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Introduction 

Urinary excretion of solutes, ions, and water is determined 

by the tubular transport removed from the glomerular fil-

trates. Renal tubular transport (either via reabsorption or 

secretion) occurs through both transcellular and paracel-

lular pathways. Traditionally, renal regulatory function for 

Claudins are strategically located to exert their physiologic actions along with the nephron segments from the glomerulus. Claudin-1 is 
normally located in the Bowman’s capsule, but its overexpression can reach the podocytes and lead to albuminuria. In the proximal 
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fluid and electrolyte balance is exerted by changes in tran-

scellular transport across the renal tubular epithelial cells. 

However, the regulatory roles of paracellular transport in 

the kidney remain incompletely known. 

The junctional complexes located in the paracellular 

route comprise tight junctions (TJs), adherence junctions, 

and desmosomes [1]. The TJ is composed of three compo-
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nents of transmembrane bridging proteins: claudin, occlu-

din, and junctional adhesion molecules. The C-terminus of 

each has a PDZ binding domain linked to scaffold zonula 

occludens (ZO) proteins. The ZO proteins can bind directly 

to cytoskeleton actin filaments [2]. In glomerular epithelial 

cells, the glomerular slit diaphragm has specialized trans-

membrane bridging proteins (nephrin and podocin) be-

tween podocyte foot processes [3].  

Furuse et al. [4] identified occludin as the first compo-

nent of TJs, and its abundance is related to the degree of 

sealing of the epithelia [5]. However, occludin knockout 

mice displayed well-developed TJs [6]. They also found an-

other integral component of TJs that might have a critical 

role in paracellular transport. Using the same liver fraction 

as employed to identify occludin, a single 22-kD band was 

discovered by stepwise sucrose density gradient centrifu-

gation. Peptide sequencing revealed two proteins in this 

band that were subsequently named claudin 1 and 2. The 

name “claudin” is derived from the Latin word “claudere,” 

which means to close [7]. 

Claudins can characterize TJs because they polymerize 

in a linear fashion and form TJ strands with paracellular 

barriers or pore functions [8]. The claudin family has 27 

members [9], many of which are located in the mammalian 

nephron [10]. Claudins contain from 21- to 28-kDa proteins 

and consist of four transmembrane domains, two extracel-

lular loops (ECLs), amino- and carboxy-terminal cytoplas-

mic domains, and a short cytoplasmic turn (Fig. 1). The 

paracellular ion selectivity is determined by the charged 

amino acid residues located in the ECL1. The ECL2 has 

binding sites for claudin interactions [11]. Table 1 summa-

rizes different claudins according to ion permeability and 

selectivity based on in vitro studies using cultured cell lines 

and ex vivo studies using knockout mice [12–42]. The re-

sults can be discrepant depending on the properties of the 

tested cells and animals. 

Glomerular claudins 

Claudins are located along with nephron segments from 

the glomerulus, where they exert their physiologic ac-

tions. Claudin-1 is mainly located in Bowman’s capsule or 

parietal epithelial cells [43]. Gong et al. [43] showed that 

claudin-1 overexpression was associated with overt albu-

minuria. In transgenic mice with claudin-1 overexpression, 

claudin-1 protein labeling extended to the glomerular tuft, 

localizing in the podocytes. Claudin-1 messenger RNA 

(mRNA) and protein levels also increased in the glomeruli 

of the representative animal model of nephrotic syndrome, 

puromycin aminonucleoside nephrosis (PAN). As nephrin 

expression declined, claudin-1 expression reached the glo-

merular tuft, colocalizing with nephrin in PAN glomeruli. 

Claudin-1 might interact with nephrin and podocin, dis-

rupting the endogenous nephrin and podocin interactions 

that hold the slit diaphragm in place [43]. Thus, proteinuria 

can result from claudin-1 overexpression. 

However, it remains unclear whether upregulation of 

claudin-1 is the cause of proteinuria or just a mediator 

of podocyte injury. In normal conditions, a high concen-

tration of nicotinamide mononucleotide (NMN) leads to 

epigenetic silencing of the promoter of claudin-1 by Sirt1 

in podocytes [44]. Hasegawa et al. [45] reported that, in dia-

betic mice, proximal tubule Sirt1 expression decreased and 

was followed by a decrease in NMN concentration. In the 

absence of NMN, the claudin-1 promoter was no longer si-

lenced, leading to increased claudin-1 expression in podo-

cytes and causing foot process effacement and albumin-

uria. Thus, proximal tubule Sirt 1 exerts regulatory action 

on claudin-1, but this scenario was not valid in nondiabetic 

Figure 1. Claudin topology. Claudins consist of four transmem-
brane domains (TMDs), two extracellular loops (ECLs), amino- 
and carboxy-terminal cytoplasmic domains, and a short cyto-
plasmic turn. The paracellular ion selectivity is determined by 
the charged amino acid residues located in ECL1. ECL2 contains 
binding sites for claudin interactions.
Adapted from the article of Bhat et al. [11], according to the Cre-
ative Commons License.
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animals, such as 5/6 nephrectomized mice. 

Claudin-5 and claudin-6 are expressed in glomerular 

podocytes. When claudin mRNA levels were quantified 

in isolated rat glomeruli, claudin-5 expression was most 

abundant [46]. Its podocyte localization was demonstrated 

by immunoelectron microscopy and might be altered in 

PAN rats [46]. 

According to Zhao et al. [47], claudin-6 is localized in the 

TJs of rat podocytes. Claudin-6 was expressed in most of 

the tubules and glomeruli in neonates, but the expression 

in tubules dwindled in adults and was well-preserved in 

the glomeruli during development. Immunoelectron mi-

croscopy revealed that claudin-6 was distributed along the 

glomerular capillary wall and colocalized with ZO-1, and 

that its level of expression was not significantly altered in 

PAN rats [47]. 

Proximal tubule claudins 

The major proximal tubule claudins are claudin-2 and clau-

din-10a. Claudin-2 forms paracellular channels selective for 

small cations such as Na+, K+, and Ca2+ and is also perme-

able to H2O so that 20% to 25% of proximal water absorption 

can occur paracellularly. It appears that cations and water 

travel through the same pore, where the amino acid resi-

dues in the ECL1 of claudin-2 line the narrowest part [48].  

Table 1. Ion permeability and selectivity of claudins
Ion permeability Claudins (selectivity) Tested cells or mice Reference

Cation pore Claudin-2 (Na+, K+, Ca2+) MDCK I, MDCK II [12]

Claudin-10b (Na+) HEK-293 [13]

Claudin-10 KO [14]

MCDK-C7, MDCK II, LLC-PK1 [15,16]

Claudin-12 (Ca2+) Claudin-12 KO [17]

Claudin-16 (Na+, Ca2+, Mg2+) MDCK II, LLC-PK1 [18]

MDCK-C7 [19]

MDCK [20,21]

Claudin-16 KD [22]

Anion pore Claudin-4 (Cl–) M-1, mIMCD3 [23]

MDCK II, LLC-PK1 [24,25]

Claudin-7 (Cl–) MDCK II, LLC-PK1 [24]

Claudin-8 (Cl–) M-1, mIMCD3 [23]

MDCK II, LLC-PK1 [24]

Claudin-10a (Cl–) MDCK-C7, MDCK II, LLC-PK1 [15,16]

Claudin-17 (Cl–) MDCK-C7, LLC-PK1 [26,27]

Cation barrier Claudin-5 (Na+, K+) MDCK II [28]

Claudin-8 (Na+, K+, H+) MDCK II [29,30]

Claudin-14 (Na+, Ca+) OK, MDCK, MDCK II [31,32]

FVB/N mice [32]

Claudin-18 (Na+, H+) MDCK II [33]

Claudin-19 (Ca2+, Mg2+) MDCK II [34]

Anion barrier Claudin-6 (Cl–) MDCK II [35]

Claudin-7 (Cl–) LLC-PK1 [36,37]

Claudin-9 (Cl–) MDCK II [35]

Claudin-19 (Cl–) LLC-PK1, claudin-19 KD [22,38]

Nonselective barrier Claudin-1 MDCK [39,40]

Claudin-3 MDCK II [41]

Water pore Claudin-2 MDCK-C7 [42]

FVB, Friend leukemia virus B; HEK-293, human embryonic kidney 293; KD, knockdown; KO, knockout; LLC-PK1, Lilly Laboratories Culture-Porcine Kidney 
1; MDCK, Madin-Darby canine kidney; MDCK-C7, MDCK-clone 7; mIMCD3, mouse inner medullary collecting duct cell line 3; M-1, mouse kidney cortical 
collecting duct cell line 1; OK, opossum kidney.
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The function of claudin-2 can be inferred from knock-

out animals. Net transepithelial reabsorption of Na+, Cl–, 

and H2O was reduced from isolated perfused S2 segments 

of the proximal tubules in claudin-2 knockout mice [49]. 

These changes were associated with an increase in paracel-

lular electrical resistance but no changes in the apical and 

basolateral membrane resistance that represents transcel-

lular electrical resistance. 

The transepithelial resistance (TER) is an indicator of 

permeability and varies inversely with paracellular perme-

ability; it progressively increases from the proximal tubule 

or leaky epithelia to the collecting duct or tight epithelia. 

This finding is relevant because approximately two-thirds 

of the glomerular filtered fluid is reabsorbed in the prox-

imal tubule, and fine tuning of tubular transport occurs 

in the distal nephron [50]. Previous claudin-2 knockdown 

or overexpression studies were mostly from Madin-Darby 

canine kidney (MDCK) or tight epithelial cells. We tested 

the effects of TJ protein depletion in truly leaky human 

kidney-2 (HK-2) cells. Fig. 2 shows TER and immunoblot 

results from HK-2 cells transfected with small-interfering 

RNAs against claudin-2, occludin, and ZO-1. With clau-

din-2 knockdown, an increase in occludin was associated 

with and might have led to a decrease in TER. When occlu-

din was knocked down, claudin-2 was suppressed, leading 

to increased TER. Similarly, TER was increased by ZO-1 

knockdown in association with a decrease in claudin-2 [51]. 

We concluded that integration of claudin-2, occludin and 

ZO-1 is necessary for maintaining the function of the proxi-

mal tubular epithelium. 

Claudin-10 has two splice variants -10a and -10b, respec-

tively located in the proximal tubule and the thick ascend-

ing limb (TAL). In the proximal tubule, claudin-10a acts 

as an anion-selective channel (e.g., chloride absorption), 

whereas claudin-2 functions as a cation-selective pore 

[52,53]. Further independent roles of claudin-10a in the 

kidney remain to be determined. 

The paracellular sodium transport mediated by clau-

din-2 contributes to energy efficiency in the kidney. Pei et 

al. [54] showed that claudin-2 knockout mice had larger 

renal oxygen consumption amounts for tubular sodium 

transport and a consequently lower energy efficiency. In 

addition, medullary hypoxia was suggested in claudin-2 

knockout mice as they demonstrated remarkable furo-

semide-induced improvement of oxygen tension in the 

outer medulla. In brief, proximal tubule and TAL sodium 

transport are interconnected and share their load of trans-

port. If the paracellular sodium transport is blocked in the 

Figure 2. The effects of claudin-2, occludin, and ZO-1 gene knockdown on TER and expression of other tight junction proteins in 
HK-2 cells. HK-2 cells were transfected with small-interfering RNAs (siRNA) against claudin-2, occludin, and ZO-1. (A) TER was signifi-
cantly decreased by claudin-2 siRNA transfection but significantly increased by siRNA transfection against occludin or ZO-1. Data are 
mean ± standard deviation of three independent experiments. *p < 0.05 vs. vehicle by Student t test for unpaired data. (B) Claudin-2 
deficiency elevated occludin expression, occludin deficiency reduced claudin-2 expression, and ZO-1 deficiency also reduced claudin-2 
expression. Adapted from the article of Kim and Kim [51], according to the Creative Commons License.
HK-2, human kidney 2; TER, transepithelial electrical resistance; ZO-1, zonula occludens-1.
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proximal tubule, the transport load is shifted to the TAL, 

where Na-K-Cl cotransporter 2 (NKCC2) hyperactivity can 

enhance energy consumption [55]. 

Claudin-2 also has pathophysiological significance in cal-

cium metabolism. Claudin-2 knockout mice demonstrate 

hypercalciuria due to decreased proximal tubular calcium 

reabsorption, which leads to papillary nephrocalcinosis 

and kidney stones. These results can be accentuated by 

decreased colonic calcium secretion or increased intestinal 

calcium absorption. Two large population-based studies 

have shown that common polymorphisms in the claudin-2 

gene were associated with increased risk of kidney stones. 

Finally, a family case study was described in which males 

with a rare missense mutation in claudin-2 had marked hy-

percalciuria and kidney stone disease [56]. 

Metabolic acidosis can be associated with increased 

urinary calcium excretion. The protein level of claudin-2 

decreased in rats with chronic metabolic acidosis and in 

MDCK II and HK-2 cells in response to an acidic pH [57]. 

The authors interpreted these results as an attempt to com-

pensate for the chronic state of metabolic acidosis because 

the downregulation of claudin-2 might be associated with 

an increase in Na+/H+ exchanger 3 (NHE3) activity in the 

proximal tubule. However, Pei et al. [54] reported that the 

total and phosphorylated NHE3 abundance decreased by 

23% and 27%, respectively, in claudin-2 knockout kidneys.  

Thick ascending limb claudins 

The major TAL claudins are claudin-3, -10b, -14, -16, and 

-19. They mediate paracellular transport of cations such 

as Na+, Ca2+, and Mg2+. The transcellular transport system 

is composed of apical NKCC2 and renal outer medullary 

potassium channels (ROMK) and of basolateral Na+/K+-AT-

Pase and ClC-Kb chloride channels. In the cortex and outer 

stripe of the outer medulla (OSOM), the lumen-positive 

voltage produced by apical K+ recycling drives paracellular 

reabsorption of divalent cations via the claudin-16/19 com-

plex. Here, paracellular Na+ transport can act in reverse 

and add to the lumen-positive transepithelial voltage. In 

the inner stripe of the outer medulla, however, Na+ is para-

cellularly reabsorbed through claudin-10b to contribute to 

medullary hypertonicity [58,59]. 

In Fig. 3, immunofluorescence microscopy shows that 

localization of claudin-10 does not overlap with that of 

claudin-16. However, claudin-16 and -19 are colocalized 

[60]. Similarly, claudin-3 and claudin-19 can be colocalized 

with each other but not with claudin-10. This characteristic 

claudin expression in the TAL was reported as a mosaic 

pattern. According to Milatz et al. [13], claudin-3 and clau-

din-19 were expressed in the intracellular compartment 

of all cortex/OSOM TAL cells. However, claudin-16 was 

strictly localized to the TJs. In brief, the expression of clau-

din-3/16/19 and claudin-10b are mutually exclusive in the 

TAL, and the two arrangements respectively mediate diva-

lent and monovalent cation transport [61]. 

Next to the proximal tubule, the TAL is the major site of 

paracellular calcium transport in the kidney [61]. Divalent 

cations Ca2+ and Mg2+ are reabsorbed through the clau-

din-16/19 complex, and claudin-14 negatively regulates 

claudin-16 and -19 via direct interaction. During upstream 

signaling, microRNAs (miR-9 and miR-374) regulate clau-

din-14 mRNA stability and suppress translational efficacy. 

Gene transcription of microRNAs is regulated by the tran-

scriptional factor nuclear factor of activated T cells (NFAT) 

and also via deacetylation of nearby histone molecules [62]. 

Consequently, claudin-14 is upregulated by stimulation of 

the calcium-sensing receptor (CaSR) [63]. 

The downregulation of claudin-2 in metabolic acidosis 

was described above, and we further investigated the role 

of TAL claudins in metabolic acidosis-induced hypercal-

ciuria and hypermagnesiuria [64]. Fig. 4 shows that, in ac-

id-loaded rats, both claudin-16 and claudin-19 expression 

decreased compared with those in controls. However, clau-

din-14 and CaSR expression increased in acid-loaded rats. 

All these changes were reversed by coadministration of 

the CaSR antagonist NPS-2143 and were confirmed using 

immunofluorescence microscopy. Hypercalciuria and hy-

permagnesiuria in acid-loaded rats also were significantly 

ameliorated by NPS-2143 coadministration. Thus, clau-

din-16 and claudin-19 are downregulated by metabolic 

acidosis via the CaSR. 

Genetic defects in TAL claudins are directly linked to 

human diseases. The calcium- and magnesium-wasting 

disorder caused by either a claudin-16 or -19 mutation is 

called familial hypomagnesemia with hypercalciuria and 

nephrocalcinosis (FHHNC). The claudin-19 disorder is 

accompanied by severe ocular defects and is classified as 

type 2 FHHNC. The phenotype of the claudin-14 mutation 

is characterized by deafness without renal manifestations. 

Jo, et al. Renal claudinopathies
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Claudin-10b mutations produce HELIX syndrome, which 

encompasses hypohidrosis, electrolyte imbalance, lacrimal 

gland dysfunction, ichthyosis, and xerostomia and is sug-

gestive of abnormalities in renal ion transport, ectodermal 

gland homeostasis, and epidermal integrity [58]. 

It is interesting that claudin-14 channelopathy has no 

renal manifestations. However, claudin-14 knockout mice 

have demonstrated reduced fractional excretion of calcium 

and magnesium in response to high dietary calcium intake 

[65]. Consistent with this, claudin-14 gene polymorphisms 

have been associated with differences in urinary calcium 

excretion, whereas no associations were found with clau-

din-16 and -19 polymorphisms [66]. 

The claudin-10 mutation HELIX syndrome is character-

ized by lack of sweat, saliva, and tears, and it has an auto-

somal recessive inheritance pattern. Renal manifestations 

include hypokalemia, hypocalciuria, and hypermagne-

semia, as shown in a case series [67]. The data from clau-

din-10 knockout mice can explain this renal phenotype. 

Conditioned knockout mice deficient in claudin-10b were 

generated, and the absence of claudin-10b decreased Na+ 

permeability and increased Mg2+  and Ca2+ permeability 

in isolated perfused TALs [14]. Sodium wasting might be 

linked to an increase in fractional excretion of potassium, 

and increased magnesium and calcium reabsorption could 

lead to hypermagnesemia and hypocalciuria in clau-

din-10b knockout mice. A different feature of claudin-10b 

knockout mice from HELIX syndrome in humans was the 

presence of nephrocalcinosis. Interestingly, upregulation 

of both claudin-16 and claudin-19 was induced in clau-

din-10b knockout mice and can explain these results [14].

 

Figure 3. The distinct expression of claudin-10, claudin-16, and claudin-19 in the mouse cortical thick ascending limb. (A) Immu-
nofluorescence microscopy reveals that localization of claudin-10 (Cldn 10, green) does not overlap with that of claudin-16 (Cldn 16, 
red). (B) Claudin-16 (Cldn 16, red) and claudin-19 (Cldn 19, green) are colocalized in the mouse cortical thick ascending limb. Bar = 20 
μm. Adapted from the article of Prot-Bertoye and Houillier [60], according to the Creative Commons License.
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Figure 4. Alteration of the thick ascending limb claudins in metabolic acidosis. (A) Immunoblots were performed from rat kidneys 
after a 7-day experiment. Each lane was loaded with a protein sample from a different rat and reacted with a specific antibody. (B) 
Densitometric analysis of the immunoblot bands reveals decreased claudin-16 and claudin-19 and increased claudin-14 and calci-
um-sensing receptor (CaSR) protein in NH4Cl-loaded rats. These changes were reversed by coadministration of the CaSR antagonist 
NPS-2143. (C) Immunofluorescence microscopy shows the altered expression of claudin-16, claudin-19, claudin-14, and CaSR in the 
thick ascending limb from each group of animals (magnification, ×400). *p < 0.05 vs. control; #p < 0.05 vs. cinacalcet; §p < 0.05 vs. 
NH4Cl by Mann-Whitney U test. Adapted from the article of Oh et al. [64] with original copyright holder’s permission.
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Collecting duct claudins 

Claudin-3, -4, -7, and -8 are mainly located in the collect-

ing duct. Claudin-3 acts as a general barrier for ions, and 

it can promote urinary acidification due to blockage of H+ 

back-leak [68]. The sealing effect of claudin-3 against ions 

of either charge and uncharged solutes was demonstrated 

by its overexpression in MDCK II cells, which induced a 

marked increase in paracellular resistance and decreases 

in permeability of sodium, chloride, and larger molecules, 

such as 4-kDa dextran [41]. 

In the collecting duct, a transepithelial voltage of −25 

mV with respect to the basolateral side drives Cl− transport 

through the paracellular channel, which is made up of 

claudin-4, -7, or -8 [10]. Thus, claudin-4 and -8 serve as se-

lective anion channels, mediating a “chloride shunt,” which 

is coupled with transcellular Na+ reabsorption via the epi-

thelial Na+ channel (ENaC). They may also act as Na+ bar-

riers [68]. Collecting duct-specific knockout of either clau-

din-4 or claudin-8 causes hypotension, hypochloremia, 

metabolic alkalosis, and renal salt wasting [69,70]. 

Claudin-7 can form a nonselective paracellular channel 

that facilitates Cl– and Na+ reabsorption in the collecting 

duct [71]. Claudin-7 knockout mice die shortly after birth 

due to severe renal salt wasting and dehydration, which is 

suggestive of the essential roles of claudin-7 and the col-

lecting duct paracellular NaCl transport in maintaining 

fluid balance [72]. 

We postulated that claudin-4 or -8 upregulation con-

tributes to salt-sensitive hypertension, and this hypothesis 

was tested in Dahl salt rats (Fig. 5). Compared with Dahl 

salt-resistant rats, Dahl salt-sensitive rats had higher blood 

Figure 5. Impaired pressure natriuresis and altered tight junction proteins in Dahl salt-sensitive rats. The rats were fed an 8% NaCl 
diet for 4 weeks. (A) Compared with Dahl salt-resistant rats (SR), Dahl salt-sensitive rats (SS) had higher blood pressure and lower 
urinary NaCl excretion. (B) Quantitative polymerase chain reaction analysis from whole kidneys shows decreased occludin messenger 
RNA (mRNA) and increased zonula occludens-1 (ZO-1) and claudin-4 mRNA in SS rats compared with SRs. Data are mean ± standard 
error. (C) Immunoblot results also reveal that occludin decreased and claudin-4 protein increased in SS compared with SRs. *p < 0.05 
by the Mann-Whitney U test. Adapted from the article of Jo et al. [73], according to the Creative Commons License.
BW, body weight; SBP, systolic blood pressure.
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pressure and reduced sodium excretion. In the kidney, 

claudin-4 protein and mRNA levels increased, and occlu-

din protein and mRNA decreased [73]. These results might 

be responsible for salt retention or impaired pressure natri-

uresis because claudin-4 is a chloride pore, and occludin is 

a nonspecific or sodium barrier located along the tubule. 

Hou et al. [23] reported that claudin-4 requires clau-

din-8 for TJ localization. Claudin-4 protein expression was 

suppressed by claudin-8 gene knockdown in polarized 

M-1 cells, whereas claudin-3 and -7 expression were not 

affected. In the absence of the claudin-8 gene, claudin-4 

expression was confined to the endoplasmic reticulum and 

the Golgi apparatus and was not observed in the apical cell 

membrane where TJs are located. 

Another regulatory factor of claudin-4 is channel-acti-

vating protease-1 (CAP1). When the cells were treated with 

CAP1, the expression of claudin-4 at the TJs was reduced, 

whereas ZO-1 expression was not affected. CAP1 de-

creased the cell membrane expression levels of claudin-4 

and reduced paracellular Cl– permeability by disrupting 

claudin-4 trans-interaction [69]. 

In the collecting duct principal cells, aldosterone stim-

ulates transcellular Na+ reabsorption and K+ secretion via 

ENaC and ROMK, respectively. In addition, aldosterone 

can affect paracellular Cl– absorption by regulating clau-

dins [68]. Aldosterone activates CAP1, which inhibits clau-

din-4, as previously mentioned. Aldosterone also induces 

phosphorylation of with-no-lysine kinase-4 (WNK4), and 

activated WNK4 phosphorylates claudin-4 on threonine 

residues to promote the chloride shunt [68]. Deletion of the 

claudin-7 gene in collecting duct cells induced upregula-

tion of WNK4 and ENaC [71]. 

We previously tested this theme in cyclosporine-treated 

rats because hyperchloremic metabolic acidosis is often 

Figure 6. The pathophysiology of claudins in the mammalian kidney. Different phenotypes or claudinopathies can be produced by 
dysregulation of claudins along the nephron.
FHHNC, familial hypomagnesemia with hypercalciuria and nephrocalcinosis; HELIX presents as hypohidrosis, electrolyte imbalance, 
lacrimal gland dysfunction, ichthyosis, and xerostomia.
▲, overexpression; ▽, knockdown; ◈, polymorphism.
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encountered in patients using cyclosporine [74]. In the 

kidney, the protein expression of the Na-Cl cotransporter 

(NCC) was decreased by cyclosporine treatment, which 

suggested a decrease in transcellular chloride transport. In-

stead, WNK4 increased in cyclosporine-treated rat kidneys. 

WNK4 upregulation was confirmed by in vitro cell culture 

studies and in vivo immunohistochemistry [75]. However, 

claudin-4 phosphorylation was not demonstrated in this 

study. 

Transcellular and paracellular transport are interlinked 

in the collecting duct as well. Normally, transcellular sodi-

um absorption occurs via ENaC, and paracellular Na+ back-

leak is prevented by claudin-8 barrier. When the ENaC is 

hyperactive, the claudin-8 barrier is strengthened to block 

Na+ back-leak. In contrast, when the ENaC is inactivated, 

the claudin-8 barrier is weakened to promote Na+ back-

leak [76]. Thus, claudin-8 combines with ENaC to enable 

unidirectional sodium transport across the collecting duct. 

Claudinopathy 

As the regulatory function and pathophysiology of claudins 

continue to be explored in the kidney, diseases associated 

with defective claudins have been termed “claudinopa-

thies” [77]. Fig. 6 illustrates different claudinopathies along 

the nephron that have been described in previous exper-

imental and clinical studies. Claudin-1 overexpression in 

the glomerular podocytes might have a role in albuminuria 

[43]. Claudin-2 and claudin-14 polymorphisms are associ-

ated with altered urine calcium excretion [56,66], which is 

suggestive of a role in idiopathic hypercalciuria. Hypercal-

ciuria in metabolic acidosis is related to downregulation of 

both proximal tubule and TAL claudins [57,64]. Claudin-16 

and claudin-19 mutations lead to FHHNC type 1 and type 2, 

respectively. Claudin-10b mutations can cause HELIX syn-

drome, which presents with hypokalemia, hypermagnese-

mia, and hypocalciuria [58,67]. Upregulation of claudin-4 

and/or -8 may play a role in the chloride shunt, producing 

pseudohypoaldosteronism II and salt-sensitive hyperten-

sion [69,70]. 

Conclusion 
Recent data from claudin studies have indicated that the 

paracellular pathways along the nephron are actively in-

volved in renal physiology and pathophysiology. As the ion 

permeability and selectivity of different claudins continue 

to be defined, further studies will be required to show the 

regulatory and pathogenic roles of claudins in various elec-

trolyte disorders. Understanding the interactions between 

paracellular and transcellular transport pathways will pro-

vide deeper insight into integrative renal physiology. 
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