
plane δs is given by:

δs =
λ · zdo

W ·δd
=

λ · zdo

Sdetector
(1)

where W is the detector size in pixels, Sd is the detector lateral dimension and zdo the sample-detector distance. δs defines
the basis for the scanning movements, that in the simplest case, follows a grid pattern. Random jitter is added to the (x,y)
coordinates, to prevent the raster scanning pathology2–4. The overlap factor is defined instead by the maximum step movement.
The object function O(x,y) and the illumination function P(x,y) are assembled in magnitude and phase providing two images
each. Defining such virtual experiment parameters follows what is actually done during a real experiment. Listing 1 in this
document shows how a synthetic dataset can be simply produced within the SciComPty framework.
By creating a multi-page complex illumination (M x WIDTH x HEIGHT), one can specify a partially coherent illumination.
The output of the simulator for a three-mode illumination (Zernike Polynomials of order), is displayed in the Fig. S1. In this
example, the three modes modulates in magnitude and phase a spherical wave, simulating a defocused ptychography setup.

Reconstructions
Many synthetic and real-data experiments have been carried out. We used both workstation and HPC solutions. Table 1
summarises the test configuration.

Simulated data
To reconstruct the simulated dataset, the simulation parameters should be again used during the reconstruction. The simulator is
general enough that other softwares can be used to generate a reconstruction. An example reconstruction program for PyNx9 is
the one in Listing 2. The same code can be used also for other reconstructions with the same software. Only the parameters
need to be adjusted.
From the simulated dataset, one can obtain the reconstructed object displayed in Fig. S2 and the set of multi-mode illumination
shown in Fig. S3. It is important to note that to get such a reconstruction, a number of modes greater than the simulated ones is
mandatory. That is why in Fig. S3 there are seven modes. Only the first three are good estimates of the three really employed.
A reconstruction with exactly the same amount of modes used during the simulation, fails to provide a good set of P(x,y).

load SciCompty tools
from SciComPtyLibs import simulate, sphericalWave, prepare_obj

virtual experiment params
OVERLAP = 0.85 # overlap factor
DIMSAMPLE = 1024 # detector size
wavelength = 4.892e-10; # wavelength [m]
fd = 0.8932; # focus-detector distance [m]
fs = 2.5e-3; # focus-sample distance [m]
ps = 13.5e-6; # pixel size [m]

define pixel size at the sample plane and setup raster grid
delta1 = wavelength * (fd-fs)/(DIMSAMPLE*ps)
maxtrasl = int(DIMSAMPLE - np.floor(OVERLAP*DIMSAMPLE))

load obj imgs and compose cplx object
imgOrigMod = imgOrigPhase = tifffile.imread('imgs/diatoms_4000.tif')
cplxObj = prepare_obj(imgOrigMod, imgOrigPhase, resizedim=2500)

create cplx probe P x DIMSAMPLE x DIMSAMPLE
cplxProbe = np.expand_dims(sphericalWave(DIMSAMPLE, wavelength, delta1, -fs,
DIMSAMPLE*delta1/3),0)

simulate
intensstack, pos = simulate(cplxObj, cplxProbe, fd, fs, ps, DIMSAMPLE, wavelength, maxtrasl)

save virtual experiment output
tifffile.imsave(outpath + 'diatom_synth_new.tif', intensstack)
np.save(outpath + 'synthpos_new.npy', pos*delta1)

Listing 1. SciComPty simulator module API usage example.

CPU
Intel(R) Xeon(R) CPU E5-2643 v4 @ 3.40GHz

24 hyper-threading core, 20 available (virtualisation)
GPU 2x Nvidia Tesla k80, 4 available processors

Virtualisation system proxmox-ve: 6.1-2 (kernel: 5.3.13-1-pve)
Virtual machine OS Ubuntu 18.04 LTS (kernel 5.0.0-29-generic)

Python 3.9.5 Anaconda
CUDA 11.3

PyTorch5 1.9
SciPy6 1.7.1

Scikit-Image7 0.18.1
PyNx8 2020.2.2

Table 1. System configuration for the algorithm testing.

2/15

Figure S1. Diffraction pattern (cropped) generated with an image of a diatom and a series of zernike polynomials, modulating
a spherical wave.

Figure S2. The reconstructed object from the dataset in Fig. S1. The white bar represents 15µm.

3/15

import required libraries
import numpy as np
import tifffile as tf
PyNx tools
from pynx.ptycho import Ptycho, PtychoData, shape, ScaleObjProbe, ML, DM, AP
SciCompty tools
from SciComPtyLibs import sphericalWave

load data and positions
diffdata = tf.imread('synthdata/diatom_synth_new.tif')*1.
diffdata[diffdata<0] = 0
positions = np.load('synthdata/synthpos_new.npy')

reconstruction params
wvl = 4.892e-10; #wavelength
fd = 0.8932; #focal to detector
fs = 2.5e-3; #focal to sample
psize = 13.5e-6; #pixel size

prepare the reconstruction
distance = fd -fs
pixel_size_object = wvl * (distance)/(diffdata.shape[-1]*psize)
print('Obj plane res: {:.2f} nm'.format(pixel_size_object*1e9))

x,y = positions[:,0], positions[:,1]
x -= x.min()
y -= y.min()
data = PtychoData(iobs=diffdata/diffdata.max(), positions=(x,y),

detector_distance=distance, mask=None, pixel_size_detector=psize,
wavelength=wvl, near_field=False)

probe init
nprobes = 7
probeinit = sphericalWave(diffdata.shape[-1], wvl, pixel_size_object, -fs, 6e-6)
probeinit = np.expand_dims(probeinit, 0)
if nprobes >1:

probeinit = probeinit + 1e-3 * np.random.randn(nprobes, probeinit.shape[-2], probeinit.shape[-1])
probeinit = probeinit * np.linspace(0.1,1, nprobes)[::-1].reshape(nprobes, 1, 1)

calculate final obj size
nx0, ny0 = shape.calc_obj_shape(x/pixel_size_object, y/pixel_size_object,

(diffdata.shape[-2], diffdata.shape[-1]))
obj init
obj0 = 0.1* np.exp(1j * np.random.uniform(0, 0.5, (nx0, ny0)))

main ptycho obj istance
p = Ptycho(probe=probeinit, obj=obj0, data=data, background=None)

initial scaling
p = ScaleObjProbe() * p

Optimize
p = AP(update_object=True, update_probe=True, update_pos=False, calc_llk=10, show_obj_probe=10) ** 200 * p
#p = DM(update_object=True, update_probe=True, update_pos=True, calc_llk=100, show_obj_probe=10) ** 400 * p
#p = ML(update_object=True, update_probe=True, update_pos=False, calc_llk=100, show_obj_probe=25) ** 400 * p

save output
tf.imsave('outobj.tif', p.get_obj())
tf.imsave('outill.tif', p.get_probe())

Listing 2. PyNx example code for reconstructions

4/15

Note that in the simulated reconstruction of Fig. S2 the raster grid artefact is quite visible. The jitter that has been added to
make the raster scan grid less regular is in fact really small. The effect is quite visibile especially for texture-free areas.

Figure S3. Reconstructions of the 7 modes for the 3-modes diffraction data in Fig. S1. The white bar represents 15µm.

Real soft-X-ray data
In Fig. S4 panel (A) the phase map of a group of chemically fixed mesothelial cells is shown: Mesenchymal-Epithelial
Transition (MET) cells were grown in silicon nitride windows and were exposed to asbestos fibres10. The absorbing diagonal
bar is indeed an asbestos fibre included in the sample. Panels (B) and (C) of figure S4 show the reconstructed illumination in
magnitude and phase. The reconstruction is carried out in SciComPty for roughly 1000 iteration with position correction. As it
can be seen, the entire object box is reconstructed, thanks to the M-rPIE algorithm. In this case a rebin of factor 4 is employed.
The code used to obtain such a reconstruction is in List. 3. The same scheme is used for any SciComPty based reconstruction.
The reconstructions in figure 3 of the main article (MET cells) are produced with three probe modes. This number of modes
has been chosen as a trade-off between reconstruction quality and computational time, that as has been said before, scales
linearly with the number of modes. Actually increasing the number of modes did not increase the reconstruction quality. The
reconstruction of the Pm modes is displayed in Fig. S5, which shows a well decaying intensity as predicted.
The observable ptychographic resolution gain11 Gp can be calculated for this reconstruction by the following expression:

Gp =
d
δs

=
9µm
50nm

= 180 (2)

5/15

Figure S4. SciComPty phase reconstruction of a MET cells sample grown in silicon nitride windows and exposed to asbestos
fibres (the thick bar on the bottom left).

Figure S5. The illumination P(x,y) reconstructed at the sample plane (magnitude) here shows a modal decomposition of 3
modes.

6/15

load required libs
import numpy, tifffile, torch, skimage
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")

SciComPty libs
from SciComPty_libs.ptyobj_tools import PtyRecon, propagator, blur_mask
from SciComPty_libs.generic_tools import composeAgainImage, load_positions, genCircleMask, plot_curr

params
DIMSAMPLE = 1024
psize = 2*20e-6
fs = 360e-6
en = 1020
distance = 0.7515
wvl = (6.62606957e-34 * 299792458.) / (en * 1.602176565e-19) # wavelength in meter
pixel_size_object = wvl * (distance-fs)/(DIMSAMPLE*psize)

load data and positions
data = tifffile.imread(datapath)**0.5
data = data/numpy.amax(data)
white = numpy.mean(data, axis=0)
mask = white > 0.5*numpy.amax(white)
pixpos = load_positions(pospath)/pixel_size_object

probe init
nprobes = 3
probeinit = sphericalWave(DIMSAMPLE, wvl, pixel_size_object, -fs, 6e-6)
probeinit = np.expand_dims(probeinit, 0)
if nprobes >1:

probeinit = probeinit + 1e-3 * np.random.randn(nprobes, probeinit.shape[-2], probeinit.shape[-1])
probeinit = probeinit * np.linspace(0.1,1, nprobes)[::-1].reshape(nprobes, 1, 1)

init full obj
canvas, c,s, xpos, ypos, data = composeAgainImage(data, pixpos, flipIt=False, weightFun=white)
objguess = 0.5*np.ones_like(canvas).astype(np.complex64)

mask for pos correction
rscanvas = s**0.125
rscanvas -= rscanvas.min()
rscanvas = rscanvas/rscanvas.max()
rscanvas = skimage.transform.resize(rscanvas,

(len(numpy.unique(pixpos[:,0])), len(numpy.unique(pixpos[:,0]))))
rscanvas /= rscanvas.max()

init illumination
mask = genCircleMask(data.shape[1], data.shape[1] *0.5, 1, 1)

init pty obj
Ptyobj = PtyRecon(np.fft.fftshift(data), xpos, ypos, fd, fs, ps, wavelength,

probeguess=probeguess.astype(np.complex64), objguess=objguess,
canvasmask=rscanvas, posupalpha=10., detectormask=None)

optimize for 200 epochs
for ep in range(200):

M-rPIE iteration
rloss, posloss = Ptyobj.updateRpieMulti(upobj=.5, upill=.5, uppos=True, beta=.5)
#rloss, posloss = Ptyobj.updateEpieMulti(upobj=.5, upill=.5, uppos=0, beta=.5)
if ep % 5 == 0:

obj, ccprobe = Ptyobj.objguess.cpu().numpy()[0], Ptyobj.probeguess.cpu().numpy()
plot_curr(obj, ccprobe.sum(axis=0), ep, rloss,frac=1/8)

save output
tifffile.imsave('out_obj.tif', obj); tifffile.imsave('out_ill.tif', ccprobe);

Listing 3. SciComPty example code for reconstructions

7/15

Post processing

As said in the main text, for many reconstructions obtained with other algorithms (e.g. AP, DM, ML in9) not embedded in
SciComPty, a post-processing methodology is required. An example is in Fig. S6 panel (a). The real RAW output is shown
in Fig. S6 panel (b), where one can only perceive the correct orientation of the picture, by looking at the strong features of
the fibre in the right. The visible effect is a strong phase modulation affecting the object. Being in the object space, one way
to correct this artefact is to shift its complex Fourier transform in the Fourier space, by employing the shifting property of
the transform. To do so, we can again use the phase correlation algorithm to find the cross-correlation peak among the two
transforms. Fig. S6 panel (c) shows the magnitude of the Fourier Transform for the two reconstructions in panel (a) and
(b), here stacked and colored in red and green. An offset of roughly 20 pixel is visible. Figure 3 of the main text shows the
corresponding reconstruction obtained with SciComPty, which appears way less blurry.

Figure S6. Post-processing required for the reconstructions obtained with9. Panel (a) is the final phase; panel (b) is the raw
phase image; panel (c) shows a two-channel image where in red we display the raw object Fourier Transform, while in green
the post-processed. The phase of the ifft of panel (c) provides panel (a) for the green channel and panel (b) for the red channel.

8/15

To verify the behaviour for other datasets, we employed an optical ptychography dataset which has been released in12. Again, a
similar artefact can be found, see Fig. S7 panel(a). The same set of diffractions and parameters is given also to the M-rPIE
recipe in SciComPty, producing the phase map in panel (b). Differently from the previous case, here the main culprit is a shifted
illumination, as can be seen confronting panel (c) with panel (d) of Fig S7.

Figure S7. The illumination P(x,y) reconstructed at the sample plane (magnitude) here shows a modal decomposition of 3
modes.

Dynamics of the position refinement signal

Where to "sense" for the position error? Referring to Fig. S8, for each jth (x,y) j position, many methods13–15 observe the
2D phase/cross-correlation or at A) the object plane (between a corrected and uncorrected object estimate at the same jth
computational box, XCORRA), or at B) on the detector plane, calculating the correlation between the jth acquired and simulated
diffraction pattern, XCORRB. This latter methodology is used for example in CT16. Also, it seems unnatural to check between
two "artificial" quantities (oj and o′j) instead of relying at least on one real image (the acquired diffraction pattern).
To investigate the dynamics of the error signal, we used the SciComPty simulator to generate a ptychography dataset in which
the object function O(x,y) and the illumination function P(x,y) are assembled in magnitude and phase, providing two images
each. The O(x,y) function is made up by the "Perseverance" Mars Rover and the famous "Bacteria" test image, while the
smaller P(x,y) is composed by "Chelsea" (the cat) and "Astronaut". Then the positions are perturbed by adding a Gaussian
error on both the x,y coordinate, with a standard deviation equal to 5% of each object view. A reconstruction is started enabling
the position correction routine, based on the error signal XCORRA or XCORRB. The process is monitored iteration after
iteration by recording: 1) the reconstruction error (blue) as defined in17 (Eq. 3; 2) the mean average error as estimated by the

9/15

Figure S8. Position refinement routine integrated into a PIE algorithm; the position error signal (argmax of 2D
cross-correlation) can be calculated meaningfully in two points, XCORRA or XCORRB (purple boxes). The estimated positions
(x, j) are then updated to (x j,y j)

′ iteration by iteration.

XCORRA or XCORRB procedure (green, Eq. 4) and 3) the ground truth average error (orange) between the real and the current
position vector (Eq. 5). Also the diffraction patterns are corrupted by a small amount of gaussian noise. The reconstruction is
carried out for 300 iterations. The reconstruction error is calculated as the L2-norm of the difference between o j(x,y) = oj and
o′(x,y) = o′j:

E = ||o(x,y)−o′(x,y)||2 (3)

The position estimation is based on the normalised cross correlation between two 2D arrays a(x,y) = a and b(x,y) = b having
width of 2W +1 pixels and height of 2H +1 pixels. We calculate the coordinates of the cross correlation peak between the 2D
arrays (choosed at position XCORRA or XCORRB, to check for a translation shift. From these coordinates one can calculate the
length of this vector:

εpos =
√
||argmax

x,y
{a(x,y)∗b(x,y)}||2 =

√√√√||argmax
x,y
{

H

∑
k=−H

W

∑
l=−W

a(x,y) ·b(x+ k,y+ l)}||2 (4)

remembering that these arrays are different if using XCORRA or XCORRB, as previously described (see Fig. S8). This signal is
used to correct the position.
The ground truth position error is calculated as the mean of the distance between any position; given f j = [x j,y j]

T as the jth 2D
ground truth position vector and gj as its estimation refined by the algorithm, we define the distance between them as:

d j =
√
||fj−gj||2. (5)

The corresponding mean provides the ground truth position error εg:

εg =
1
J

J

∑
j=1

d j (6)

10/15

where J is the number of positions vectors and diffraction patterns in the dataset. As said in the main text, the estmated
sub-pixel position error is amplified and used to guide the correction; in the proposed method we use a dynamic gain factor η ,
independently for the x and y coordinates, producing new coordinates x′j,y

′
j

x′j = x j +ηx, j · argmax
x
{XCORRi∈[A,B]}, (7)

y′j = y j +ηy, j · argmax
y
{XCORRi∈[A,B]}, (8)

If η is a constant equal to 1 and XCORRA is chosen, the output of the reconstruction can be seen in Fig. S9: the estimated
position error (Eq. 4) signal (green curve) drops rapidly to zero, meaning that no further correction on the positions will be
done. As reported in15, the same effect can be observed for a constant gain. That is why both the reconstruction error (blue) and
the ground truth position error (orange, Eq. 5) converge rapidly but to a high value, denoting a bad reconstruction. Also for the
case of XCORRB (Fig. S10, only a marginally better reconstruction (see the inset panel of the illumination magnitude) can be
gathered. The error signal (green curve in S9 and S10) is noisier, due to the fact that only half of the information (real images)
is present.

Figure S9. XCORRA signal (green curve) with η = 1 has a low dynamic range, practically not refining the coefficients. The
eye of the cat (illumination magnitude) is not correctly retrieved.

Figure S10. XCORRB signal (green) is so noisy that can make the error diverge also for η = 1. The reconstruction is
marginally better than the one in Fig. S9.

By introducing a gain factor (η > 1) the convergence can be greatly improved not only in speed terms but also toward a better
solution (hopping local minima). An adaptive correction is required, ideally per-parameter.

11/15

Figures S11 shows how the implementation of Adam is effective in adapting the gain of the error signal, retrieved at XCORRA,
just where in the case of unity gain the signal was ineffective. Conversely, applying Adam at XCORRB (Fig. S12) the correction
is marginally improved due to its noisier nature.

Figure S11. Adam is now used as a gain controller, in conjunction with XCORRA (green). The loss (blue) and the ground
truth position error (orange) are reduced, providing a good reconstruction for the magnitude and phase of both the object (panel
B and C) and the illumination (insets in B and C).

Figure S12. Differently from Fig. S11, the error signal in XCORRB is noisy allowing only a partial correction.

The choice of an error signal from the object plane finally coincides with what was proposed initially in the literature13–15, but
only if a gain factor is applied; the statistic-based method proposed in15, in our experiments and implementation, not only is
somehow difficult to tune but does not provide a vector of per-parameter controlled acceleration.

Position refinement methods on simulated data
In this section, we test the three position refinement methods with simulated data. The algorithm of choice here is ePIE. Two
different degree of noise are corrupting the positions. In Fig. S13 a small amount of noise (range of 7 pixels) is added to the
position vectors; panel (a), (b) and (c) refers to the proposed method; panel (d), (e) and (f) show the output of the method in15,
again implemented in SciComPty, while panel (g), (h) and (i) display the output of the position correction method in9. Similarly
to the other graphs, the curves plotted in the first column are respectively the reconstruction error (blue), the ground-truth
position error and (orange) and the estimated error by the algorithm (green). Panel (g) is different as the quantities we provide
as metrics are not available in the PyNx software. That is why we show the two available quantities, Log Likelihood "LLK" as
a measure of the error of the reconstruction, and the estimated position error. As can be seen, the proposed method provide
the best reconstruction, with a correction factor that is quite uniform in the entire reconstruction. For the same corruption,
the method in15 (2nd row) has an accuracy of roughly half of the proposed method; confronting the curves in panel (a) and

12/15

(d), in the very first iterations the correction is extremely large, then it stops. We tried to tweak a bit the parameters of the
method, but in the end we ended up using the values proposed in15 as it were already providing the best results. Unfortunately
the method in9 fails in providing a usable correction; indeed, the correction strength dissipates early and no further action is
practically taken after iteration 25. In this particular scenario, changing the reconstruction method to DM3 or ML18 makes the
reconstruction even worse, as the optimiser struggle to find the correct illumination. The same problem was experienced also in
real-data reconstruction (see main text). Now a larger random error is added to the vectors. The output of the experiments are
show in Fig. S14. Panel (a,b,c) show the output of the proposed method, while (d,e,f) refer to the algorithm in15. With a range
of 14 pixel here we are at more the 10% of a 128 pixel wide diffraction pattern. Only the proposed algorithm is able to partially
correct the positions, providing an usable reconstruction. The method in15 give up after few iterations.

Figure S13. Comparison of the position refinement methods; panel (a,b,c): Proposed Adam method; panel(d,e,f) method in15;
panel (g,h,i): method in9

13/15

Figure S14. Comparison of the position refinement methods; panel (a,b,c): Proposed Adam method; panel(d,e,f) method in15;
panel (g,h,i): method in9

References
1. Schmidt, J. D. Numerical simulation of optical wave propagation with examples in MATLAB (SPIE, Bellingham,

Washington, 2010).

2. Dierolf, M. et al. Ptychographic coherent diffractive imaging of weakly scattering specimens. New J. Phys. 12, 035017,
DOI: 10.1088/1367-2630/12/3/035017 (2010).

3. Thibault, P. et al. High-resolution scanning x-ray diffraction microscopy. Science 321, 379–382, DOI: 10.1126/science.
1158573 (2008). https://science.sciencemag.org/content/321/5887/379.full.pdf.

4. Edo, T. B. et al. Sampling in x-ray ptychography. Phys. Rev. A 87, 053850, DOI: 10.1103/PhysRevA.87.053850 (2013).

5. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. In Wallach, H. M. et al. (eds.)
Advances in Neural Information Processing Systems 32: NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
8024–8035 (2019).

6. Jones, E., Oliphant, T., Peterson, P. et al. SciPy: Open source scientific tools for Python (2001–).

7. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

8. Favre-Nicolin, V. et al. PyNX: high-performance computing toolkit for coherent X-ray imaging based on operators. J.
Appl. Crystallogr. 53, 1404–1413, DOI: 10.1107/S1600576720010985 (2020).

9. Mandula, O., Elzo Aizarna, M., Eymery, J., Burghammer, M. & Favre-Nicolin, V. PyNX.Ptycho: a computing library for X-
ray coherent diffraction imaging of nanostructures. J. Appl. Crystallogr. 49, 1842–1848, DOI: 10.1107/S1600576716012279
(2016).

10. Cammisuli, F. et al. Iron-related toxicity of single-walled carbon nanotubes and crocidolite fibres in human mesothelial
cells investigated by synchrotron xrf microscopy. Sci. Reports 8, 706, DOI: 10.1038/s41598-017-19076-1 (2018).

14/15

10.1088/1367-2630/12/3/035017
10.1126/science.1158573
10.1126/science.1158573
https://science.sciencemag.org/content/321/5887/379.full.pdf
10.1103/PhysRevA.87.053850
10.1107/S1600576720010985
10.1107/S1600576716012279
10.1038/s41598-017-19076-1

11. Jacobsen, C., Deng, J. & Nashed, Y. Strategies for high-throughput focused-beam ptychography. J. Synchrotron Radiat.
24, 1078–1081, DOI: 10.1107/S1600577517009869 (2017).

12. Enders, B. & Thibault, P. A computational framework for ptychographic reconstructions. Proc. Royal Soc. A: Math. Phys.
Eng. Sci. 472, 20160640, DOI: 10.1098/rspa.2016.0640 (2016). https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.
2016.0640.

13. Tripathi, A., McNulty, I. & Shpyrko, O. G. Ptychographic overlap constraint errors and the limits of their numerical
recovery using conjugate gradient descent methods. Opt. Express 22, 1452–1466, DOI: 10.1364/OE.22.001452 (2014).

14. Dwivedi, P., Konijnenberg, A., Pereira, S. & Urbach, H. Lateral position correction in ptychography using the gradient of
intensity patterns. Ultramicroscopy 192, 29–36, DOI: https://doi.org/10.1016/j.ultramic.2018.04.004 (2018).

15. Zhang, F. et al. Translation position determination in ptychographic coherent diffraction imaging. Opt. Express 21,
13592–13606, DOI: 10.1364/OE.21.013592 (2013).

16. Gürsoy, D. et al. Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. Sci.
Reports 7, 11818, DOI: 10.1038/s41598-017-12141-9 (2017).

17. Reinhardt, J. & Schroer, C. Quantitative ptychographic reconstruction by applying a probe constraint. J. Instrumentation
13, C04016–C04016, DOI: 10.1088/1748-0221/13/04/c04016 (2018).

18. Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14,
063004, DOI: 10.1088/1367-2630/14/6/063004 (2012).

15/15

10.1107/S1600577517009869
10.1098/rspa.2016.0640
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2016.0640
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2016.0640
10.1364/OE.22.001452
https://doi.org/10.1016/j.ultramic.2018.04.004
10.1364/OE.21.013592
10.1038/s41598-017-12141-9
10.1088/1748-0221/13/04/c04016
10.1088/1367-2630/14/6/063004

	References

