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Introduction 

Fructose is a natural sugar present in fruits and honey and 

is a fundamental nutrient for wild animals. Bears, squirrels, 

birds migrating over long distances, and freshwater Pacu 

fish actively eat fruits to accumulate fat, presumably as a 

protection against periods of food shortage [1]. Fructose 

contributes to lipid and glycogen syntheses for energy stor-

The Warburg effect is a unique property of cancer cells, in which glycolysis is activated instead of mitochondrial respiration despite ox-
ygen availability. However, recent studies found that the Warburg effect also mediates non-cancer disorders, including kidney disease. 
Currently, diabetes or glucose has been postulated to mediate the Warburg effect in the kidney, but it is of importance that the War-
burg effect can be induced under nondiabetic conditions. Fructose is endogenously produced in several organs, including the kidney, 
under both physiological and pathological conditions. In the kidney, fructose is predominantly metabolized in the proximal tubules; 
under normal physiologic conditions, fructose is utilized as a substrate for gluconeogenesis and contributes to maintain systemic glu-
cose concentration under starvation conditions. However, when present in excess, fructose likely becomes deleterious, possibly due 
in part to excessive uric acid, which is a by-product of fructose metabolism. A potential mechanism is that uric acid suppresses aconi-
tase in the Krebs cycle and therefore reduces mitochondrial oxidation. Consequently, fructose favors glycolysis over mitochondrial 
respiration, a process that is similar to the Warburg effect in cancer cells. Activation of glycolysis also links to several side pathways, 
including the pentose phosphate pathway, hexosamine pathway, and lipid synthesis, to provide biosynthetic precursors as fuel for re-
nal inflammation and fibrosis. We now hypothesize that fructose could be the mediator for the Warburg effect in the kidney and a po-
tential mechanism for chronic kidney disease. 
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age, and to the development of insulin resistance to prevent 

glucose utilization in the peripheral tissue, and glucose 

delivery to the central nervous system. In addition, fructose 

also stimulates salt reabsorption to raise blood pressure (as 

discussed in the following section) [2]. Fructose is also me-

tabolized under hypoxic conditions and often exhibits the 

protective effect. A recent study examined how the naked 

mole rat could survive long periods of hypoxic conditions 
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and found that it was attributed to their ability to produce 

fructose endogenously in several organs, which is subse-

quently metabolized to provide several biosynthetic pre-

cursors required for cell survival, including nucleic acids, 

amino acids, lipids and energy [3]. Likewise, the reason why 

the fetus exposed to hypoxia can survive during early preg-

nancy is that the developing placenta also produces en-

dogenous fructose, likely aiding fetal organ growth in wild 

animals as well as humans [4–6].  

In modern society, fructose, as a component of high-fruc-

tose corn syrup or table sugar, is preferentially added to 

sugar-sweetened soft drinks and sodas. A dramatic increase 

in fructose consumption is, however, associated with a 

high prevalence of the metabolic syndrome, stimulating 

a heated debate over the potential danger of sugar-sweet-

ened beverages (SSB) [7,8]. Likewise, several clinical studies 

have sought the role of fructose in the kidney, but the issue 

remains controversial. Interestingly, more than two SSB 

per day is associated with an incidence and a prevalence of 

chronic kidney disease (CKD) [9,10], but less than one SSB 

per day was not [11,12]. Fructose may therefore impair re-

nal function in a dose-dependent manner. An intervention 

study also showed that a low-fructose diet lowered blood 

pressure and reduced systemic inflammation in subjects 

with CKD [13]. 

A recent scientific discovery is that fructose is produced 

endogenously, and is involved in the pathogenesis of sever-

al types of disorders. Acute kidney injury, diabetic nephrop-

athy, cardiac hypertrophy, aging, and salt-sensitive hyper-

tension are now recognized to be mediated by endogenous 

fructose. 

This article summarizes the basis of fructose physiology, 

discusses a potential mechanism by which fructose causes 

kidney disease, and finally proposes our hypothesis that 

fructose mediates the Warburg effect in CKD. 

Current concepts and update regarding dietary 
fructose metabolism 

It has long been assumed that the liver is the primary site 

for dietary fructose metabolism, but recent studies have 

demonstrated that the small intestine plays a substantial 

role in dietary fructose metabolism [14]. After sucrose is 

digested by sucrase into fructose and glucose, fructose is 

absorbed by enterocytes via the glucose transporter (GLUT) 

5 at the apical membrane of enterocytes. Since the intestine 

contributes ~25% of systemic gluconeogenesis both after 

prolonged fasting and in diabetes [15], intestinal epithelium 

likely utilizes dietary fructose as a substrate for gluconeo-

genesis (Fig. 1). However, when present in excess, fructose 

saturates the intestinal metabolic capacity. Excessive fruc-

tose either spills over to the colon or is transported through 

the GLUT2 from the basal membrane into the portal vein 

and then to the liver [14]. Interestingly, intestinal fructose 

metabolism determines an individual’s preference for sweet 

tastes and sugar intake but does not contribute to the devel-

opment of metabolic syndrome [16]. In the colon, fructose 

is likely digested by microbiota that use fructose carbons to 

generate tricarboxylic acid (TCA) cycle intermediates, es-

sential amino acids, and short-chain fatty acids [14]. In turn, 

fructose spilling over from intestinal shield acts on the he-

patocyte via GLUT2 and drives the metabolic syndrome [16]. 

Hepatic fructose metabolism is associated with increased 

hepatic fatty acid and malonyl-CoA synthesis, reduced fat-

ty acid oxidation, and modification of the mitochondrial 

proteome [17]. Similar to the enterocyte, excessive fructose 

in the kidney likely escapes into the systemic circulation. 

In the kidney, fructose in systemic circulation is filtered 

through the glomerulus into the urinary space, and urinary 

fructose is reabsorbed by the proximal tubular cells (Fig. 1). 

Fructose transporters are predominantly 
expressed in the proximal tubules 

After fructose is metabolized in the liver, only small amount 

of fructose escapes from the liver to reach the systemic 

circulation, and therefore serum fructose concentrations 

range from 0.1 to 0.8 mM [18]. After filtration through the 

glomerulus, urinary fructose is either reabsorbed in the 

proximal tubular epithelial cells (Fig. 2), or excreted in the 

urine. 

GLUT5, a high-affinity facilitative transporter, is consid-

ered to play a major role in fructose transport and is ex-

pressed at the apical membrane of the epithelial cells in the 

straight portion of the proximal tubule [19,20]. An alternate 

fructose transporter is the sodium glucose cotransporter 

5 (SGLT5), which is a high-affinity transporter for fructose 

and mannose in humans and mice [21,22]. This transporter 

is exclusively expressed in the kidney, and likely located 

in the S2 segment of the proximal tubular cells [23]. The 
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rat sodium-dependent glucose transporter 1 (rNaGLT1) is 

also expressed at the apical membrane of epithelial cells in 

both the convoluted and straight proximal tubules in the 

rat, and also mediates fructose transport [24]. While GLUT9 

(SLC2A9) is a member of the facilitative GLUT gene family, 

it is now primarily described as a urate transporter (URAT) 

that can exchange both fructose and glucose for urate. The 

two splice variants of GLUT9, GLUT9a (full length) and 

GLUT9b (ΔN) are both present in the human kidney [25]. 

The GLUT9a (540 amino acids) splice variant is expressed 

in the basolateral membrane of the proximal tubular epi-

thelial cells and favors urate transport back into the circu-

lation from the tubular cells [26]. In turn, the GLUT9b (512 

amino acids) splice variant is expressed at the apical site, 

and likely transfers urate from tubular fluid into cells [26,27] 

and the collecting ducts [25,28] in humans. 

Alternatively, GLUT2 may transport fructose from the 

basolateral membrane of the proximal tubular cells into 

the systemic circulation [23,29], perhaps when fructose is 

abundant in the cytosol (Fig. 2). Given GLUT2 is a facilita-

tive transporter operated by a passive diffusion process, it 

may act to excrete fructose when the intracellular fructose 

concentration is greater than that of the blood. 

Physiology of fructose metabolism in the proximal 
tubules 

The straight segment of the proximal tubules exclusively 

expresses GLUT5 so that it may be the primary site for fruc-

tose metabolism. However, both fructokinase and aldolase 

B, another key enzyme for fructose metabolism, are also 

present in the convoluted proximal tubules [30,31], suggest-

ing that fructose metabolism is not restricted in the straight 

segment, but is also likely operated in the convoluted seg-

ment of renal tubules. 

Fructose are likely utilized as substrates for gluconeo-

genesis in the proximal tubules, where gluconeogenesis is 

dominant over glycolysis. In fact, several gluconeogenesis 

enzymes, including phosphoenolpyruvate carboxykinase, 

fructose bisphosphatase, and enzymes of the glucose 

6-phosphatase system are dominantly activated [32,33], 

while glycolysis enzymes are less activated [34–36] in the 

proximal tubules compared to other parts of nephron. 

In 1961, by utilizing in situ perfusion in the rat, Salomon 

et al. [37] directly measured the difference between arte-

riovenous fructose and glucose concentrations after bolus 

infusion of 25 mg of fructose into the peripheral vessels. 

The reduction of fructose concentrations after passage of 

blood through the kidney was associated with equivalent 

increases in the renal venous glucose; the extent of fructose 

Figure 1. Current concepts regarding the metabolic pathways 
of dietary fructose. Dietary fructose is absorbed by enterocytes 
via glucose transporter (GLUT) 5 at the apical membrane of en-
terocytes and is likely utilized as a substrate for gluconeogenesis. 
Interestingly, intestinal fructose metabolism determines an indi-
vidual’s preference for sweet tastes and sugar intake but does 
not contribute to the development of the metabolic syndrome. 
When present in excess, fructose may saturate intestinal met-
abolic capacity and spill over to the colon where fructose can 
be digested by gut microbiota and utilized for the generation of 
tricarboxylic acid (TCA) intermediates, essential amino acids (AA), 
and short-chain fatty acids (SCFA). Alternatively, fructose exceed-
ing the metabolic capacity of enterocytes is excreted from GLUT2 
at the basal membrane and passes into the portal circulation, 
and reaches the hepatocytes. The fructose is then reabsorbed 
via GLUT2 at the surface of hepatocyte to be metabolized, likely 
driving the metabolic syndrome. Hepatic fructose metabolism is 
associated with increased hepatic fatty acid synthesis and mal-
onyl-CoA levels, and a reduction in fatty acid oxidation. Similar to 
the enterocyte, excessive fructose likely escapes from hepatocyte 
into the systemic circulation. The kidney also plays a role in re-
absorption and excretion of fructose. At physiological concentra-
tions, fructose is utilized for gluconeogenesis, whereas it causes 
kidney injury when present in excess.

Utilized for gluconeogenesis
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- Sugar intake

- Digested by microbiota
- Generate TCA intermediates, 
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disappearance and the appearance of glucose averaged 

approximately 19%. In 1982, Björkman and Felig [38] found 

that intravenous infusion of fructose in humans at 2 mmol/

min for 135 minutes resulted in a rise in glucose concen-

tration in the renal vein (0.17 ± 0.05 mmol/L). The results 

indicated that 20% of intravenously infused fructose was 

taken up by the kidney, and the net glucose release from the 

kidney could be derived from 55% of the net renal uptake of 

fructose. 

Figure 2. Fructose transporters and metabolism in the proximal tubules. In the proximal tubules, urinary fructose is reabsorbed at 
the apical membrane of the epithelial cells via several types of fructose transporters. The glucose transporter (GLUT) 5 is considered 
to be a major transporter for fructose. The sodium glucose cotransporter 5 (SGLT5) is a high-affinity kidney-specific transporter for 
fructose and mannose in humans and mice, while the rat sodium-dependent glucose transporter-1 (rNaGLT1) is also expressed in 
both convoluted and straight proximal tubules in the rat and also mediates fructose transport. Under physiological conditions or during 
starvation, fructose is utilized as a substrate for gluconeogenesis. In turn, during satiation or when fructose is in excess, fructose is 
metabolized in the cytosol to produce several fructose metabolites, including uric acid. The GLUT2 facilitative transporter is expressed 
in the basal membrane. When fructose concentrations are higher in the cytosol than in the blood of peritubular capillary, GLUT2 trans-
ports intracellular fructose into the blood in the peritubular capillary. Likewise, GLUT9a, another facilitative transporter, is expressed in 
the basolateral membrane and favors urate transport back into the circulation from the tubular cells.

Proximal tubular cells go wrong with excessive 
fructose 

When the proximal tubular cells are overloaded with ex-

cessive fructose after satiation, fructose metabolism likely 

becomes dysregulated and causes pathological reactions 

(Figs. 2, 3). In experimental studies, normal rats developed 

mild tubulointerstitial injury with inflammation and fibrosis 

when fed a high-fructose diet [19,39]. In the case of preex-
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also involved in this process, as uric acid directly impairs 

endothelial function [46,47].  

Likewise, macrophages are also a target for fructose given 

they express GLUT5 (Fig. 3). Several experimental studies 

have shown that a high-fructose diet causes renal inflam-

mation with macrophage infiltration in rodents [19,40,43]. 

In vitro studies confirmed the ability of fructose to act di-

rectly on macrophages via GLUT5 to release inflammatory 

cytokines [48,49]. Macrophages exhibit two phenotypes, a 

proinflammatory M1 and an anti-inflammatory M2 phe-

notype; fructose is likely an ideal fuel for M1 macrophage, 

which relies on glycolysis. However, the mechanism by 

which fructose activates macrophages may be somewhat 

complex. A recent study of fructose-induced inflammation 

demonstrated that oxidative metabolism, but not glycol-

ysis, plays a dominant role in macrophage activation [48]. 

While a basic concept is that uric acid suppresses aconitase 

in the TCA cycle and hence reduces mitochondrial respira-

tion, the investigators identified an alternative pathway for 

fructose to stimulate the TCA cycles. They found that gluta-

mine was incorporated into the TCA cycles in response to 

fructose, and supplies α-ketoglutarate that can bypass this 

step allowing oxidative phosphorylation to occur in human 

monocytes and mouse macrophages. Therefore, macro-

phages likely utilize either glycolysis or oxidative phos-

phorylation, perhaps depending on cellular conditions. 

While it remains unclear how macrophages switch these 

pathways, a key trigger may be oxygen availability. Under 

severe hypoxia, cytochrome c oxidase activity decreases 

[50], and glycolysis is dominant [51]. In contrast, under 

aerobic conditions, cytochrome c activity is activated, and 

glycolysis is completely replaced by oxidative phosphoryla-

tion [51]. 

Fructose causes salt-sensitive hypertension 

Fructose intake is likely associated with hypertension in hu-

mans [52]. Experimental studies have shown that rats fed a 

high-fructose diet had elevated blood pressure in response 

to additional salt intake (Fig. 2). The proximal tubules play 

a key role in salt handling, as the majority of Na+ filtered 

through glomerulus is reabsorbed into the tubular epitheli-

al cells via Na+/H+ exchangers (NHEs) located in the apical 

membrane [53,54]. Fructose-induced salt sensitivity can 

be accounted for by the ability of fructose to stimulate both 

Figure 3. Postulate mechanism of fructose-induced kidney dis-
ease. Fructose, arising either from the diet or from endogenous 
production under pathological conditions,  acts on the tubular ep-
ithelial cells, endothelial cells, and macrophages through fructose 
transporters, such as glucose transporter 5 (GLUT5), to cause 
inflammation and fibrosis in the kidney.
AR, aldose reductase; eNOS, endothelial NO synthase; ICAM-1, 
intercellular adhesion molecule-1; MO, macrophage.

isting kidney injury, fructose accelerates tubular injury and 

interstitial inflammation and fibrosis in CKD rats [40]. An in 

vitro study showed that the cultured proximal tubular cells 

released inflammatory cytokines, including monocyte che-

moattractant protein-1, in response to pathological fructose 

concentrations; interestingly, this reaction was found to be 

mediated by uric acid [41]. 

Endothelial cells express GLUT5 [42] and release inter-

cellular adhesion molecule-1 (ICAM-1) in response to fruc-

tose [43]. A likely mechanism for this effect is the ability of 

fructose to reduce nitric oxide (NO) availability due to un-

coupling of endothelia nitric oxide synthase (eNOS), as NO 

donors mitigated the fructose-induced ICAM-1 expression 

[43–45]. Fructose-induced generation of uric acid could be 

Glucose

AR

Endogenous fructose Dietary fructose

GLUT5 (+)

Macrophages

GLUT5 (+)

Endothelium

GLUT5 (+)

Tubular epithelium

Release inflammatory
cytokine
Activation of Na/H 
exchanger

eNOS uncoupling
ICAM-1

M1 MO
activation

Renal inflammation / Fibrosis

Nakagawa and Kang. Fructose in the kidney

531www.krcp-ksn.org



the expression and the activity of NHEs, and increase Na+ 

reabsorption in the proximal tubules [53]. While NHEs are 

regulated by angiotensin II, fructose sensitizes the proximal 

tubules to angiotensin II by upregulating NHE expression 

[53,54]. In addition, urate also plays a key role in the devel-

opment of salt-sensitive hypertension in response to fruc-

tose as it causes arteriolopathy, tubulointerstitial injury, and 

a reduction in NO in endothelial cells [43,46,47,55]. 

Renal proximal tubular cells turn on glycolysis 
when injured 

The proximal tubular cells normally prefer lipids over glu-

cose for energy generation, so glycolysis is not operative in 

this cell type. It is because enzymes for gluconeogenesis are 

dominantly activated over glycolytic enzymes; and there-

fore, fructose metabolism is physiologically linked with 

gluconeogenesis, but not with glycolysis [56]. However, this 

is unlikely the case when the tubular cells are damaged. In 

fact, damaged proximal tubular cells are often associated 

with mitochondrial alteration, resulting in a metabolic 

switch from mitochondrial oxidative phosphorylation to 

glycolysis with amplified expression of glycolytic enzymes 

[57]. Thus, both fructose and glucose are metabolized in 

damaged proximal tubular cells. 

Does the combination of fructose with glucose 
accelerate glycolysis in renal proximal tubular 
epithelial cells? 

The combination of fructose with glucose modifies the 

activation of glucokinase, the enzyme that catalyzes the 

first step of glycolysis. In hepatocytes, glucokinase is posi-

tively regulated by fructose 1-phosphate (Fru1P) whereas 

it is inhibited by fructose 6-phosphate (Fru6P) [58,59]. The 

mechanism for Fru1P-mediated glucokinase activation is 

the release of glucokinase from glucokinase regulatory pro-

tein (GKRP), which sequesters glucokinase in the nucleus 

[60,61]. Even at low concentrations, intracellular fructose 

is rapidly metabolized to Fru1P. Therefore, Fru1P-induced 

glucokinase activation may explain how fructose facilitates 

glucose utilization. Consistent with these findings, Shiota 

et al. [62] showed that small amounts of fructose enhanced 

hepatic glucose uptake in the dog. Furthermore, fructose 

metabolism also increases fructokinase activity, which de-

pletes intracellular adenosine triphosphate (ATP). Since 

ATP negatively regulates the glycolytic pathway by inhib-

iting phosphofructokinase and pyruvate kinase, the ATP 

depletion due to fructokinase activation enhances glycoly-

sis. However, these processes may not occur in the kidney, 

given glucokinase (hexokinase IV) is expressed only in he-

patocytes and pancreatic β cells, [63] while renal proximal 

tubular cells express hexokinase I and II [57,64]. 

Endogenous fructose may be a unifying pathway 
in the development of chronic kidney diseases 

Interestingly, fructose is produced endogenously in the 

kidney, particularly under condition of ischemia/hypoxia, 

high osmotic stress, aging, pressure overload, and diabetes. 

A potential mechanism for fructose synthesis is the acti-

vation of the polyol pathway, in which glucose is reduced 

by aldose reductase to sorbitol, which is then oxidized by 

sorbitol dehydrogenase to fructose. Therefore, fructose can 

be readily produced when glucose is constantly supplied. A 

key step in this process is the activation of aldose reductase, 

which can be stimulated by several factors, including hy-

poxia, osmotic stress, and diabetes, and may also account 

for the findings that several factors induce endogenous 

fructose production in several pathological conditions. 

Cardiac surgery often results in postoperative acute kid-

ney injury due to ischemia. Our research group studied 

pediatric patients who underwent cardiac bypass surgery 

and found that urinary fructose concentrations were ele-

vated in patients with ischemic acute kidney injury (iAKI) 

compared with patients without iAKI [65]. Mice with iAKI 

also exhibited increased renal fructose concentrations 

[65], suggesting that ischemia could stimulate endogenous 

production of fructose in the kidney. Similarly, compared 

with nondiabetic mice, diabetic mice also had higher fruc-

tose levels in the kidney due to the activation of the polyol 

pathway [66]. Importantly, both studies demonstrated that 

blocking fructose metabolism ameliorated tubular injury 

induced by either ischemia or diabetes in mice lacking the 

fructokinase gene [65,66]. 

In the senescent kidney, endogenous fructose produc-

tion likely contributes to the development of glomerular 

injury. A mouse study showed that glomerular injury ac-

companied by glomerular hypertrophy, collagen IV depo-

sition, and mesangiolysis was observed in aging wild-type 
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mice while aging fructokinase-knockout mice developed 

significantly less glomerular injury [67]. In turn, high salt in-

take also stimulates endogenous fructose production in the 

liver, while blocking fructokinase slows fat accumulation in 

the epididymis [68]. In addition, in the mouse heart, pres-

sure-overload-induced cardiac hypertrophy was ameliorat-

ed by blocking fructose metabolism [69]. 

Pathways downstream from fructose metabolism 
may contribute to kidney disease 

In the kidney, inflammation and fibrosis are accompanied 

with several pathological steps, including cell prolifera-

tion, enzymatic activation, and protein synthesis, which 

require several biological factors, including energy sourc-

es, nucleotides, lipids, and redox balance, which can be 

efficiently provided by aberrant glycolysis. Fructose is me-

tabolized through several pathways and contributes to the 

progression of CKD (Fig. 4). 

Glycolysis 

The first enzyme involved in fructose metabolism is fruc-

tokinase (known as ketohexokinase [KHK]), which phos-

phorylates fructose to produce Fru1P (Fig. 4). There are two 

spliced isoforms of KHK, and each is produced by mutual 

exclusion of the adjacent exons 3C and 3A within the KHK 

gene [70]. The “A” isoform is ubiquitously expressed but has 

low activity due to relatively low affinity for its substrate (Km 

8 mM) [71]. Expression of the “C” isoform is primarily re-

stricted to metabolic tissues, including the liver, kidney, and 

intestine, and this form has much higher affinity for fructose 

(Km 0.8 mM) [71,72]. Fru1P is subsequently metabolized by 

aldolase B and triokinase to dihydroxyacetone phosphate 

and glyceraldehyde-3-phosphate that enter the glycolytic 

pathway downstream of phosphofructokinase. Subsequent-

ly, glyceraldehyde-3-phosphate is metabolized to pyruvate 

in the glycolytic pathway to produce ATP and nicotinamide 

adenine dinucleotide. Pyruvate is further converted into 

lactate by lactate dehydrogenase. Importantly, this reaction 

is usually stimulated by low oxygen, but is accelerated by 

fructose even under aerobic condition [73]. Lactate seems 

to be an energy for cancer growth [74].  

Pentose phosphate pathway  

The pentose phosphate pathway (PPP) is activated by 

fructose and comprises two distinct phases, the oxidative 

pathway and the non-oxidative pathway (Fig. 4). Glucose 

6-phosphate, a fructose metabolite, is metabolized by three 

sequential reactions in the oxidative pathway to NAPDH, 

which supplies reducing equivalents, and reduces gluta-

thione through the action of glutathione reductase. In turn, 

two forms of fructose carbon backbones, Fru6P and glyc-

eraldehyde-3-phosphate, are catalyzed by transketolase to 

enter the non-oxidative pathway for nucleotide formation 

through ribose 5-phosphate, while erythrose 4-phosphate 

is metabolized into amino acids. Alternatively, activated 

hexokinase can convert fructose into Fru6P, which may be 

a link between glycolysis and the nonoxidative PPP in can-

cer cells [75]. 

Lipogenesis 

Lipids are required as an energy source, for membrane 

formation, and as signaling molecules (Fig. 4). Fructose 

is metabolized in the glycolytic pathway to provide ace-

tyl-CoA as the building block of carbon chains for de novo 

lipogenesis, and also promotes fatty acid synthesis to form 

palmitate. In turn, glyceraldehyde-3-phosphate, carrying 

a fructose-based carbon backbone, is also utilized to form 

triglycerides. Fructose also stimulates intracellular signaling 

pathways, including those mediated by carbohydrate-re-

sponsive element-binding protein [76] and GKRP [60]. 

A recent study using a mouse model demonstrated that 

fructose-mediated fatty liver disease was likely mediated 

by impairment of fatty acid oxidation due to an increased 

acetylation of long-chain specific acyl-CoA dehydrogenase 

and carnitine palmitoyl-transferase 1α [17]. 

Uric acid production and the Warburg effect 

Fructokinase activation rapidly sequesters phosphate, con-

sequently activating adenosine monophosphate (AMP) 

deaminase to cleave AMP to inosine monophosphate (IMP) 

(Fig. 4). However, phosphate levels subsequently increase 

due to the slower reaction of aldolase with Fru1P. This re-

action is further accentuated by the increased IMP, which 

is an aldolase B inhibitor [77]. Sequential enzymatic acti-

Nakagawa and Kang. Fructose in the kidney
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vation metabolizes IMP and eventually produces uric acid. 

We found that uric acid could prevent the entry of fructose 

metabolites into mitochondrial oxidation in the human 

hepatocellular carcinoma cell line HepG2 [78]. A potential 

mechanism for this effect is the suppression of mitochon-

drial aconitase activity by uric acid, and disconnection of 

fructose metabolites from mitochondrial oxidation. Since 

aconitase lies at the junction of acetyl-CoA oxidation, 

blocking aconitase leads to acetyl-CoA shuttling out of the 

mitochondria, resulting in the accumulation of citrate in 

the cytosol. Citrate is then utilized for lipid synthesis by se-

quential ATP-citrate lyase and fatty-acid synthase [78]. As a 

result, fructose leads to a state of metabolic imbalance that 

favors glycolysis over mitochondrial respiration, resembling 

the Warburg effect in cancer [79]. 

The Warburg effect is shared by non-cancer 
disorders 

In 1924, Otto Warburg initially described that cancer cells, 

Figure 4. Several pathways downstream from fructose metabolism. Fructose is initially metabolized to fructose 1-phosphate by 
fructokinase, which rapidly sequesters phosphate, consequently activating adenosine monophosphate (AMP) deaminase to cleave 
AMP to inosine monophosphate (IMP). Sequential enzymatic activation metabolizes IMP and eventually produces uric acid. Uric acid 
subsequently inhibits aconitase in the tricarboxylic acid (TCA) cycle to suppress mitochondrial respiration. Glycolysis is preferentially 
activated, and several metabolites are fed into several side pathways, including the pentose phosphate pathway (PPP) and hexosamine 
pathway (HXP), which aberrantly activate energy production, synthesis of biosynthetic precursors, and redox homeostasis.
ADP, adenosine diphosphate; AldoB, aldorase B; ATP, adenosine triphosphate; DHAP, dihydroxyacetone phosphate; E4P, erythrose 
4-phosphate; F1,6P, fructose 1,6-biphosphate; FK, fructokinase; Fru1P, fructose 1-phosphate; Fru6P, fructose 6-phosphate; G3P, 
glyceraldehyde 3-phosphate; GA, glyceraraldehyde; Glc6P, glucose 6-phosphate; GSH, glutathione; GSSH, glutathione-S-S-glutathione; 
NADP+, nicotinamide adenine dinucleotide phosphate; NonOx, non-oxidative; Ox, oxidative; R5P, ribose 5-phosphate; Ru5P, ribulose 
5-phosphate; S7P, sedoheptulose 7-phosphate; TKT, transketolase; X5P, xylulose 5-phosphate; 6PG, 6-phosphogluconate.
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as opposed to normal cells, exhibit a unique ability to fer-

ment glucose to lactate even in the presence of sufficient 

oxygen [80]. This process is now recognized as a key mech-

anism of cancer growth and is called the “Warburg effect.” 

However, we need to be cautious for when interpreting this 

effect, as general scientists tend to share a misconception 

regarding oxidative metabolism in the mitochondria [81]. 

Warburg’s own experiments revealed persistent oxygen 

consumption in tumor tissues. The rate of mitochondrial 

respiration was low relative to what might have been pre-

dicted given the high rate of glucose uptake, but respiration 

itself did not appear to be impaired [81]. The Warburg effect 

was long considered a unique characteristic of cancer; how-

ever, recent studies indicate that aberrant glycolysis is not 

specific to cancer, but rather is shared by other non-cancer 

disorders [82]. 

The Warburg effect is involved in multiple processes in 

several disorders, and the cardiovascular, immune, and 

neuronal systems are now found to be all modulated by aer-

obic glycolysis [82]. Although glycolysis produces less ATP 

than mitochondrial oxidative phosphorylation, the process 

of aerobic glycolysis is much faster than that of mitochon-

drial respiration [83]. As a result, aerobic glycolysis can pro-

duce more ATP than mitochondrial oxidative phosphoryla-

tion in the same amount of time [84]. More importantly, the 

Warburg effect may impact more than energy production, 

and may regulate several cellular functions, including cell 

proliferation, extracellular matrix production, autophagy, 

and apoptosis [85], and may consequently participate in 

multiple biological processes. 

The Warburg effect is involved in kidney diseases 

Recent studies have documented that autosomal-dominant 

polycystic kidney disease (ADPKD) is mediated by aber-

rant glycolysis. Rowe et al. [86] demonstrated that cultured 

mouse embryonic fibroblasts derived from Pkd-/- mice ex-

hibited activated glycolysis, given the cells preferentially uti-

lized greater amounts of glucose and excreted more lactate 

into the culture medium than cells from wild-type mice. 

Mice lacking Pkd in the renal tubules, as a mouse model of 

ADPKD, exhibited glycolysis activation while blocking gly-

colysis with 2-deoxy-D-glucose (2DG), a glucose analog, at-

tenuated tubular cell proliferation, leading to the reduction 

in kidney size and cyst formation [87]. 

In diabetic nephropathy, mitochondrial overproduction 

of superoxide due to the activation of the electron trans-

port chain is considered a unifying mechanism, but this 

hypothesis remains controversial [88]. Recent studies have 

demonstrated that mitochondrial function is suppressed 

in diabetic nephropathy, and the restoration of normal 

mitochondrial health improves renal, cardiovascular, and 

neuronal outcomes. In addition, mitochondrial TCA cycle 

metabolites are also significantly reduced in patients with 

diabetic nephropathy compared to healthy controls [89]. In 

turn, glycolytic activation is upregulated in the renal cortex 

in type 2 diabetes [90], suggesting that activation of glycol-

ysis is dominant over mitochondrial oxidation and plays a 

pathological role in diabetic nephropathy. 

A shift to glycolysis has also been observed in two animal 

models; one is a model of unilateral ureteral obstruction 

and the other is a transforming growth factor (TGF)-β1-in-

duced renal fibrosis model. Specifically, Ding et al. [91] 

found that myofibroblast activation in the kidneys was as-

sociated with enhanced renal glucose uptake and lactate 

production that could be attenuated by blocking glycolysis 

by 2DG treatment. In these models, a key factor is likely 

TGF-β1 as this growth factor was capable of switching meta-

bolic profile favoring glycolysis over mitochondrial respira-

tion in fibroblasts. In addition to TGF-β1, PDGF also causes 

the Warburg effect [92], consistent with the notion that 

growth factors disproportionately activate glycolysis relative 

to mitochondrial oxidation [93]. 

Could natural fruit exacerbate kidney disease? 

One might ask whether fruit can be also deleterious to the 

kidney, given fruit contains substantial amount of fructose. 

This question arises from the assumption that fructose in 

natural fruit is theoretically metabolized, resulting in uric 

acid production, and therefore a large amount of fruit may 

be deleterious. In this regard, several clinical studies have 

examined the effect of fruit on renal function, and in many 

cases, the effect of consuming fruits together with vegeta-

bles, low salt, and other dietary modifications were assessed 

[94,95]. These studies generally found that our assumption 

was flawed and fruit was protective due to the improvement 

of metabolic acidosis, reduction of blood pressure, and pre-

vention of cardiovascular diseases. However, the effect of 

a defined amount of fruits was examined in those studies, 
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and it remains uncertain if a large amount of fruits could 

cause renal disease. 

The mechanism by which fruits are protective of the kid-

ney may be that metabolism of fructose in fruit is inhibited 

by vitamin C and other nutrients. For example, fructose-as-

sociated uric acid production is linked with xanthine oxi-

dase activation and oxidant stress, which can be blocked by 

flavonoids/catechins and vitamin C in fruits [96]. Vitamin 

C also enhances urinary urate excretion through URAT-1 

[97,98] and lessens the effects of uric acid. In addition, the 

potassium present in many fruits can ameliorate urate-in-

duced endothelial dysfunction [99].  

In this regard, we previously discussed this issue and 

reviewed the effect of variety of natural fruits on hyperuri-

cemia or gout [100]. One thing to bear in mind is that the ef-

fects of fruit are often inconsistent in clinical studies, in part 

due to difference in study designs, although other factors 

may impact the results. Fruit intake is often estimated from 

the results of face-to-face interviews or questionnaires, 

which usually rely on memory, and may not always be 

accurate [101]. The composition of fruits may vary signifi-

cantly depending on growing, harvesting, and storage con-

ditions, and how they are prepared for consumption. For 

example, black currants become sweeter at higher growing 

temperatures and their taste varies with season, with the 

concentrations of fructose, glucose, and vitamin C found 
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to also differ depending upon the season [102]. In addition, 

humidity and latitude influence the maturation process of 

many fruits, and often determine the sugar content; togeth-

er, these various influences may result in sweeter fruit in the 

fall than in the spring, and greater fructose content in ma-

ture fruit than less mature fruit [103]. These factors may add 

a layer of complexity to the effects of fruit intake on human 

renal disease. 

Conclusions 

Several risk factors, including hypoxia, high blood glucose 

concentrations, senescence, and cardiac pressure overload, 

are found to share endogenous fructose production in the 

kidney as a common underlying factor (Fig. 5). A unique 

characteristic of fructose metabolism, as opposed to glu-

cose metabolism, is the production of uric acid. Excessive 

uric acid production links to inflammation, endothelial dys-

function, vascular injury, and insulin resistance, while also 

favoring glycolysis over mitochondrial respiration, similar 

to the Warburg effect in cancer. The Warburg effect creates 

a pool of biosynthetic precursors that contribute to several 

pathological processes, including nucleotide synthesis, 

amino acid production, lipids and lactate, and excessive en-

dogenous fructose is likewise a mechanism of CKD (Fig. 5). 

Further studies exploring the role of endogenous fructose in 

CKD are warranted. 
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