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Aim: Delay discounting (DD) has often been investigated in the context of decision
making whereby individuals attribute decreasing value to rewards in the distant
future. Less is known about DD in the context of negative consequences. The aim
of this pilot study was to identify commonalities and differences between reward
and loss discounting on the behavioral as well as the neural level by means of
computational modeling and functional Magnetic Resonance Imaging (fMRI). We
furthermore compared the neural activation between anticipation of rewards and losses.

Method: We conducted a study combining an intertemporal choice task for potentially
real rewards and losses (decision-making) with a monetary incentive/loss delay task
(reward/loss anticipation). Thirty healthy participants (age 18-35, 14 female) completed
the study. In each trial, participants had to choose between a smaller immediate loss/win
and a larger loss/win at a fixed delay of two weeks. Task-related brain activation was
measured with fMRI.

Results: Hyperbolic discounting parameters of loss and reward conditions were
correlated (r = 0.56). During decision-making, BOLD activation was observed in the
parietal and prefrontal cortex, with no differences between reward and loss conditions.
During reward and loss anticipation, dissociable activation was observed in the striatum,
the anterior insula and the anterior cingulate cortex.

Conclusion: We observed behavior concurrent with DD in both the reward and loss
condition, with evidence for similar behavioral and neural patterns in the two conditions.
Intertemporal decision-making recruited the fronto-parietal network, whilst reward and
loss anticipation were related to activation in the salience network. The interpretation of
these findings may be limited to short delays and small monetary outcomes.
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INTRODUCTION

Imagine having to choose between two monetary rewards: win
€50 today or €100 in three months. What would you choose?
Intertemporal choice tasks (ICTs) like these are used to assess
delay discounting (DD), an aspect of decision-making whereby
individuals attribute decreasing value to outcomes in the future
(Gonçalves and Silva, 2015; Myerson et al., 2017; Yeh et al.,
2020). This decrease over time is most commonly described with
a hyperbolic discounting function (Myerson and Green, 1995).
Inter-individual differences in the temporal discounting rates are
associated with economic behavior, but also mental disorders like
substance use disorder (Story et al., 2014; Cruz Rambaud et al.,
2017; Amlung et al., 2019).

Compare the decision above with the following one: Lose
€50 today or €100 in three months. What would you choose
now? It is still an open question whether the cognitive decision-
making process between these potential losses are the same as
in the first example, only in the opposite direction. Therefore,
comparing the behavioral and neural processes between temporal
loss discounting (LD) and temporal reward discounting (RD) was
the main goal of this study.

On a behavioral level, there appear to be inherent differences
between LD and RD. Losses are discounted less steeply than
rewards (Loewenstein and Prelec, 1992; Frederick et al., 2002;
Estle et al., 2006; Mitchell and Wilson, 2010; Green et al., 2014).
In other words, it appears as if losses in the distant future remain
aversive. Not only are losses discounted less steeply, but also less
frequently: around 20% of participants do not discount losses at
all, another 20% exhibit reverse discounting, i.e., gravitating more
towards immediate choices with increasing delay. In contrast,
future rewards are discounted by more than 90% of participants
(Gonçalves and Silva, 2015; Myerson et al., 2017; Yeh et al., 2020).
Another commonly found difference between RD and LD is the
lack of magnitude effects in LD: in RD, very large wins are less
steeply discounted than small wins, whereas for LD it was found
to be constant over a wide range of monetary outcomes (Johnson
and Bickel, 2002; Mitchell and Wilson, 2010; Green et al., 2014;
Yeh et al., 2020).

There also appear to be similarities between both processes.
A stronger tendency to discount future losses has been associated
with substance use disorder (Johnson et al., 2015; Cox et al.,
2020). Different studies report vastly different correlation
coefficients between discounting rates of losses and reward,
ranging from strong to none at all (Chapman, 1996; Mitchell and
Wilson, 2010; Halfmann et al., 2013; Myerson et al., 2017). To
summarize, it remains unclear whether LD and RD represent the
same cognitive process.

This uncertainty translates to the neural underpinnings of
LD and RD, with only very few studies comparing neural
correlates of RD and LD. There is considerable literature only
for the neural correlates of RD: RD typically recruits brain
areas which are related to executive control (frontal and parietal
cortex, supplementary motor area), reward valuation (ventral
striatum, amygdala, orbitofrontal cortex) and salience (insula,
anterior cingulate cortex (Wesley and Bickel, 2014; Owens et al.,
2019). Moreover, steeper RD is associated with altered activity in

regions including the ventral striatum (VS), inferior frontal gyrus,
anterior cingulate and medial PFC (Schüller et al., 2019).

Directly comparing LD and RD, Bickel et al. (2009) reported
no significant differences between BOLD responses in RD and
LD. Xu et al. (2009) reported a stronger BOLD response in
the dorsolateral PFC and the posterior cingulate, the insula, the
thalamus and the striatum during LD trials as compared with
RD trials. Using dynamic causal modeling, the same group found
distinct networks for gains and losses, whereby the valuation
of losses and gains relies more on dorsolateral PFC and medial
cortical regions, respectively (Zhang et al., 2018).

Whereas the neural underpinnings of reward- and aversion-
related discounting have been rarely compared, a large number
of studies have compared other processes that involve both
rewarding and aversive consequences. One of these is reward
and loss anticipation as measured by monetary incentive
delay (MID) tasks (Kirsch et al., 2003; Knutson et al., 2005).
Cognitive processes during this task include the valuation of
possible outcomes and instrumental behavior to obtain a given
outcome. For this task, recent meta-analyses have demonstrated
comparable activation for trials involving losses and rewards, but
also stronger activation in the ventral striatum during reward
compared to loss anticipation (Dugré et al., 2018; Oldham
et al., 2018). Like outcome anticipation, intertemporal decision-
making usually includes an evaluation process and instrumental
approach behavior (see also Scheres et al. (2013)). Therefore,
differences in neural activation between loss and reward decision-
making could be confounded with differences in the motivational
value of the reward or loss as reflected in the activation during
reward and loss anticipation (Algermissen et al., 2021). To this
end, we developed a sequence of decision-making and outcome
anticipation by combining intertemporal choice tasks with a MID
task (Kirsch et al., 2003).This further allowed us to conduct a MID
task with highly salient outcomes which have been chosen by the
participants themselves.

In addition, behavioral modeling of discounting parameters
allowed us to derive subjective values which we could associate
with brain activation during the MID task. During decision-
making, the subjective value of monetary wins is associated with
stronger activation in the MPFC, the VS, the PCC, the ACC and
other regions throughout the frontal and parietal cortex (Sripada
et al., 2011; Schüller et al., 2019).

Most analyses were performed in an exploratory manner. We
focused on investigating differences and correlations between
behavior and neural activation during decision-making between
rewards and losses. We further collected data on self-perceived
impulsivity via the Barratt Impulsivity Scale-15 (Meule et al.,
2011) to investigate its association with delay discounting.
We preregistered seven hypotheses based on the results of an
unpublished pilot study (for further information)1. Hypotheses
included the presence of delay discounting in both reward
and loss conditions, a replication of ventral striatal activation
during reward anticipation, and more ventral striatal activity
during reward anticipation than during loss anticipation.
Furthermore, we hypothesized to see no correlation between

1https://osf.io/cj35t
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behavioral parameters for LD and RD. Lastly, we expected an
association between stronger RD and higher activation during
the anticipation of immediate rewards (compared to delayed
rewards), and an association between stronger LD and reduced
prefrontal activation during decision-making.

METHODS

Sample
We recruited 30 healthy participants from local universities via
social media, public notices and registers of participants from
earlier studies. Eligibility criteria included: absence of acute
severe medical diseases, absence of acute psychiatric disorders,
and MRI suitability. Eligibility criteria were assessed using a
standardized telephone screening protocol. Eligible participants
signed written informed consent prior to the study. There was
no financial compensation, but participants could win money
based on their responses during the experiment. On average,
participants won €15.20 during the study.

The study was approved by the ethics committee of the
Medical Faculty Mannheim, University of Heidelberg (2019-
633N).

Study Procedure
A standardized information sheet was used to explain the
behavioral task before the MRI session. Participants were
informed that they would be compensated based on their
decisions in the behavioral task.

Each participant completed the experiment in the fMRI
scanner. The experiment consisted of two sessions of 32 trials
each. Within each trial, the participant first had to choose between
two monetary options (decision phase) and then respond quickly
enough after an anticipation period to receive the chosen option
(anticipation phase). The trial procedure is described below and
illustrated in Figure 1.

The two sessions were identical in every aspect (amounts to
choose from, order of stimuli) except for valence: participants
had to choose between and anticipate monetary wins in one
session (reward condition) and losses in the other session (loss
condition). The order of the two sessions was counter-balanced
across participants.

Decision Phase (Intertemporal Choice Task): At the
beginning of each trial, participants had to choose between
a smaller immediate or a larger later amount of money to be
received/lost in two weeks. The delay was always fixed at two
weeks to allow for manageable payment. If no choice was made
within 3 seconds, the trial was excluded for analysis. The phase
was followed by a jittered 1-2 sec inter-stimulus interval.

The 32 trial options were calculated for eight fixed amounts
for the immediate option (€1, €1.25, €1.50, €1.75, €2, €2.25, €2.50
and €2.75) and four ratios between the immediate and delayed
options (0.2, 0.4, 0.6, 0.8). For example, the delayed options in
the four trials offering €1 immediately were: €5, €2.5, €1.66, and
€1.25.

Anticipation Phase (Incentive Delay Task): After making a
choice, the chosen amount of money and the chosen delay

(immediate or 2 weeks) were cued for 6 seconds. Subsequently, a
short flash of 50 ms duration prompted the participant to respond
as fast as possible by pressing a button to receive the chosen
outcome. The threshold for a fast response was adaptive for each
trial, targeting a 50% probability of success: starting with 300 ms,
the required reaction time was increased/decreased by 5% after
a slow/fast response. Then the feedback was presented for 1.5
seconds. In case of no or a too slow response, the chosen reward
was replaced with €0, whereas chosen losses were doubled. Lastly,
the jittered inter-trial interval of 1.5 to 5 seconds followed.

For each task, two trials were randomly selected and paid out.
For the trials of the loss discounting experiment, participants
were given a baseline balance of €8.20 for immediate choices
and €10 for delayed choices, from which the selected loss was
subtracted. An equal balance for both choices would have resulted
in a trivial task where the smaller loss would constantly yield a
larger win. We selected different balances so that choosing the
delayed loss would result in a higher win in 50% of trials.

After the MRI session, participants were asked to fill out
the Barratt Impulsivity Scale-15 (BIS-15, German Short Version;
Meule et al. (2011)) and two open questions for each task: 1)
Did you have a strategy (if yes, please describe)? 2) Did you switch
your preference for an immediate or delayed win/loss at a specific
difference between the two amounts? These questions were used
to assess whether we successfully induced discounting of losses
despite the possibility of winning money in both tasks.

Behavioral data extracted from logfiles included individual
trial-wise choices and reaction times during the decision and
anticipation phases.

Behavioral Modeling
We inferred hyperbolic delay discounting models on the
sequence of behavioral choices of each subject (Mazur, 1987;
Davison and McCarthy, 1988), as commonly done in human
research (Mazur, 1987; Davison and McCarthy, 1988; Kirby and
Herrnstein, 1995; Myerson and Green, 1995; Johnson and Bickel,
2002; Ballard and Knutson, 2009; Bernhardt et al., 2019; Ahn
et al., 2020; Croote et al., 2020). Since we have presented only
two delays, robust estimation of discounting models is limited.
Therefore, we did not run model comparisons between different
discounting models and instead applied the commonly used
hyperobic model to remain comparable to other studies. The
model assumes that the internal (subjective) values V of a delayed
choice a2 decline hyperbolically over time, i.e., according to
V(a2) =

(
1

1+ ·κlD

)
r2, where r2 represents the outcome of the

delayed option, κl is a free (discounting) parameter reflecting
the individual tendency of discounting the delayed outcome in
the reward or loss condition (indexed by l), and D represents
the temporal delay. The value of the immediate choice V(a1) is
simply given by the outcome r1 itself.

By connecting these values to behavioral choices in the task
through a probabilistic process, we describe the probability p for

choosing an action ai as p (ai) =
e

1
βl V(ai)

∑
j e

1
βl V(aj)

, where βl describes

the individuals tendency to exploit or explore choices (separately
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FIGURE 1 | Experimental design. Arrows indicate onsets of GLM regressors. Participants had to choose between two losses (red) or two wins (green) within 3
seconds (decision phase). The chosen outcome was then cued for 6 seconds (anticipation phase), after which a short flash (50 ms) occurred. If participants pressed
the button within an adaptive response window (starting with 300 ms), they received the outcome. If not, the win was reduced to €0 (reward condition) and losses
were doubled (loss condition), as presented in the example.

for reward and loss conditions). Parameters were inferred via
maximum likelihood estimation using constrained parameter
optimization (with inbuilt MATLAB routines) and parameter
constraints on βl

∈ [0, 1], and κl
∈ [0,∞).

Furthermore, the (negative) subjective values of chosen
losses were transformed to absolute subjective values for
easier interpretation (so that a higher absolute subjective value
reflects a higher loss).

Behavioral Data Analysis
To evaluate discounting behavior during the decision phase, we
first counted the individual number of discounted choices by
condition, that is, all immediate choices in the reward condition
and all delayed choices in the loss condition. To test the
hypothesis that the frequency of discounted choices increased as
a function of a higher immediate/delayed ratio, we aggregated the
data by obtaining the relative frequency of discounted choices for
each participant, condition and ratio.

Based on these data, we set up a linear mixed model
(LMM, Singmann and Kellen (2019)) to test for the effect
of ratio (between the immediate and delayed options) and
condition on the number of discounted choices. The LMM was
chosen to take into account the hierarchical data structure and
possible interaction effects. Here, the outcome variable was the
relative frequency of discounted choices, with condition (i.e.,
reward/loss) and ratio between immediate and delayed amount
(i.e., 0.2, 0.4, 0.6, 0.8) as fixed effect predictors. Furthermore, we
added a per-participant random intercept, a random slope per
participant for both fixed effects, and the correlation between the
random effects, resulting in the following formula:

Relative _ frequency ∼ condition + ratio
+ (condition + ratio | subject)

Next, we tested whether the behavioral parameters κ and
β from the hyperbolic model were significantly different or
associated between conditions. To this end, paired t-tests and
Pearson’s correlation coefficient were calculated. To rule out
potential bias from non-converging behavioral models, these
statistics were repeated excluding participants without choice
variability in at least one condition. Lastly, correlations between

the model parameters, the number of discounted choices, and
BIS-15 scores were calculated.

To investigate other possible differences between loss and
reward trials, we statistically compared reaction times during
loss and reward trials, both for the decision phase and the
anticipation phase. Here we also took into account the ratio
between monetary options (decision phase) and the reward/loss
magnitude (anticipation phase) as possible predictors of reaction
time. To this end, we fit LMMs to the data of both phases.

For the decision phase, we set up a LMM with the
reaction time during decision-making as outcome variable.
Fixed effect predictors were condition (reward/loss) and ratio
between immediate and delayed amount (i.e., 0.2; 0.4, 0.6, 0.8).
Furthermore, we added a per-participant random intercept, a
random slope per participant for both fixed effects, and the
correlation between the random effects, resulting in the following
formula:

Reaction_time ∼ condition + ratio +
(condition + ratio | subject)

For the anticipation phase, we set up a LMM with the
reaction time after the flash as an outcome variable. Fixed effect
predictors were condition (reward/loss) and outcome magnitude,
which we obtained from the subjective values derived from
the hyperbolic model. A random intercept per participant was
included, resulting in the formula:

Reaction_time ∼ condition +
subjective_value + (1 | subject)

A significance threshold of p < .05 (two-sided) was used for all
behavioral analyses. All behavioral analyses were performed using
R (version 4.1.2). Linear mixed models were fit using the packages
lme4 (Bates et al., 2015). F-statistics and p-values for LMMs were
estimated using the Satterthwaite method as implemented in the
statistical R package lmertest (Kuznetsova et al., 2017).

Brain Imaging
Functional imaging data were acquired using a 3 Tesla Siemens
Magnetom Trio Scanner (Siemens Medical Systems, Erlangen,
Germany) with a 32 channel head coil. Morphological brain
data was assessed by high-resolution 3-dimensional T1-weighted
anatomical images (MPRAGE) (repetition time (TR) = 2300 ms,
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eco time (TE) = 3.03 ms, flip angle = 9◦, field of view
(FOV) = 256 mm, 192 slices, slice thickness = 1.00 mm, voxel
dimension = 1.0× 1.0× 1.0 mm, matrix size = 256× 256).

The individuals blood oxygen level dependent (BOLD) signal
was measured with two 9:36 min T2∗-weighted echo-planar
image (EPI) sequences with 285 volumes (TR = 2000 ms,
TE = 30 ms, flip angle = 80◦, FOV = 192 mm, 28 sagittal slices,
slice thickness = 4.0 mm, 1 mm gap, voxel dimension = 3.00 x
3.00 x 4.00 mm, matrix size = 64 x 64). The behavioral tasks were
presented using the Presentation software package (Version 21.1,
Neurobehavioral Systems, Inc., Albany, CA, United States).

Functional Magnetic Resonance Imaging
Data Analysis
Preprocessing
We used SPM 12 (Wellcome Department of Cognitive
Neurology, London, United Kingdom) implemented
in MATLAB R2019a (MathWorks Inc., Sherborn, MA,
United States) for preprocessing and analysis of functional
images. The first four volumes of functional data were discarded.
Preprocessing included normalization of the anatomical image to
the SPM TPM template, and for the functional images slice-time
correction, realignment to the mean image, co-registration to
the anatomical image, spatial normalization to the SPM TPM
template, rescaling to a resolution of 2 mm × 2 mm × 2 mm,
and spatial smoothing with a 8x8x8 mm Gaussian kernel.

Modeling
For subject-specific first-level analyses, we set up three general
linear models (GLMs). The reward and loss conditions were
modeled as separate sessions within the GLMs described below.
The respective regressors were the same for both sessions and
are illustrated in Figure 1. Regressor onsets were convolved with
the default SPM canonical hemodynamic response function. Six
estimated movement parameters were included as regressors of
non-interest in all models. The following GLMs were specified:

(1). A phase-related GLM was set up to compare task-
related activation between conditions (i.e., loss/reward)
and implicit baseline. Two phase related-regressors of
interest were specified: the decision phase (onset of the
decision phase modeled with the respective reaction time)
and the anticipation phase (onset of the cue during the
anticipation phase modeled with a fixed duration of
6 s). Trials in which the participants failed to choose an
option during the decision phase were excluded from the
regressors of interest by adding two dummy regressors
of non-interests. To account for additional activation
variance of no interest, we added several regressors of no
interest, including the button press during the decision
phase, the flash after the anticipation phase, the button
press after the flash, and the feedback.
The following contrasts were specified to detect activation
related to the reward decision phase (RDec), the loss
decision phase (LDec), reward anticipation (RA) and loss
anticipation (LA):

Decision Phase: RDec > Implicit Baseline; LDec > Implicit
Baseline; RDec > LDec; LDec > RDec.
Anticipation Phase: RA > Implicit Baseline; LA > Implicit
Baseline; RA > LA; LA > RA.

(2). A parametric decision-related GLM was set up to assess
changes in brain activation in response to trial difficulty,
which was operationalized as the difference between the
subjective values (SV) of the immediate and delayed
options. Here, a smaller difference indicates that the
immediate option and the discounted delayed option have
a more similar subjective value, which is considered a
more difficult decision. The subjective value difference
(SV_Diff) was added as a parametric modulator for
the decision phase.
Following contrasts were specified in this model:
Decision Phase: SV_Diffreward > Baseline;
SV_Diffloss > Baseline.

(3). A parametric anticipation-related GLM was set up
to characterize the association between phase-related
activation during the anticipation phase and the internal
value representation of the cued amount of money.
For this purpose, the subjective value of the chosen
option was added as a parametric modulator for the
anticipation phase.
Following contrasts were specified in this model:
Anticipation Phase: SVreward > Baseline; SVloss > Baseline.

(4). A choice-related GLM was set up to compare choice-related
activation within conditions. The regressors were identical
with the first model, with the two phase-related regressors
of interest (decision phase and anticipation phase) being
split into four regressors based on the participant’s choice
for the immediate or delayed option. Participants with
less than 20% discounted choices (6 out of 32 trials) were
excluded from respective contrasts.
The following contrasts were specified in this model:
Decision Phase: Immediate > Delayed, Delayed >
Immediate (separately for reward and loss).
Anticipation Phase: Immediate > Delayed, Delayed >
Immediate (separately for reward and loss).

Linear contrast estimates were then entered into a second-
level random effects model. One-sample t-tests were used to
detect within-group activation. Inferences were conducted on the
whole-brain level with a cluster-corrected significance threshold
of p < 0.05 and a cluster-defining threshold of p < 0.001
uncorrected. We also conducted all contrasts at a family-wise
peak voxel-corrected threshold of p < 0.05. Both cluster-
corrected and peak voxel-corrected p-values are reported in the
(Supplementary Tables 1, 2). The contrasts for the decision phase
(task-related GLM) yielded very large clusters (> 60.000 voxels),
therefore we only report regions which remained significant at
the peak voxel-corrected threshold.

In order to test the hypotheses regarding ventral striatal
activation during reward and loss anticipation, an a priori defined
ROI analysis was conducted for two contrasts of the first model:
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FIGURE 2 | Behavioral results (N = 30). (A) Number of discounted choices per person (reward = immediate choices; loss = delayed choices). (B) Relative frequency
of discounted choices per ratio between immediate and delayed options (means and standard errors of the mean). Gray: means and standard errors of the
subject-wise hyperbolic model predictions. (C): Distribution of κ and β values. (D): Associations of κ and β between conditions. (E): Association between κ

parameters and relative frequency of discounted choices. (F): Associations between reaction time during the anticipation phase and hyperbolic model-derived
subjective values (note: absolute subjective values used for loss condition, “see Behavioral Modeling”).

“Reward > Implicit Baseline” (Hypothesis 2) and “Reward >
Loss” (Hypothesis 3). The mask for the ROI analysis covering
the bilateral nucleus accumbens was based on the automated
anatomical atlas (AAL, Tzourio-Mazoyer et al. (2002)) and
comprised a volume of 9506 mm3 (1189 voxels). Inference for
ROI analyses was conducted with a significance threshold of
p < 0.05 corrected for small volume.

To test for associations between individual discounting
tendency and brain activation during the decision phase,
model-derived discounting parameters (κ) were entered as
covariates of interest in the second level models. Lastly, to
test the hypothesis of stronger RD and higher activation
during the anticipation of immediate rewards (compared
to delayed rewards), the discounting parameter κreward
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was entered as a covariate of interest in the second
level of the choice-related contrast Immediate > Delayed
Reward Anticipation.

RESULTS

Study Population
The study sample consisted of 30 undergraduate university
students (mean age ± SD = 24 ± 3.46 years; range 19 to 33; 14
female) from different fields.

Missing Data
MRI data from two participants had to be excluded due to
an incidental finding and excessive head movement. Behavioral
analyses are reported with N = 30, fMRI analyses with N = 28.

A total of 30 trials (1.56% of all trials) had to be excluded from
further analyses due to no decision within 3s.

Behavior
For the decision phase, the number of discounted choices per
condition is illustrated in Figure 2A. The average number
of discounted choices (out of 32 trials) was 4.93 in the
reward condition and 5.12 in the loss condition (Table 1),
with a correlation of r = 0.47 (p = 0.01) between the
two. Almost a third of all participants (8 in the loss
condition, 9 in the reward condition) never chose the
discounted option. In both conditions, the relative discounting
frequency increased as the ratio between immediate and
delayed options approximated 1, as illustrated by Figure 2B.
This is further confirmed by the statistically significant
effect of ratio (t(29.31) = 5.62, p < 0.001) in the LMM
predicting relative discounting frequency by ratio and condition
(Table 2). In contrast, the effect of condition was not
significant (t(29.05 = 0.03, p = 0.79), indicating no difference
between loss and reward trials with regard to number of
discounted choices.

The descriptive statistics for the behavioral model parameters
κ and β are presented in Table 1 (see also Figure 2C). Paired
t-tests revealed that discounting parameters κ (t(29) = −0.31,
p = 0.76) and choice parameters β (t(29) = 0.16, p = 0.88)
did not differ significantly between conditions. Excluding
participants showing no behavioral variability yielded the same
results (all p > 0.44). Instead, model-derived discounting
parameters κ (r = 0.56, p < 0.01), but not choice parameters
β (r = 0.14, p = 0.46), were significantly correlated between
conditions (Table 1 and Figure 2D). The correlation between
discounting parameters κ did not remain significant after
excluding participants without behavioral variability in at
least one of the two conditions (r = 0.43, p = 0.09,
n = 17).

Correlations between the behavioral model parameters and
number of discounted choices are presented in Table 1.
Discounting parameters κ based on the hyperbolic model were
highly correlated with the number of discounted choices, both for
the loss (r = 0.92, p < 0.001) and the reward condition (r = 0.90;
p < 0.001; Figure 2E). The correlation remained constant after TA
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TABLE 2 | Linear Mixed Model for the effect of condition (Loss = 0, Reward = 1) and ratio between immediate and delayed options (0.2, 0.4, 0.6, 0.8) on relative
frequency of discounted choices during the decision phase (N = 30).

Level Effect Estimate SE t df P 5% CI 95% CI

Group Intercept −0.12 0.03 −3.43 35.36 < 0.01 −0.19 −0.05

Group Condition −0.01 0.03 −0.27 29.05 0.79 −0.07 0.05

Group Ratio 0.57 0.10 5.62 29.31 < 0.01 0.36 0.77

Subject SD (Intercept) 0.13

Subject Intercept*Condition −0.40

Subject Intercept*Ratio −0.92

Subject SD (Condition) 0.13

Subject Condition*Ratio 0.02

Subject SD (Ratio) 0.50

Residual SD 0.14

Estimates are in relative frequencies (0 to 1).

removing data from participants without behavioral variability
(reward: r = 0.89; loss: r = 0.92, both p < 0.001). Taken together,
the hyperbolic discounting parameters were a good indicator of
observed discounting behavior.

No behavioral index of discounting behavior showed a
significant association with any of the subscales nor the total scale
of the BIS-15 (Table 1), indicating no linear relationship between
self-rated impulsivity and observed discounting behavior.

Lastly, there was no effect of condition (reward/loss) on
the reaction times in the decision phase and the anticipation
phase. For the decision phase, the LMM revealed a statistically
significant effect of ratio (t(28.67) = 4.06, p < 0.001)), but
not condition (t(28.99) = −0.97, p = 0.34; Table 3), indicating
slower decision-making in trials with higher ratio between the
immediate and delayed option.

For the anticipation phase, the LMM revealed no significant
effects of condition (t(1852.64) = 0.01, p = 0.99) or subjective
value (t(1856.64) = 0.29, p = 0.77; Table 4). The reaction time
after the flash was therefore unrelated to valence or magnitude, as
illustrated by Figure 2F.

Functional Magnetic Resonance Imaging
Decision Phase
Reward Condition
The phase-related GLM contrast “RDec > Implicit Baseline”
revealed clusters of activation in the visual cortex, the
cerebellum, the anterior insula, the operculum, the primary and
supplementary motor areas, the superior and posterior parietal
cortex, and the anterior cingulate cortex (see Figure 3A and
Supplementary Table 1).

In no brain region was task-related activation significantly
correlated to the individual discounting parameter κreward (phase-
related GLM contrast ‘RDec > Implicit Baseline) ∗ κreward ‘). This
result remained unchanged after excluding participants without
behavioral variability (remaining n = 21).

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 12 participants were included in this contrast.

The parametric modulation of RDec with the subjective value
difference between immediate and delayed options revealed no
significant clusters of activation.

Loss Condition
The phase-related GLM contrast “LDec> Implicit Baseline”
revealed clusters of activation in the visual cortex, the
cerebellum, the anterior insula, the operculum, the primary and
supplementary motor areas, the superior and posterior parietal
cortex, and the anterior cingulate cortex (see Figure 3B and
Supplementary Table 1).

No brain region showed activation in significant relation
with the individual discounting parameter κloss (phase-related
GLM contrast ‘LDec > Implicit Baseline) ∗ κloss ‘). This
result remained unchanged after excluding participants without
behavioral variability (remaining n = 22).

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 15 participants were included in this contrast.

The parametric modulation of LDec with the subjective value
difference between immediate and delayed options revealed no
significant clusters of activation.

Reward Condition vs. Loss Condition
There were no significant clusters in the phase-related GLM
contrasts “LDec > RDec” and vice versa. An exploratory
contrast combining loss and reward (‘LDec + RDec > Baseline’)
revealed activation throughout the same regions as during
the individual conditions (Supplementary Figure 1 and
Supplementary Table 3).

Anticipation Phase
Reward Anticipation
In the phase-related GLM contrast “RA > Implicit Baseline,”
significant activation was present in the anterior insula, anterior
cingulate cortex, putamen, pallidum, operculum, cerebellum,
thalamus as well as primary and supplementary motor areas
(see Figure 4A and Supplementary Table 2). Furthermore, the
a priori ROI analysis revealed significant activation in the ventral
striatum (Supplementary Table 2).
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TABLE 3 | Linear Mixed Model for the effect of condition (Loss = 0, Reward = 1) and ratio between immediate and delayed options (0.2, 0.4, 0.6, 0.8) on reaction times
during the decision phase (N = 30).

Level Effect Estimate SE t df P 5% CI 95% CI

Fixed Intercept 1, 043.17 35.58 29.32 28.90 < 0.01 970.40 1, 115.95

Fixed Condition −34.82 35.81 −0.97 26.99 0.34 −108.07 38.42

Fixed Ratio 241.67 59.57 4.06 28.68 < 0.01 119.77 363.57

Subject SD (Intercept) 167.13

Subject Intercept*Condition −0.52

Subject Intercept*Ratio 0.59

Subject SD (Condition) 181.01

Subject Condition*Ratio −0.02

Subject SD (Ratio) 279.04

Residual SD 299.79

Estimates are in milliseconds.

TABLE 4 | Linear Mixed Model for the effect of condition (Loss = 0, Reward = 1) and subjective value of outcome on reaction times during the anticipation phase.
Subjective values of the chosen option were derived from the hyperbolic model (“see Behavioral Modeling”) (N = 30).

Level Effect Estimate SE t Df p 5% CI 95% CI

Fixed Intercept 239.72 3.91 61.32 39.40 0.00 231.82 247.63

Fixed Condition 0.05 3.81 0.01 1, 853.64 0.99 −7.42 7.53

Fixed Subjective Value 0.16 0.53 0.29 1, 857.64 0.77 −0.89 1.20

Subject SD (Intercept) 18.91

Residual SD 46.86

Estimates are in milliseconds.

FIGURE 3 | Brain activation during the decision phase (intertemporal choice task). (A): Reward Decision Phase > Implicit Baseline (B): Loss Decision Phase >

Implicit Baseline. Results displayed at p < 0.5 FWE-corrected for multiple testing.
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FIGURE 4 | Brain activation during the anticipation phase (monetary incentive delay task). (A): Reward Anticipation (RA) > Implicit Baseline. (B): Loss Anticipation
(LA) > Implicit Baseline. (C): RA > LA. (D): LA > RA. Only voxels from significant clusters (cluster-size p < 0.05 corrected for multiple testing and p < 0.001 as
cluster-defining threshold) are displayed.

The parametric modulation of RA with subjective value
revealed three clusters in the anterior insula + striatum, the
cerebellum and the anterior cingulate cortex (Figure 5A and
Supplementary Table 2). In other words, the chance of winning
higher rewards was associated with more activity in salience-
related regions.

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 12 participants could be included in this contrast.

The choice-related brain-behavior correlation ‘(Immediate >
Delayed) ∗ κreward revealed no significant clusters of activation.

Loss Anticipation
The phase-related GLM contrast “LA > Implicit Baseline”
revealed significant clusters in the anterior insula, anterior
cingulate cortex, putamen, pallidum, operculum, cerebellum,
visual cortex as well as and primary and supplementary motor
areas (Supplementary Table 2 and Figure 4B).

The parametric modulation of LA with subjective value
revealed five clusters associated with the chance of preventing
higher losses: the prefrontal cortex, middle cingulate cortex,
thalamus and precuneus (Supplementary Table 2 and
Figure 5B).

The choice-related GLM contrasts “Immediate > Delayed
Choices” and vice versa revealed no significant clusters of brain
activation. However, due to the low behavioral variance, data of
only 15 participants reward could be included in this contrast.

Reward Anticipation vs. Loss Anticipation
The phase-related GLM contrast “RA >LA” revealed significantly
more activation during RA throughout the prefrontal and
parietal cortex, anterior insula, putamen, anterior cingulate
cortex and motor areas (Supplementary Table 2 and Figure 4C).
The opposite contrast “LA > RA” revealed significantly more
activation during LA in the ventral striatum (Supplementary
Table 2 and Figure 4D).
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FIGURE 5 | Parametric modulation of brain activation during the anticipation phase with hyperbolic model-derived subjective values (“see Behavioral Modeling”).
(A): Brain regions that show more activation during Reward Anticipation (RA) when subjectively higher rewards could be won. (B): Brain regions that show more
activation during Loss Anticipation (LA) when subjectively higher losses could be avoided. Only voxels from significant clusters (cluster-size p < 0.05 corrected for
multiple testing and p < 0.001 as cluster-defining threshold) are displayed.

DISCUSSION

General Discussion
In this study, we aimed to investigate the differences and/or
associations between temporal discounting of losses and rewards
on a behavioral and neural level. We combined an intertemporal
choice task with a monetary incentive delay task in an fMRI
experiment. That is, participants had to choose between two
potentially real losses or rewards in the decision phase of
each trial, and respond quickly to receive the chosen option
in the anticipation phase of each trial. Individual discounting
parameters were estimated based on the hyperbolic discounting
model. Based on these parameters, we were able to obtain
subjective values for the chosen rewards and losses and used these
as parametric modulators in the fMRI models.

Statistical analyses focused on the exploratory comparison of
the behavior and neural activation during the loss and reward
conditions. During the decision phase of the task, we observed
correlated LD and RD behavior and no neural differences
between the loss and reward condition. During the anticipation
phase, the ventral striatum was more strongly activated during
the loss condition, whereas several regions including ACC and
anterior insula were more strongly activated during the reward

condition. Higher subjective losses and rewards were found to be
associated with stronger activation in several regions during the
anticipation phase.

Our a priori-defined analyses regarding correlations between
neural activation and individual discounting parameters
did not yield any significant finding. As discussed further
below, this might be explained by the overall low rate of
discounting behavior.

Comparing Discounting of Rewards and
Losses
We observed discounting of both losses (LD) and rewards (RD):
participants gravitated more towards the discounted option in
trials where the immediate and delayed option were more similar,
i.e., where the ratio between options was closer to 1 (Table 2). The
general discounting frequency in our experiment was low, which
is why key analyses were repeated excluding non-discounters.
However, at least for the loss task, the discounting rates seem
in line with prior literature reporting about 30% non-discounters
(Mitchell and Wilson, 2010; Myerson et al., 2017; Yeh et al., 2020;
Thome et al., 2022).

In general, the observed data in both conditions matched
the pattern predicted by the hyperbolic model (Figure 2B).
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Note that the hyperbolic model was chosen based on the
literature (“see Behavioral Modeling”). With only one delay, it
could not be compared to other models like the exponential or
hyperboloid function. However, hyperbolic κ parameters were
strongly correlated with the number of discounted choices in
both reward (r = 0.90) and loss (r = 0.92) conditions, a result
which remained unchanged after excluding non-discounting
participants. These findings support our hypothesis of some form
of discounting behavior in both conditions.

Contrary to our expectations, we found very similar behavior
during loss and reward trials. The condition had no significant
effect on the number of discounted trials (Table 2). Further,
loss and reward behavior was highly correlated, as reflected
by the correlation between conditions regarding number of
discounted choices (r = 0.47, Table 1) and κ values (r = 0.56,
Figure 2D). The strong correlation between κ values did not
remain significant after excluding non-discounters, yet the effect
size remained comparable (r = 0.46). Power analyses revealed
that our full sample of N = 30 yielded 96% power to detect the
strong correlation of r = 0.55 reported for middle-aged adults
by Halfmann et al. (2013), but only 73% power to replicate the
moderate correlation of r = 0.39 reported by Mitchell and Wilson
(2010). Therefore, the lack of significance after reduction of the
sample size can most likely be attributed to a lack of power.

Like the number of discounted choices, the behavioral
model parameters κ and β did not significantly differ between
conditions. However, prior studies (Chapman, 1996; Engelmann
et al., 2013) reported differences between LD and RD only for
large but not for small delays, matching our data which is only
based on small delays. In addition, post-hoc power analyses
revealed only 48% power to find a small difference of d = 0.3
between RD and LD in our sample. Consequently, our finding of
no behavioral difference should not be generalized to large delays
and small effects.

Another similarity between conditions was found in reaction
times during the decision phase, which were highly variable,
but not related with the reward/loss condition (Tables 3, 4).
Together, this suggests commonalities between cognitive
processes involved in reward and loss discounting, if only for
short delays and small monetary outcomes.

Successful Induction of Loss Perception
The implementation of real losses is not a straightforward
enterprise if participants start with upfront money that can
be won. Using one balance for both immediate and delayed
losses would motivate participants to exploit the immediate
loss to receive more money at the end. Here we tested a
system with different balances for immediate and delayed
losses: In this study, two random choices per condition were
selected and paid out. Chosen losses were subtracted from
a fixed balance if the reaction time during the anticipation
phase task was fast enough and doubled if the reaction time
was too slow. However, this means that participants could
actually win money in the loss condition. By choosing different
balances for the immediate (€8.20) and delayed loss (€10),
we tried to prevent an obvious winning strategy. However,
theoretically participants could always opt for the maximum

win if they followed an optimal strategy. This means that
we could not guarantee that the loss ICT actually induced
a perception of losing money, rather than of potentially
winning more money.

To evaluate our success in inducing a perception of loss
(and consequently loss discounting), participants answered open
questions about their strategy after completing all measurements.
In the reward condition, 24 participants stated an overall
strategy of always choosing the higher win, whereas 12
participants explicitly named a variable strategy based on time
and reward ratio (discounting behavior). In the loss condition,
19 participants stated an overall strategy of always choosing the
smaller loss, with 11 participants naming variable strategies based
on time and reward ratio. Here, a variable strategy could be the
result of both discounting and a win-oriented strategy. However,
only one participant explicitly described choosing the loss that
resulted in the larger win. Notably, 19 participants explicitly used
the word “loss” when talking about their strategy, indicating
a perception of actual losses, rather than absolute wins. Few
studies have investigated LD in the fMRI, and to our knowledge,
none have used real losses. This is understandable, given
the obvious ethical problems of inflicting monetary losses on
participants. Here we tried to mask the “optimal” choice by using
different balances from which immediate and delayed losses were
subtracted. This enabled us to follow up the intertemporal choice
task by means of an incentive delay task with real losses. Taken
together, the quantitative and qualitative results clearly indicate
that the behavioral variance in the loss condition was indeed due
to LD and not win-orientation.

Brain Activation During Intertemporal
Decision-Making
During the decision phase, a pattern of regions related to
networks of salience (e.g., anterior insula and cingulate cortex),
decision-making (e.g., parietal and frontal cortex) and motor
control (e.g., precentral gyrus and SMA) was observed in
both conditions (Figure 3 and Supplementary Figure 1). This
activation pattern closely matches the overlap of three different
discounting tasks against baseline reported by Koffarnus et al.
(2017). In line with the behavioral results, we observed no
significant differences between the loss and reward conditions.
Furthermore, we found no brain-behavior correlation with the
model-derived κ parameters. Again, the low behavioral variability
observed throughout the experiment may have impeded the
statistical comparison of neural discounting processes. Indeed,
the few studies comparing neural correlates of LD and RD have
reported inconsistent results (Bickel et al., 2009; Xu et al., 2009)
which might suggest only subtle differences in neural activity
during LD and RD.

We did not find any evidence for a modulation of brain
activation by the difference between the two subjective values
presented in each trial. Very difficult trials (i.e., trials close to the
indifference point, therefore small difference) have been shown to
elicit more activation in the ACC and dlPFC, than very easy trials
(Monterosso et al., 2007; Koffarnus et al., 2017). Again, this result
may be best explained by the small monetary outcomes and low

Frontiers in Systems Neuroscience | www.frontiersin.org 12 July 2022 | Volume 16 | Article 867202

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-867202 July 22, 2022 Time: 14:59 # 13

Pinger et al. Comparing Reward and Loss Discounting

behavioral variability, yielding only few trials with very hard and
very easy choices.

Delay Discounting and Impulsivity
No subscale or total score of the BIS-15 was significantly
associated with discounting behavior. Excessive delay
discounting is associated with “impulsive” behavior such as
obesity and substance use disorders (Story et al., 2014). However,
the term impulsivity is multi-faceted and contains different
constructs with inconsistent associations (Moreira and Barbosa,
2019). Stahl et al. (2014) found no association between delay
discounting and other measures of impulsivity and argue
that “impulsivity” is an umbrella term of limited usability.
The BIS-15 is a common self-rating instrument with weak
associations to discounting at best (Reynolds et al., 2006; de
Wit et al., 2007; Mobini et al., 2007). In conclusion, rather than
reflecting impulsivity, discounting might better be understood as
a construct on its own (Odum, 2011).

Brain Activity During the Anticipation
Phase
The observed activity during the anticipation phase in both
conditions (Figure 4) matches the very typical pattern associated
with motivational salience and monetary incentive delay tasks
(Kirsch et al., 2003; Bjork et al., 2012; Oldham et al.,
2018). The anterior insula and cingulate cortex are thought
to modulate attention and goal-directed behavior towards
context-relevant stimuli. Indeed, activity in these two regions
was furthermore associated with subjective value, indicating
a neuronal reflection of salience increasing with the amount
of money that can be won or lost. In contrast, a study by
Diekhof et al. (2012) found increased striatal response during
the MID in response to an increased subjective value of the
presented outcome. In our study, ventral striatal activation was
surprisingly limited during reward anticipation, as reflected
by the small cluster which only remained significant in the
ROI analysis (Supplementary Table 2). A reason for this
might be our overall experimental design with two tasks
that are known to activate the ventral striatum (Kirsch
et al., 2003; Schüller et al., 2019). In addition to this,
the anticipation task lacked an explicit control condition,
leaving only the implicit baseline contrast with possibly low
residual variance.

Comparing Reward and Loss
Anticipation
Comparing baseline contrasts side by side, activity during
loss anticipation was focused around the same salience
hubs as during reward anticipation (Figure 4). This is
in line with recent meta-analyses suggesting a valence-
independent processing of motivational salience (Dugré
et al., 2018; Oldham et al., 2018). However, a direct contrast
of reward anticipation >loss anticipation and vice versa
revealed differentiated activity during the two conditions
(Figures 4C, D). The aforementioned salience regions and
several clusters throughout the cortex were significantly more

activated during reward trials, whilst loss trials were associated
with more activation in the ventral striatum. The former
effect is less surprising if we take into account the average
subjective value: participants chose smaller losses and larger
rewards (see also Figure 2F). Therefore, reward trials (with an
average win of €4.02) were possibly more salient than loss trials
(with an average loss of €1.89), reflected by more activity on
corresponding brain networks. Indeed, brain regions involved
in evaluating the motivational relevance of states have been
theorized to act as valence-independent salience networks
(Oldham et al., 2018).

Though plausible, this cannot explain the increased ventral
striatal response during loss anticipation. In fact, we were
expecting the opposite, as a recent meta-analysis reported
more ventral striatal activity during reward anticipation
(Oldham et al., 2018). However, given that the incentive
delay task allows the participants to prevent an anticipated
loss, increased activation in a core region of motivational
processing might reflect a higher motivational value of the
prevention of a potential loss compared to a potential win.
Such a response pattern would be predicted by prospect
theory (Kahneman and Tversky, 1979) in the context
of loss aversion.

Limitations
Our study used potentially real rewards and losses, trading
external validity against a low monetary range and no variation
in the delay, due to practical considerations. This combination
probably resulted in a very low discounting rate, and hence
statistical power. Moreover, generalization to large delays and
monetary outcomes is limited. For most participants, the
calculation of discounting parameters relied on few trials,
limiting the reliability of the obtained parameters. Importantly,
the lack of different delays made it impossible to compare
different discounting models, e.g., the hyperbolical and the
hyperboloid function.

Although we demonstrate a successful induction of loss
discounting using real outcomes, this could possibly introduce
a bias of upfront money, which might increase the validity of
the monetary domain and hence reduce discounting (Jiang et al.,
2016). Another possible bias comes from the payment procedure,
where chosen losses were doubled if the anticipation time was
too short. This unproportionally increased the potential loss
associated with the (larger) delayed option.

Lastly, some methodological issues arise from our
combination of an ICT with a MID. The contingency of the ICT
outcome on performance in the MID induced ambiguity, i.e.,
an implicit and changing probability of ∼50% to not receive
the chosen reward or even receive a higher loss. This may
have biased participants to prefer a smaller loss. In addition,
ambiguity may have influenced neural processes during the ICT,
limiting the comparison to neuroimaging studies investigating
pure delay discounting or risky decision-making (Ikink et al.,
2019; Ortiz-Teran et al., 2019). Another limitation is that the
behavioral paradigm was not designed to directly contrast brain
activation during the decision phase and the anticipation phase.
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Therefore, the separation of decision-making and instrumental
behavior is only conceptual, but cannot be backed up by more
intricate statistical analyses.

Future Research
A proper comparison of loss and reward discounting requires
an adaptation of the paradigm with respect to inter- and intra-
individual differences. Delay discounting is a decision-making
process assumed to involve a valuation of options. Comparing
subjective valuation requires comparable subjective values. This
means taking into account global differences between RD and LD
(e.g., magnitude effect, loss aversion) and individual discounting
behavior to create intertemporal decisions with comparable
subjective value. To this end, we recently developed a model-
based framework to evoke predicted responses in RD and LD
(Thome et al., 2022). As a next step, we plan to apply this adaptive
task in the fMRI to allow for more fine-grained analysis of the
neural differences between RD and LD.

CONCLUSION

We found similar behavior in intertemporal choice tasks
involving potentially real losses and rewards. Whilst the overall
discounting rate was low, losses were discounted as frequently as
rewards. There was a considerable correlation (r = 0.56) between
hyperbolic discounting parameters κ during loss and reward
discounting. In line with this finding, brain activation during
reward- and loss-related decision-making were not significantly
different from another. In contrast to that, reward anticipation
recruited more salience-related brain regions like the anterior
insula and the ACC, with the exception of more ventral striatal
activation during loss anticipation. In line with prior research
we demonstrate that brain activation in salience-related regions
during reward and loss anticipation was associated with model-
derived subjective values. Taken together, the general results of
our study seem to support the account that LD and RD rely on
similar or at least overlapping cognitive and neural processes.
However, this similarity is yet to be demonstrated for an extensive
range of delays and monetary outcomes.
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